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Abstract

Panoptic segmentation aims to perform instance seg-

mentation for foreground instances and semantic segmen-

tation for background stuff simultaneously. The typical top-

down pipeline concentrates on two key issues: 1) how to

effectively model the intrinsic interaction between seman-

tic segmentation and instance segmentation, and 2) how to

properly handle occlusion for panoptic segmentation. In-

tuitively, the complementarity between semantic segmen-

tation and instance segmentation can be leveraged to im-

prove the performance. Besides, we notice that using detec-

tion/mask scores is insufficient for resolving the occlusion

problem. Motivated by these observations, we propose a

novel deep panoptic segmentation scheme based on a bidi-

rectional learning pipeline. Moreover, we introduce a plug-

and-play occlusion handling algorithm to deal with the oc-

clusion between different object instances. The experimen-

tal results on COCO panoptic benchmark validate the ef-

fectiveness of our proposed method. Codes will be released

soon at https://github.com/Mooonside/BANet.

1. Introduction

Panoptic segmentation [19], an emerging and challeng-

ing problem in computer vision, is a composite task unify-

ing both semantic segmentation (for background stuff) and

instance segmentation (for foreground instances). A typical

solution to the task is in a top-down deep learning manner-

whereby instances are first identified and then assigned to

semantic labels [22, 23, 28, 38]. In this way, two key issues

arise out of a robust solution: 1) how to effectively model

the intrinsic interaction between semantic segmentation and

instance segmentation, and 2) how to robustly handle the

occlusion for panoptic segmentation.
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Figure 1. The illustration of BANet. We introduce a bidirectional path

to leverage the complementarity between semantic and instance segmen-

tation. To obtain the panoptic segmentation results, low-level appearance

information is utilized in the occlusion handling algorithm.

In principle, the complementarity does exist between the

tasks of semantic segmentation and instance segmentation.

Semantic segmentation concentrates on capturing the rich

pixel-wise class information for scene understanding. Such

information could work as useful contextual clues to enrich

the features for instance segmentation. Conversely, instance

segmentation gives rise to the structural information (e.g.,

shape) on object instances, which enhances the discrimina-

tive power of the feature representation for semantic seg-

mentation. Hence, the interaction between these two tasks

is bidirectionally reinforced and reciprocal. However, pre-

vious works [22, 23, 38] usually take a unidirectional learn-

ing pipeline to use score maps from instance segmentation

to guide semantic segmentation, resulting in the lack of a

path from semantic segmentation to instance segmentation.

Besides, the information contained by these instance score

maps is often coarse-grained with a very limited channel

size, leading to the difficulty in encoding more fine-grained

structural information for semantic segmentation.

In light of the above issue, we propose a Bidirectional

Aggregation NETwork, dubbed BANet, for panoptic seg-

mentation to model the intrinsic interaction between se-

mantic segmentation and instance segmentation at the fea-

ture level. Specifically, BANet possesses bidirectional

paths for feature aggregation between these two tasks,

which respectively correspond to two modules: Instance-
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To-Semantic (I2S) and Semantic-To-Instance (S2I). S2I

passes the context-abundant features from semantic seg-

mentation to instance segmentation for localization and

recognition. Meanwhile, the instance-relevant features, at-

tached with more structural information, are fed back to se-

mantic segmentation to enhance the discriminative capabil-

ity of the semantic features. To achieve a precise instance-

to-semantic feature transformation, we design the ROIInlay

operator based on bilinear interpolation. This operator is ca-

pable of restoring the structure of cropped instance features

so that they can be aggregated with the semantic features

for semantic segmentation.

After the procedures of semantic and instance segmenta-

tion, we need to fuse their results into the panoptic format.

During this fusion process, a key problem is to reason the

occlusion relationships for the occluded parts among object

instances. A conventional way [11, 19, 28, 38] relies heav-

ily on detection/mask scores, which are often inconsistent

with the actual spatial ranking relationships of object in-

stances. For example, a tie usually overlaps a person, but it

tends to get a lower score (due to class imbalance). With this

motivation, we propose a learning-free occlusion handling

algorithm based on the affinity between the overlapped part

and each object instance in the low-level appearance feature

space. It compares the similarity between occluded parts

and object instances and assigns each part to the object of

the closest appearance.

In summary, the contributions of this work are as fol-

lows:

• We propose a deep panoptic segmentation scheme

based on a bidirectional learning pipeline, namely

Instance-To-Semantic (I2S) and Semantic-To-Instanc-

e (S2I) to enable feature-level interaction between in-

stance segmentation and semantic segmentation.

• We present the ROIInlay operator to achieve the pre-

cise instance-to-semantic feature mapping from the

cropped bounding boxes to the holistic scene image.

• We propose a simple yet effective learning-free ap-

proach to handle the occlusion, which can be plugged

in any top-down based network.

2. Related Work

Semantic segmentation Semantic segmentation, the task

of assigning a semantic category to each pixel in an image,

has made great progress recently with the development of

the deep CNNs in a fully convolutional fashion (FCN[32]).

It has been known that contextual information is beneficial

for segmentation [8, 12, 15, 17, 20, 21, 33, 36], and these

models usually provide a mechanism to exploit it. For ex-

ample, PSPNet [41] features global pyramid pooling which

provides additional contextual information to FCN. Feature

Pyramid Network (FPN) [26] takes features from different

layers as multi-scale information and stacks them to a fea-

ture pyramid. DeepLab series [5, 6] apply several architec-

tures with atrous convolution to capture multi-scale context.

In our work, we focus on utilizing features from semantic

segmentation to help instance segmentation instead of de-

signing a sophisticated context mechanism.

Instance segmentation Instance segmentation assigns a

category and an instance identity to each object pixel in

an image. Methods for instance segmentation fall into

two main categories: top-down and bottom-up. The top-

down, or proposal-based, methods [4, 9, 10, 16, 24, 30, 35]

first generate bounding boxes for object detection, and then

perform dense prediction for instance segmentation. The

bottom-up, or segmentation-based, methods [1, 7, 13, 25,

29, 31, 34, 37, 39, 40] first perform pixel-wise semantic seg-

mentation, and then extract instances out of grouping. Top-

down approaches dominates the leaderboards of instance

segmentation. We adopt this manner for the instance seg-

mentation branch in our pipeline. Chen et al. [2] made

use of semantic features in instance segmentation. Our ap-

proach is different from it in that we design a bidirectional

path between instance segmentation and semantic segmen-

tation.

Panoptic segmentation Panoptic segmentation unifies

semantic and instance segmentation, and therefore its meth-

ods can also fall into top-down and bottom-up categories on

the basis of their strategy to do instance segmentation. Kir-

illov et al. [19] proposed a baseline that combines the out-

puts from Mask-RCNN [16] and PSPNet [41] by heuristic

fusion. De Geus et al. [11] and Kirillov et al. [18] proposed

end-to-end networks with multiple heads for panoptic seg-

mentation. To model the internal relationship between in-

stance segmentation and semantic segmentation, previous

works [22, 23] utilized class-agnostic score maps to guide

semantic segmentation.

To solve occlusion between objects, Liu et al. [28] pro-

posed a spatial ranking module to predict the ranking of ob-

jects and Xiong et al. [38] proposed a parameter-free mod-

ule to bring explicit competition between object scores and

semantic logits.

Our approach is different from previous works in three

ways. 1) We utilize instance features instead of coarse-

grained score maps to improve the discriminative ability of

semantic features. 2) We build a path from semantic seg-

mentation to instance segmentation. 3) We make use of

low-level appearance to resolve occlusion.

3. Methods

Our BANet contains four major components: a back-

bone network, the Semantic-To-Instance (S2I) module, the
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Figure 2. Our framework takes advantage of complementarity between semantic and instance segmentation. This is shown through two key modules,

namely, Semantic-To-Instance (S2I) and Instance-To-Semantic (I2S). S2I uses semantic features to enhance instance features. I2S uses instance features

restored by the proposed RoIInlay operation for better semantic segmentation. After performing instance and semantic segmentation, the occlusion handling

module is applied to determine the belonging of occluded pixels and merge the instance and semantic outputs as the final panoptic segmentation.

Instance-To-Semantic (I2S) module and an occlusion han-

dling module, as shown in Figure 2, We adopt ResNet-

FPN as the backbone. The S2I module aims to use seman-

tic features to help instance segmentation as described in

Section 3.1. The I2S module assists semantic segmenta-

tion with instance features as described in Section 3.2. In

Section 3.3, an occlusion handling algorithm is proposed to

deal with instance occlusion.

3.1. Instance Segmentation

Instance segmentation is the task of localizing, classify-

ing and predicting a pixel-wise mask for each instance. We

propose the S2I module to bring about contextual clues for

the benefit of instance segmentation, as illustrated in Fig-

ure 3. The semantic features FS are obtained by applying

a regular semantic segmentation head on the FPN features

{Pi}i=2...5.

For each instance proposal, we crop semantic features

FS and the selected FPN features Pi by RoIAlign [16].

These features are denoted by F crop
S and P crop

i . The pro-

posals we use here are obtained by feeding FPN features

into a regular RPN head.

After that, F crop
S and Pi

crop are aggregated as follows:

FS2I = φ(F crop
S ) + Pi

crop, (1)

where φ is a 1 × 1 convolution layer to align the feature

spaces. The aggregated features FS2I benefit from contex-

tual information from F crop
S and spatial details from Pi

crop.

FS2I is fed into a regular instance segmentation head to

predict masks, boxes and categories for instances. The spe-

cific design of the instance head follows [16]. For mask

predictions, three 3 × 3 convolutions are applied to FS2I

to extract instance-wise features Fins. Then a deconvolu-

tion layer up-samples the features and predicts object-wise

masks of 28 × 28. Meanwhile, fully connected layers are

applied to FS2I to predict boxes and categories. Note that

Fins is later used in Section 3.2.
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Semantic Features RoIAlign

RPN

Proposals
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F
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F
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Figure 3. The architecture of our S2I module. For each instance, S2I

crops semantic features and the selected FPN features of the instance and

then aggregates the cropped features. As a result, it enhances instance

segmentation by semantic information.

3.2. Semantic Segmentation

Semantic segmentation assigns each pixel with a class

label. Our framework utilizes instance features to intro-

duce structural information to semantic features. It does so

through our I2S module which uses Fins from the previous

section. However, Fins cannot be fused with semantic fea-

ture FS directly since it is already cropped and resized. To

solve this issue, we propose the RoIInlay operation, which

maps Fins back into a feature map Finlay with the same spa-

tial size as FS . This restores the structure of each instance,

allowing us to efficiently use it in semantic segmentation.

After obtaining Finlay, we use it along with FS to per-

form semantic segmentation. As shown in Figure 4, these

two features are aggregated in two modules, namely Struc-

ture Injection Module (SIM) and Object Context Mod-

ule (OCM). In SIM, Finlay and FS are first projected to

the same feature space. Then, they are concatenated and

go through a 3 × 3 convolution layer to alleviate possible

distortions caused by RoIInlay. By doing so, we inject the

structure information of Finlay into the semantic feature FS .

OCM takes the output of SIM and further enhances it by

information on the objects’ layout in the scene.
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Figure 4. The architecture of the I2S module. SIM uses instance features

restored by RoIInlay and combines them with semantic features. Mean-

while, OCM extracts information on the objects’ layout in the scene. After

that, OCM combines it with SIM’s output for use in semantic segmenta-

tion.

As shown in Figure 4, we first project Finlay into a space

of E dimension (E = 10). Then, a pyramid of max-pooling

is applied to get multi-scale descriptions of the objects’ lay-

out. These descriptions are flattened, concatenated and pro-

jected to obtain an encoding of the layout. This encoding is

repeated horizontally and vertically, and concatenated with

the output of SIM. Finally, the concatenated features are

projected as FI2S.

FI2S is then used to predict semantic segmentation which

will be later used to obtain the panoptic result.

Extraction of semantic features To extract FS , we use

a semantic head with a design that follows [38]. A subnet

of three stacked 3 × 3 convolutions is applied to each FPN

feature. After that, they are upsampled and concatenated to

form FS .

RoIInlay RoIInlay aims to restore features cropped by

operations such as RoIAlign back to their original struc-

ture. In particular, RoIInaly resizes the cropped feature and

inlays it in an empty feature map at the correct location,

namely at the position from which it was first cropped.

As a patch-recovering operator, RoIInlay shares a com-

mon purpose with RoIUpsample [23], but RoIInlay has two

advantages over RoIUpsample thanks to its different inter-

polation style, as shown in Figure 5. RoIUpsample obtains

values through a modified gradient function of bilinear in-

terpolation. RoIInlay applies the bilinear interpolation car-

ried out in the relative coordination of sampling points (used

in RoIAlign). Therefore, it can both avoid “holes”, i.e. pix-

els whose values cannot be recovered and interpolate more

accurately. More comparisons on these two operators can

be found in the supplementary material.

Recall that in RoIAlign [16], m×m sampling points are

generated to crop a region. The resulting feature is thus

divided into a group of m×m bins with a sampling point at

the center of each bin. Given a region of size (wr, hr) the

size of each bin will be bh = hr/m and bw = wr/m and

Image

Proposal

RoIAlign

RoIInlayRoI
Upsample

Interpolate

Recover

Backward

Recover

Figure 5. The difference between RoIUpsample and our RoIInlay. Both

RoIUpsample and RoIInlay restore features cropped by RoIAlign. How-

ever, RoIUpsample only uses a single reference for each pixel whereas

RoIInlay uses four references and does not suffer from pixels with unas-

signed values.

the value at each sampling point is obtained by interpolating

from the 4 closest pixels as shown in Figure 5.

Given the positions and values of each sampling point,

RoIInlay aims to recover values of pixels within the region.

To achieve this, it is designed as a bilinear interpolation

carried out in the relative coordinates of sampling points.

Specifically, for a pixel located at (a, b), we find its four

nearest sampling points {(xi, yi), i ∈ [1, 4]}. The value at

(a, b) is calculated as:

v(a, b) =

4∑

i=1

G(a, xi, bw)G(b, yi, bh)v(xi, yi), (2)

where v(xi, yi) is the value of sampling point (xi, yi),
(bh, bw) is the size of each sampling bin and G is the bilin-

ear interpolation kernel in the relative coordinates of sam-

pling points:

G(a, xi, bw) = 1.0−
|a− xi|

bw
. (3)

Pixels within the region but out of the boundary of sam-

pling points are calculated as if they were positioned at the

boundary. To handle cases where different objects may gen-

erate values at the same position, we take the average of

these values to maintain the scale.

3.3. Occlusion Handling

Occlusion occurs during instance segmentation when a

pixel x is claimed by multiple objects {O1, . . . , Ok}. To

get the final panoptic result, we must resolve the overlap re-

lationships among objects so that x is assigned to just one

3796



object. We argue that low-level appearance is a strong vi-

sual cue for the spatial ranking of objects compared to se-

mantic features or instance features. The former contains

mostly category information, which cannot resolve the oc-

clusion of the objects belonging to the same class, while

the latter loses details after RoIAlign, which are fatal when

small objects (e.g. tie) overlaps big ones (e.g. person).

By utilizing appearance as the reference, we propose a

novel occlusion handling algorithm that assigns pixels to

the most similar object instance. To compare the similar-

ity between a pixel x and an object instance Oi, we need

to define a measure f(x,Oi). In this algorithm, we adopt

the cosine similarity between the RGB of pixel x and each

object instance Oi (represented by its average RGB values).

After calculating the similarity between x and each ob-

ject, we assign x to O∗, where

O∗ = argmaxOi
f(x,Oi) (4)

In practice, instead of considering individual pixels, we

consider them in sets, which will lead to more stable results.

To compare between an object and a pixel set, we average

over the similarity of that object with each pixel in the set.

Through this learning-free algorithm, the instance as-

signment of each pixel is resolved. After that, we combine

it with the semantic segmentation for the final panoptic re-

sults according to the procedures in [19].

3.4. Training and Inference

Training During training, we sample ground truth detec-

tion boxes and only apply RoIInlay on features of sampled

objects. The sampling rate is chosen randomly from 0.6

to 1, where at least one ground truth box is kept. There

are seven loss items in total. The RPN proposal head

contains two losses: Lrpn cls and Lrpn box. The instance

head contains three losses: Lcls (bbox classification loss),

Lbox (bbox regress loss) and Lmask (mask prediction loss).

The semantic head contains two losses: Lseg (semantic seg-

mentation from FS) and LI2S (semantic segmentation from

FI2S). The total loss function L is :

L =Lrpn cls + Lrpn box
︸ ︷︷ ︸

rpn proposal loss

+Lcls + Lbox + Lmask
︸ ︷︷ ︸

instance segmentation loss

+ λsLseg + λiLI2S
︸ ︷︷ ︸

semantic segmentation loss

,
(5)

where λs and λi are loss weights to control the balance be-

tween semantic segmentation and other tasks.

Inference During inference, predictions from instance

head are sent to the occlusion handling module. It first per-

forms non-maximum-suppression (NMS) to remove dupli-

cate predictions. Then the occluded objects are identified

and their conflicts are solved based on appearance similar-

ity. Afterwards, the occlusion-resolved instance prediction

is combined with semantic segmentation prediction follow-

ing [19], where instances always overwrite stuff regions.

Finally, stuff regions are removed and labeled as “void” if

their areas are below a certain threshold.

4. Experiments

4.1. Datasets

We evaluate our approach on MS COCO [27], a large-

scale dataset with annotations of both instance segmenta-

tion and semantic segmentation. It contains 118k training

images, 5k validation images, and 20k test images. The

panoptic segmentation task in COCO includes 80 thing cat-

egories and 53 stuff categories. We train our model on the

train set without extra data and report results on both val

and test-dev sets.

4.2. Evaluation Metrics

Single-task metrics For semantic segmentation, the

mIoUSf (mean Intersection-over-Union averaged over stuff

categories) is reported. We do not report the mIoU over

thing categories since the semantic segmentation prediction

of thing classes will not be used in the fusion algorithm. For

instance segmentation, we report APmask, which is averaged

between categories and IoU thresholds [27].

Panoptic segmentation metrics We use PQ [19] (aver-

aged over categories) as the metric for panoptic segmenta-

tion. It captures both recognition quality (RQ) and segmen-

tation quality (SQ):

PQ =

∑

(p,g)∈TP IoU(p, g)

|TP |
︸ ︷︷ ︸

segmentation quality(SQ)

×
|TP |

|TP |+ 1
2
|FP |+ 1

2
|FN |

︸ ︷︷ ︸

recognition quality(RQ)

, (6)

where IoU(p, g) is the intersection-over-union between a

predicted segment p and the ground truth g, TP refers to

matched pairs of segments, FP denotes the unmatched pre-

dictions and FN represents the unmatched ground truth

segments. Additionally, PQTh (average over thing cate-

gories) and PQSf (average over stuff categories) are reported

to reflect the improvement on instance and semantic seg-

mentation segmentation.

4.3. Implementation Details

Our model is based on the implementation in [3]. We

extend the Mask-RCNN with a stuff head, and treat it as our

baseline model. ResNet-50-FPN and DCN-101-FPN [10]

are chosen as our backbone for val and test-dev respectively.

We use the SGD optimization algorithm with momentum

of 0.9 and weight decay of 1e-4. For the model based on

ResNet-50-FPN, we follow the 1x training schedule in [14].

In the first 500 iterations, we adopt the linear warmup pol-

icy to increase the learning rate from 0.002 to 0.02. Then it
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Models Subset Backbone PQ SQ RQ PQTh SQTh RQTh PQSf SQSf RQSf

JSIS-Net [11] val ResNet-50-FPN 26.9 72.4 35.7 29.3 72.1 39.2 23.3 72.0 30.4

Panoptic FPN [18] val ResNet-50-FPN 39.0 - - 45.9 - - 28.7 - -

OANet [28] val ResNet-50-FPN 39.0 77.1 47.8 48.3 81.4 58.0 24.9 70.6 32.5

AUNet [23] val ResNet-50-FPN 39.6 - - 49.1 - - 25.2 - -

Ours val ResNet-50-FPN 41.1 77.2 51 49.1 80.4 60.3 29.1 72.4 37.1

UpsNet† [38] val ResNet-50-FPN 42.5 78.0 52.4 48.5 79.5 59.6 33.4 76.3 41.6

Ours† val ResNet-50-FPN 43.0 79.0 52.8 50.5 81.1 61.5 31.8 75.9 39.4

AUNet [23] test-dev ResNeXt-152-FPN 46.5 81.0 56.1 55.9 83.7 66.3 32.5 77.0 40.7

UpsNet† [38] test-dev DCN-101-FPN 46.6 80.5 56.9 53.2 81.5 64.6 36.7 78.9 45.3

Ours† test-dev DCN-101-FPN 47.3 80.8 57.5 54.9 82.1 66.3 35.9 78.9 44.3

Table 1. Comparison with state-of-the-art methods on COCO val and test-dev set. † refers to deformable convolution.

is divided by 10 at 60k iterations and 80k iterations respec-

tively. For the model based on DCN-101-FPN, we follow

the 3x training schedule in [14] and apply multi-scale train-

ing. The learning rate setting of the 3x schedule is adjusted

in proportion to the 1x schedule. As for data augmentation,

the shorter edge is resized to 800, while the longer side is

kept below 1333. Random crop and horizontal flip are used.

When training models containing I2S, we set λs to 0.2 and

λi to 0.3. For models without I2S, λs is set to 0.5 since

there is no LI2S left. For models that contain deformable

convolutions, we set λs to 0.1 and λi to 0.2.

NMS is applied to all candidates whose scores are higher

than 0.6 in a class-agnostic way, and its threshold is set to

0.5. In the occlusion handling algorithm, we first define the

occluded pair as follows. For two objects A and B, the pair

(A,B) is treated an occluded pair when the overlap area is

larger than 20% of either A or B. When overlap ratio is

less than 20%, objects with higher scores simply overwrite

the others. For all occluded pairs, we assign the overlap-

ping part to the object with closer appearance as described

in Section 3.3. To handle the occlusion involving more than

two objects, we deal with overlapping object pairs in de-

scending order of pair scores, the higher object’s score in

each pair. As for interweaving cases, where objects overlap

each other, we would set aside the contradictory pairs with

lower scores. For example, let A → B denotes that object

A overlaps object B. Given A → B, C → A, B → C in an

image with their pair scores in descending order, we would

set B → C aside. If more than 50% of an object is assigned

to other objects, we remove it from the scene.

After that, we resolve the conflicts between instances and

stuff by prioritizing instances. Finally, we remove stuff re-

gions whose areas are under 4096, as described in [19].

4.4. Comparison with StateoftheArt Methods

In Table 1, we compare our method with other state-of-

the-art methods [11] on COCO val and test-dev set.

When comparing to methods without deformable convo-

lution, our model outperforms them with respect to nearly

all metrics on COCO val. It achieves especially higher re-

sults at both SQ and RQ, showing that it is well-balanced

between segmentation and recognition. By applying de-

formable convolutions in the network, our approach gains

a clear improvement at PQ (from 41.1% to 43.0%) and out-

performs UpsNet on most of the metrics. When it comes

to the performance on things, we achieved 50.5% at PQTh

which exceeds UpsNet by 2%. The improvement of PQTh

comes from having better SQTh(+1.6%) and RQTh(+1.9%).

As for the performance on stuff, our method is inferior to

UpsNet since we simply resolve the conflict between in-

stances and segmentation in favor of instances.

On COCO test-dev set, our model based on DCN-101-

FPN achieves a consistently higher performance of 47.3%

PQ (0.7% higher than UPSNet).

4.5. Ablation Study

We perform ablation studies on COCO val with our

model based on ResNet50-FPN. We study the effectiveness

of our modules by adding them one-by-one to the baseline.

Instance-to-semantic To study the effect of Instance-To-

Semantic (I2S), we run experiments with SIM alone and

with both SIM and OCM. As shown in the second row of

Table 2, applying SIM alone leads to a 0.4% gain in terms

of PQ. We notice that both SQTh and SQSf get improved

by more than 1%. This demonstrates that SIM utilizes the

recovered structural information to help semantic segmen-

tation. Applying OCM together with SIM leads to another

0.5% improvement in terms of PQ. Thanks to the object lay-

out context provided by OCM, our model recognizes stuff

regions better, resulting in 1.3% improvement w.r.t. RQSf.

Semantic-to-instance We apply S2I together with I2S,

i.e., SIM and OCM. It turns out that S2I module can effec-

tively improve RQTh(+0.4%) by introducing complemen-

tary contextual information from semantic segmentation.

The instance segmentation metric APmask gets improved by

0.3% as well. Although the semantic segmentation on stuff

region (mIoUSf) maintains the same, PQSf is slightly im-

proved by 0.2% due to better thing predictions.
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Image Baseline Bidirectional Bidirectional+OH Ground Truth

Figure 6. Visualization of panoptic segmentation results on COCO val. “Bidirectional” refers to the combination of S2I and I2S. “OH” represents the

occlusion handling module. The figure shows the improvements gained from our modules.

Deformable convolution To validate our modules’ com-

patibility with deformable convolution, we replace the

vanilla convolution layers in the semantic head with de-

formable convolution layers. As shown in Table 2, de-

formable convolution improves our model’s performance by

1.5% and is extremely helpful for “stuff” regions, as evi-

denced by the 1.3% increment of PQSf.

Occlusion handling Occlusion handling is aimed at re-

solving occlusion between object instances and assigning

occluded pixels to the correct object. Our occlusion handler

makes use of local appearance (RGB) information and is

completely learning-free. By applying the proposed occlu-

sion handling algorithm, we greatly improve the recognition

of things, as reflected by a 2% increase w.r.t. PQTh. Due to

the better object arrangement provided by our algorithm,

PQSf is also slightly improved (+0.1%).

Different backbones We analyze the effect of the back-

bone by comparing different backbone networks. The per-

formance of our model can be further improved to 44.0%
by adopting a deeper ResNet-101-FPN backbone. As

shown in Table 3, without the occlusion handling algo-

rithm, the model based on ResNet-101-FPN is 0.8% higher
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SIM OCM S2I DFM OH PQ SQ RQ PQTh SQTh RQTh PQSf SQSf RQSf APmask mIoUSf

39.1 77.3 48.1 46.7 80.4 56.6 27.7 72.5 35.4 34.2 38.6

X 39.5 78.0 48.6 47.1 81.2 57.1 28.0 73.1 35.8 34.6 39.5

X X 40.0 78.4 49.1 47.2 81.6 57.0 29.2 73.5 37.1 34.8 39.7

X X X 40.3 78.1 49.5 47.5 81.5 57.4 29.4 73.2 37.3 35.1 39.7

X X X X 41.8 79.6 50.8 48.5 82.1 58.3 31.7 75.9 39.4 36.4 41.1

X X X X X 43.0 79.0 52.8 50.5 81.1 61.5 31.8 75.9 39.5 36.4 41.1

Table 2. Ablation study on COCO val. ‘SIM’, ‘OCM’ are modules used in Instance-To-Semantic. S2I stands for Semantic-To-Instance. DFM stands for

deformable convolution. OH refers to the occlusion handling algorithm. All results without OH are obtained by the heuristic fusion [19].

Backbone OH PQ PQTh PQSf

ResNet-50-FPN 41.8 48.5 31.7

ResNet-101-FPN 42.5 48.6 33.4

ResNet-50-FPN X 43.0 50.5 31.8

ResNet-101-FPN X 44.0 51.0 33.4

Table 3. Experimental results for our method with different backbones.

GT

Box

GT

ICA

GT

Occ

GT

Seg
PQ PQTh PQSf

43.0 50.5 31.8

X 44.6 53.2 31.8

X 47.1 56.6 32.8

X X 58.4 74.8 33.5

X X X 59.3 76.3 33.5

X 60.8 50.5 76.4

Table 4. Bottleneck analysis on COCO val. We feed different types of

ground truth into our model. GT Box stands for ground truth boxes. GT

ICA refers to assigning the ground truth classes to instances. GT Occ

means the ground truth overlap relationship. GT Seg denotes ground truth

semantic segmentation.

than ResNet-50-FPN. When both applying the occlusion

handling algorithm, our model based on ResNet-101-FPN

achieves 1.0% better performance than ResNet-50-FPN.

This also reveals that our occlusion handling algorithm can

improve PQTh consistently based on different backbones.

Bottleneck analysis To analyze the performance bottle-

neck of our approach, we replace parts of the intermediate

results with the ground truth to see how much improvement

it will lead to. Specifically, we study ground truth over-

lap relationships, ground truth boxes, ground truth instance

class assignment and ground truth segmentation as input.

To estimate the potential of the occlusion algorithm, we

feed ground truth overlaps into the model. Specifically, the

predicted boxes are first matched with ground truth boxes.

Then the occlusion among matched predictions is resolved

using ground truth overlap relationship. The rest of the un-

matched occluded predictions are handled by our occlusion

handling algorithm. As shown in Table 4, when feeding

ground truth overlaps, the performance PQTh increases to

53.2%. This demonstrates that there still exists a large gap

between our occlusion algorithm and an ideal one.

By feeding ground truth boxes, PQ for both things and

stuff sees an increase of 6.1% and 1% respectively, which

indicates the maximum performance gain of a better RPN.

We further assign the predictions of boxes to ground truth

labels, which increases PQTh by more than 20%. This

demonstrates that the lack of recognition ability on things

is a main bottleneck of our model. Meanwhile, We also

test feeding ground truth overlap along with ground truth

box and class assignment, PQTh gets a further improvement

of 2%. This shows that the occlusion problem has to be

carefully dealt with even if ground truth boxes and labels

are fed. Finally, we test the case when ground truth seg-

mentation is given, the performance of PQSf is only 76.4%.

This indicates that the common fusion process that priori-

tizes things over stuff is far from optimal.

Visualization We show visual examples of the results ob-

tained by our method in Figure 6. By comparing the second

and third columns, we can see large improvements brought

by using the bidirectional architecture, specifically, many

large misclassified regions are corrected. After adding the

occlusion handling module (fourth column) we notice that

several conflicts of instances are resolved. This causes the

accuracy of overlapping objects to increase significantly.

5. Conclusion

In this paper, we show that our proposed bidirectional

learning architecture for panoptic segmentation is able to

effectively utilize both instance and semantic features in a

complementary fashion. Additionally, we use our occlusion

handling module to demonstrate the importance of low-

level appearance features for resolving the pixel to instance

assignment problem. The proposed approach achieves the

state-of-the-art result and the effectiveness of each of our

modules is validated in the experiments.
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