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Abstract

Polygonal meshes are ubiquitous in the digital 3D do-

main, yet they have only played a minor role in the deep

learning revolution. Leading methods for learning genera-

tive models of shapes rely on implicit functions, and gen-

erate meshes only after expensive iso-surfacing routines.

To overcome these challenges, we are inspired by a classi-

cal spatial data structure from computer graphics, Binary

Space Partitioning (BSP), to facilitate 3D learning. The

core ingredient of BSP is an operation for recursive subdivi-

sion of space to obtain convex sets. By exploiting this prop-

erty, we devise BSP-Net, a network that learns to represent

a 3D shape via convex decomposition. Importantly, BSP-

Net is unsupervised since no convex shape decompositions

are needed for training. The network is trained to recon-

struct a shape using a set of convexes obtained from a BSP-

tree built on a set of planes. The convexes inferred by BSP-

Net can be easily extracted to form a polygon mesh, with-

out any need for iso-surfacing. The generated meshes are

compact (i.e., low-poly) and well suited to represent sharp

geometry; they are guaranteed to be watertight and can be

easily parameterized. We also show that the reconstruc-

tion quality by BSP-Net is competitive with state-of-the-art

methods while using much fewer primitives. Code is avail-

able at https://github.com/czq142857/BSP-NET-original.

1. Introduction

Recently, there has been an increasing interest in repre-

sentation learning and generative modeling for 3D shapes.

Up to now, deep neural networks for shape analysis and

synthesis have been developed mainly for voxel grids [14,

18, 48, 50], point clouds [1, 33, 34, 55, 56], and implicit

functions [5, 13, 22, 28, 52]. As the dominant 3D shape

representation for modeling, display, and animation, polyg-

onal meshes have not figured prominently amid these de-

velopments. One of the main reasons is that the non-

uniformity and irregularity of triangle tessellations do not

naturally support conventional convolution and pooling op-

erations [19]. However, compared to voxels and point

clouds, meshes can provide a more seamless and coherent

Figure 1: (a) 3D shape auto-encoding by BSP-Net quickly

reconstructs a compact, i.e., low-poly, mesh, which can be

easily textured. The mesh edges reproduce sharp details

in the input (e.g., edges of the legs), yet still approximate

smooth geometry (e.g., circular table-top). (b) State-of-the-

art methods regress an indicator function, which needs to

be iso-surfaced, resulting in over-tessellated meshes which

only approximate sharp details with smooth surfaces.

surface representation; they are more controllable, easier to

manipulate, and are more compact, attaining higher visual

quality using fewer primitives; see Figure 1.

For visualization purposes, the generated voxels, point

clouds, and implicits are typically converted into meshes in

post-processing, e.g., via iso-surface extraction by March-

ing Cubes [26]. Few deep networks can generate polygonal

meshes directly, and such methods are limited to genus-zero

meshes [17, 27, 44], piece-wise genus-zero [12] meshes,

meshes sharing the same connectivity [11, 41], or meshes

with very low number of vertices [7]. Patch-based ap-

proaches can generate results which cover a 3D shape with

planar polygons [46] or curved [16] mesh patches, but their

visual quality is often tampered by visible seams, incoher-

ent patch connections, and rough surface appearance. It is

difficult to texture or manipulate such mesh outputs.

In this paper, we develop a generative neural network

which outputs polygonal meshes natively. Specifically, pa-

rameters or weights that are learned by the network can pre-

dict multiple planes which fit the surfaces of a 3D shape,

resulting in a compact and watertight polygonal mesh; see

Figure 1. We name our network BSP-Net, since each facet

is associated with a binary space partitioning (BSP), and

the shape is composed by combining these partitions.
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Figure 2: An illustration of “neural” BSP-tree.

BSP-Net learns an implicit field: given n point coor-

dinates and a shape feature vector as input, the network

outputs values indicating whether the points are inside or

outside the shape. The construction of this implicit func-

tion is illustrated in Figure 2, and consists of three steps:

1© a collection of plane equations implies a collection of p

binary partitions of space; see Figure 2-top; 2© an opera-

tor Tp×c groups these partitions to create a collection of c

convex shape primitives/parts; 3© finally, the part collection

is merged to produce the implicit field of the output shape.

Figure 3 shows the network architecture of BSP-Net cor-

responding to these three steps: 1© given the feature code,

an MLP produces in layer L0 a matrix Pp×4 of canonical

parameters that define the implicit equations of p planes:

ax + by + cz + d = 0; these implicit functions are eval-

uated on a collection of n point coordinates xn×4 in layer

L1; 2© the operator Tp×c is a binary matrix that enforces

a selective neuron feed from L1 to the next network layer

L2, forming convex parts; 3© finally, layer L3 assembles the

parts into a shape via either sum or min-pooling.

At inference time, we feed the input to the network to ob-

tain components of the BSP-tree, i.e., leaf nodes (planes P)

and connections (binary weights T). We then apply clas-

sic Constructive Solid Geometry (CSG) to extract the ex-

plicit polygonal surfaces of the shapes. The mesh is typi-

cally compact, formed by a subset of the p planes directly

from the network, leading to a significant speed-up over the

previous networks during inference, and without the need

for expensive iso-surfacing – current inference time is about

0.5 seconds per generated mesh. Furthermore, meshes gen-

erated by the network are guaranteed to be watertight, pos-

sibly with sharp features, in contrast to smooth shapes pro-

duced by previous implicit decoders [5, 22, 28].

BSP-Net is trainable and characterized by interpretable

network parameters defining the hyper-planes and their for-

mation into the reconstructed surface. Importantly, the net-

work training is self-supervised as no ground truth convex

shape decompositions are needed. BSP-Net is trained to re-

construct all shapes from the training set using the same set

Figure 3: The network corresponding to Figure 2.

of convexes constructed in layer L2 of the network. As a

result, our network provides a natural correspondence be-

tween all the shapes at the level of the convexes. BSP-Net

does not yet learn semantic parts. Grouping of the convexes

into semantic parts can be obtained manually, or learned

otherwise as semantic shape segmentation is a well-studied

problem. Such a grouping only need to be done on each

convex once to propagate the semantic understanding to all

shapes containing the same semantic parts.

Contributions.

• BSP-Net is the first deep generative network which di-

rectly outputs compact and watertight polygonal meshes

with arbitrary topology and structure variety.

• The learned BSP-tree allows us to infer both shape seg-

mentation and part correspondence.

• By adjusting the encoder of our network, BSP-Net can

also be adapted for shape auto-encoding and single-view

3D reconstruction (SVR).

• To the best of our knowledge, BSP-Net is among the first

to achieve structured SVR, reconstructing a segmented

3D shape from a single unstructured object image.

• Last but not the least, our network is also the first which

can reconstruct and recover sharp geometric features.

Through extensive experiments on shape auto-encoding,

segmentation, part correspondence, and single-view recon-

struction, we demonstrate state-of-the-art performances by

BSP-Net. Comparisons are made to leading methods on

shape decomposition and 3D reconstruction, using conven-

tional distortion metrics, visual similarity, as well as a new

metric assessing the capacity of a model in representing

sharp features. In particular, we highlight the favorable

fidelity-complexity trade-off exhibited by our network.
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2. Related work

Large shape collections such as ShapeNet [2] and Part-

Net [30] have spurred the development of learning tech-

niques for 3D data processing. In this section, we cover rep-

resentative approaches based on the underlying shape rep-

resentation learned, with a focus on generative models.

Grid models. Early approaches generalized 2D convo-

lutions to 3D [6, 14, 24, 48, 49], and employed volu-

metric grids to represent shapes in terms of coarse occu-

pancy functions, where a voxel evaluates to zero if it is

outside and one otherwise. Unfortunately, these methods

are typically limited to low resolutions of at most 643 due

to the cubic growth in memory requirements. To gener-

ate finer results, differentiable marching cubes operations

have been proposed [26], as well as hierarchical strate-

gies [18, 36, 42, 45, 46] that alleviate the curse of dimen-

sionality affecting dense volumetric grids. Another alter-

native is to use multi-view images [25, 40] and geometry

images [38, 39], which allow standard 2D convolution, but

such methods are only suitable on the encoder side of a net-

work architecture, while we focus on decoders. Finally,

recent methods that perform sparse convolutions [15] on

voxel grids are similarly limited to encoders.

Surface models. As much of the semantics of 3D mod-

els is captured by their surface, the boundary between in-

side/outside space, a variety of methods have been proposed

to represent shape surfaces in a differentiable way. Amongst

these we find a category of techniques pioneered by Point-

Net [33] that express surfaces as point clouds [1, 9, 10, 33,

34, 53, 56], and techniques pioneered by AtlasNet [16] that

adopt a 2D-to-3D mapping process [47, 39, 44, 53]. An in-

teresting alternative is to consider mesh generation as the

process of estimating vertices and their connectivity [7],

but these methods do not guarantee watertight results, and

hardly scale beyond a hundred vertices.

Implicit models. A very recent trend has been the model-

ing of shapes as a learnable indicator function [5, 22, 28],

rather than a sampling of it, as in the case of voxel methods.

The resulting networks treat reconstruction as a classifica-

tion problem, and are universal approximators [20] whose

reconstruction precision is proportional to the network com-

plexity. However, at inference time, generating a 3D model

still requires the execution of an expensive iso-surfacing op-

eration whose performance scales cubically in the desired

resolution. In contrast, our network directly outputs a low-

poly approximation of the shape surface.

Shape decomposition. BSP-Net generates meshes using a

part-based approach, hence techniques that learn shape de-

compositions are of particular relevance. There are meth-

ods that decompose shapes as oriented boxes [43, 31], axis

aligned gaussians [13], super-quadrics [32], or a union of

indicator functions, in BAE-NET [4]. The architecture of

our network draws inspiration from BAE-NET, which is de-

signed to segment a shape by reconstructing its parts in dif-

ferent branches of the network. For each shape part, BAE-

NET learns an implicit field by means of a binary classifier.

In contrast, BSP-Net explicitly learns a tree structure built

on plane subdivisions for bottom-up part assembly.

Another similar work is CvxNet [8], which decomposes

shapes as a collection of convex primitives. However, BSP-

Net differs from CvxNet in several significant ways: 1© we

target low-poly reconstruction with sharp features, while

they target smooth reconstruction; 2© their network always

outputs K convexes, while the “right” number of primitives

is learnt automatically in our method; 3© our optimization

routine is completely different from theirs, as their compo-

sitional tree structure is hard-coded.

Structured models. There have been recent works on

learning structured 3D models, in particular, linear [58] or

hierarchical [23, 57, 29, 31] organization of part bounding

boxes. While some methods learn part geometries sepa-

rately [23, 29], others jointly embed/encode structure and

geometry [51, 12]. What is common about all of these

methods is that they are supervised, and were trained on

shape collections with part segmentations and labels. In

contrast, BSP-Net is unsupervised. On the other hand,

our network is not designed to infer shape semantics; it is

trained to learn convex decompositions. To the best of our

knowledge, there is only one prior work, Im2Struct [31],

which infers part structures from a single-view image.

However, this work only produces a box arrangement; it

does not reconstruct a structured shape like BSP-Net.

Binary and capsule networks. The discrete optimization

for the tree structures in BSP-Net bears some resemblance

to binary [21] and XNOR [35] neural networks. However,

only one layer of BSP-Net employs binary weights, and our

training method differs, as we use a continuous relaxation

of the weights in early training. Further, as our network

can be thought of as a simplified scene graph, it holds strik-

ing similarities to the principles of capsule networks [37],

where low-level capsules (hyperplanes) are aggregated in

higher (convexes) and higher (shapes) capsule represen-

tations. Nonetheless, while [37] addresses discriminative

tasks (encoder), we focus on generative tasks (decoder).

3. Method

We seek a deep representation of geometry that is simul-

taneously trainable and interpretable. We achieve this task

by devising a network architecture that provides a differen-

tiable Binary Space Partitioning tree (BSP-tree) representa-

tion1. This representation is easily trainable as it encodes

1While typical BSP-trees are binary, we focus on n-ary trees, with the

“B” in BSP referring to binary space partitioning, not the tree structure.
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geometry via implicit functions, and interpretable since its

outputs are a collection of convex polytopes. While we gen-

erally target 3D geometry, we employ 2D examples to ex-

plain the technique without loss of generality.

We achieve our goal via a network containing three main

modules, which act on feature vectors extracted by an en-

coder corresponding to the type of input data (e.g. the fea-

tures produced by ResNet for images or 3D CNN for vox-

els). In more details, a first layer that extracts hyperplanes

conditional on the input data, a second layer that groups

hyperplanes in the form of half-spaces to create parts (con-

vexes), and a third layer assembles parts together to recon-

struct the overall object; see Figure 3.

Layer 1: hyperplane extraction. Given a feature vec-

tor f , we apply a multi-layer perceptron P to obtain plane

parameters Pp×4, where p is the number of planes – i.e.

P = Pω(f). For any point x = (x, y, z, 1), the product

D = xP
T is a vector of signed distances to each plane –

the ith distance is negative if x is inside, and positive if it is

outside, the ith plane, with respect to the plane normal.

Layer 2: hyperplane grouping. To group hyperplanes into

geometric primitives we employ a binary matrix Tp×c. Via

a max-pooling operation we aggregate input planes to form

a set of c convex primitives:

C∗
j (x) = max

i
(DiTij)

{

< 0 inside

> 0 outside.
(1)

Note that during training the gradients would flow through

only one (max) of the planes. Hence, to ease training, we

employ a version that replaces max with summation:

C+
j (x) =

∑

i

relu(Di)Tij

{

= 0 inside

> 0 outside.
(2)

Layer 3: shape assembly. This layer groups convexes to

create a possibly non-convex output shape via min-pooling:

S∗(x) = min
j

(C+
j (x))

{

= 0 inside

> 0 outside.
(3)

Note that the use of C+ in the expression above is inten-

tional. We avoid using C∗ due to the lack of a memory

efficient implementation of the operator in TensorFlow 1.

Again, to facilitate learning, we distribute gradients to all

convexes by resorting to a (weighted) summation:

S+(x)=





∑

j

Wj

[

1− C+
j (x)

]

[0,1]





[0,1]

{

= 1 ≈ in

[0, 1) ≈ out,

(4)

where Wc×1 is a weight vector, and [·][0,1] performs clip-

ping. During training we will enforce W≈1. Note that

the inside/outside status here is only approximate. For ex-

ample, when W=1, and all C+
j =0.5, one is outside of all

convexes, but inside their composition.

Two-stage training. Losses evaluated on (4) will be ap-

proximate, but have better gradient than (3). Hence, we

develope a two-stage training scheme where: 1© in the con-

tinuous phase, we try to keep all weights continuous and

compute an approximate solution via S+(x) – this would

generate an approximate result as can be observed in Fig-

ure 4 (b); 2© in the next discrete phase, we quantize the

weights and use a perfect union to generate accurate results

by fine-tuning on S∗(x) – this creates a much finer recon-

struction as illustrated in Figure 4 (c,d).

Our two-stage training strategy is inspired by classical

optimization, where smooth relaxation of integer problems

is widely accepted, and mathematically principled.

3.1. Training Stage 1 – Continuous

We initialize T and W with random zero-mean Gaus-

sian noise having σ=0.02, and optimize the network via:

argmin
ω,T,W

L+
rec + L+

T
+ L+

W
. (5)

Given query points x, our network is trained to match S(x)
to the ground truth indicator function, denoted by F(x|G),
in a least-squares sense:

L+
rec = Ex∼G

[

(S+(x)− F(x|G))2
]

, (6)

where x∼G indicates a sampling that is specific to the train-

ing shape G – including random samples in the unit box as

well as samples near the boundary ∂G; see [5]. An edge

between plane i and convex j is represented by Tij=1, and

the entry is zero otherwise. We perform a continuous relax-

ation of a graph adjacency matrix T, where we require its

values to be bounded in the [0, 1] range:

L+
T =

∑

t∈T

max(−t, 0) +
∑

t∈T

max(t− 1, 0). (7)

Note that this is more effective than using a sigmoid activa-

tion, as its gradients do not vanish. Further, we would like

W to be close to 1 so that the merge operation is a sum:

L+
W =

∑

j

|Wj − 1|. (8)

However, we remind the reader that we initialize with

W≈0 to avoid vanishing gradients in early training.

3.2. Training Stage 2 – Discrete

In the second stage, we first quantize T by picking a

threshold λ = 0.01 and assign t=(t>λ)?1:0. Experimen-

tally, we found the values learnt for T to be small, which led
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Figure 4: Evaluation in 2D – auto-encoder trained on the synthetic 2D dataset. We show auto-encoding results and highlight

mistakes made in Stage 1 with red circles, which are resolved in Stage 2. We further show the effect of enabling the (optional)

overlap loss. Notice that in the visualization we use different (possibly repeating) colors to indicate different convexes.

Figure 5: Examples of L2 output – a few convexes from

the first shape in Figure 4, and the planes to construct them.

Note how many planes are unused.

to our choice of a small threshold value. With the quantized

T, we fine-tune the network by:

argmin
ω

L∗
recon + L∗

overlap, (9)

where we ensure that the shape is well reconstructed via:

L∗
recon = Ex∼G [F(x|G) ·max(S∗(x), 0)] (10)

+Ex∼G [(1− F(x|G)) · (1−min(S∗(x), 1))] . (11)

The above loss function pulls S∗(x) towards 0 if x should

be inside the shape; it pushes S∗(x) beyond 1 otherwise.

Optionally, we can also discourage overlaps between the

convexes. We first compute a mask M such that M(x)=1 if

x is contained in more than one convex, and then evaluate:

L∗
overlap = −Ex∼G [M(x)S∗(x)] . (12)

3.3. Algorithmic and training details

In our 2D experiments, we use p=256 planes and c=64
convexes. We use a simple 2D convolutional encoder where

each layer downsamples the image by half, and doubles the

number of feature channels. We use the centers of all pixels

as samples. In our 3D experiments, we use p=4, 096 planes

and c=256 convexes. The encoder for voxels is a 3D CNN

encoder where each layer downsamples the grid by half, and

doubles the number of feature channels. It takes a volume

of size 643 as input. The encoder for images is ResNet-18

without pooling layers that receives images of size 1282 as

input. All encoders produce feature codes |f |=256. The

dense network Pω has widths {512, 1024, 2048, 4p} where

the last layer outputs the plane parameters.

When training the auto-encoder for 3D shapes, we adopt

the progressive training from [5], on points sampled from

grids that are increasingly denser (163, 323, 643). Note that

the hierarchical training is not necessary for convergence,

but results in an ≈ 3× speedup in convergence. In Stage 1,

we train the network on 163 grids for 8 million iterations

with batch size 36, then 323 for 8 million iterations with

batch size 36, then 643 for 8 million iterations with batch

size 12. In Stage 2, we train the network on 643 grids for 8

million iterations with batch size 12.

For single-view reconstruction, we also adopt the train-

ing scheme in [5], i.e., train an auto-encoder first, then only

train the image encoder of the SVR model to predict la-

tent codes instead of directly predicting the output shapes.

We train the image encoder for 1,000 epochs with batch

size 64. We run our experiments on a workstation with an

Nvidia GeForce RTX 2080 Ti GPU. When training the auto-

encoder (one model on the 13 ShapeNet categories), Stage 1

takes about ≈3 days and Stage 2 takes ≈2 days; training the

image-encoder requires ≈1 day.

4. Results and evaluation

We study the behavior of BSP-Net on a synthetic 2D

shape dataset (Section 4.1), and evaluate our auto-encoder

(Section 4.2), as well as single view reconstruction (Sec-

tion 4.3) compared to other state-of-the-art methods.

4.1. Auto­encoding 2D shapes

To illustrate how our network works, we created a syn-

thetic 2D dataset. We place a diamond, a cross, and a hol-

low diamond with varying sizes over 64 × 64 images; see

Figure 4(a). The order of the three shapes is sorted so that

the diamond is always on the left and the hollow diamond is

always on the right – this is to mimic the structure of shape
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Figure 6: Segmentation and correspondence – semantics

implied from autoencoding by BSP-Net. Colors shown here

are the result of a manual grouping of learned convexes.

The color assignment was performed on a few shapes: once

a convex is colored in one shape, we can propagate the color

to the other shapes by using the learnt convex id.

CD NC LFD

VP [43] 2.259 0.683 6132.74

SQ [32] 1.656 0.719 5451.44

BAE [4] 1.592 0.777 4587.34

Ours 0.447 0.858 2019.26

Ours + L∗
overlap 0.448 0.858 2030.35

Table 1: Surface reconstruction quality and comparison

for 3D shape autoencoding. Best results are marked in bold.

plane car chair lamp table mean

VP [43] 37.6 41.9 64.7 62.2 62.1 56.9

SQ [32] 48.9 49.5 65.6 68.3 77.7 66.2

BAE [4] 40.6 46.9 72.3 41.6 68.2 59.8

Ours 74.2 69.5 80.9 52.3 90.3 79.3

Ours + L∗
overlap 74.5 69.7 82.1 53.4 90.3 79.8

BAE* [4] 75.4 73.5 85.2 73.9 86.4 81.8

Table 2: Segmentation: comparison in per-label IoU.

datasets such as ShapeNet [2]. After training Stage 1, our

network has already achieved a good approximate S+ re-

construction, however, by inspecting S∗, the output of our

inference, we can see there are several imperfections. Af-

ter the fine-tuning in Stage 2, our network achieves near

perfect reconstructions. Finally, the use of overlap losses

significantly improves the compactness of representation,

reducing the number of convexes per part; see Figure 4(d).

Figure 5 visualizes the planes used to construct the indi-

vidual convexes – we visualize planes i in convex j so that

Tij=1 and P 2
i1 + P 2

i2 + P 2
i3>ε for a small threshold ε (to

ignore planes with near-zero gradients). Note how BSP-Net

Figure 7: Segmentation and reconstruction / Qualitative.

creates a natural semantic correspondence across inferred

convexes. For example, the hollow diamond in Figure 4(d)

is always made of the same four convexes in the same rel-

ative positions – this is mainly due to the static structure in

T : different shapes need to share the same set of convexes

and their associated hyper-planes.

4.2. Auto­encoding 3D shapes

For 3D shape autoencoding, we compare BSP-Net to a

few other shape decomposition networks: Volumetric Prim-

itives (VP) [43], Super Quadrics (SQ) [32], and Branched

Auto Encoders (BAE) [4]. Note that for the segmentation

task, we also evaluate on BAE*, the version of BAE that

uses the values of the predicted implicit function, and not

just the classification boundaries – please note that the sur-

face reconstructed by BAE and BAE* are identical.

Since all these methods target shape decomposition

tasks, we train single class networks, and evaluate segmen-

tation as well as reconstruction performance. We use the

ShapeNet (Part) Dataset [54], and focus on five classes: air-

plane, car, chair, lamp and table. For the car class, since

none of the networks separates surfaces (as we perform vol-

umetric modeling), we reduce the parts from (wheel, body,

hood, roof) → (wheel, body); and analogously for lamps

(base, pole, lampshade, canopy) → (base, pole, lampshade)

and tables (top, leg, support) → (top, leg).

As quantitative metrics for reconstruction tasks, we re-

port symmetric Chamfer Distance (CD, scaled by ×1000)

and Normal Consistency (NC) computed on 4k surface

sampled points. We also report the Light Field Distance

(LFD) [3] – the best-known visual similarity metric from

computer graphics. For segmentation tasks, we report the

typical mean per-label Intersection Over Union (IOU).
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Segmentation. Table 2 shows the per category segmenta-

tion results. As we have ground truth part labels for the

point clouds in the dataset, after training each network, we

obtain the part label for each primitive/convex by voting: for

each point we identify the nearest primitive to it, and then

the point will cast a vote for that primitive on the corre-

sponding part label. Afterwards, for each primitive, we as-

sign to it the part label that has the highest number of votes.

We use 20% of the dataset for assigning part labels, and we

use all the shapes for testing. At test time, for each point

in the point cloud, we find its nearest primitive, and assign

the part label of the primitive to the point. In the compari-

son to BAE, we employ their one-shot training scheme [4,

Sec.3.1]. Note that BAE-NET* is specialized to the seg-

mentation task, while our work mostly targets part-based

reconstruction; as such, the IoU performance in Table 2 is

an upper bound of segmentation performance.

Figure 6 shows semantic segmentation and part corre-

spondence implied by BSP-Net autoencoding, showing how

individual parts (left/right arm/leg, etc.) are matched. In our

method, all shapes are corresponded at the primitive (con-

vexes) level. To reveal shape semantics, we manually group

convexes belonging to the same semantic part and assign

them the same color. Note that the color assignment is done

on each convex once, and propagated to all the shapes.

Reconstruction comparison. BSP-Net achieves signifi-

cantly better reconstruction quality, while maintaining high

segmentation accuracy; see Table 1 and Figure 7, where we

color each primitive based on its inferred part label. BAE-

NET was designed for segmentation, thus produces poor-

quality part-based 3D reconstructions. Note how BSP-Net

is able to represent complex parts such as legs of swivel

chairs in Figure 7, while none of the other methods can.

4.3. Single view reconstruction (SVR)

We compare our method with AtlasNet [16], IM-

NET [5] and OccNet [28] on the task of single view re-

construction. We report quantitative results in Table 3 and

Table 4, and qualitative results in Figure 8. We use the 13
categories in ShapeNet [2] that have more than 1,000 shapes

each, and the rendered views from 3D-R2N2 [6]. We train

one model on all categories, using 80% of the shapes for

training and 20% for testing, in a similar fashion to Atlas-

Net [16]. For other methods, we download the pre-trained

models released by the authors. Since the pre-trained Oc-

cNet [28] model has a different train-test split than others,

we evaluate it on the intersection of the test splits.

Edge Chamfer Distance (ECD). To measure the capacity

of a model to represent sharp features, we introduce a new

metric. We first compute an “edge sampling” of the sur-

face by generating 16k points S={si} uniformly distributed

on the surface of a model, and then compute sharpness as:

Figure 8: Single-view 3D reconstruction – comparison to

AtlasNet [16], IM-NET [5], and OccNet [28]. Middle col-

umn shows mesh tessellations of the reconstruction; last

column shows the edge sampling used in the ECD metric.

Figure 9: Structured SVR by BSP-Net reconstructs each

shape with corresponding convexes. Convexes belonging to

the same semantic parts are manually grouped and assigned

the same color, resulting in semantic part correspondence.

σ(si) = minj∈Nε(si) |ni · nj |, where Nε(s) extracts the

indices of the samples in S within distance ε from s, and

n is the surface normal of a sample. We set ε=0.01, and

generate our edge sampling by retaining points such that

σ(si)<0.1; see Figure 8. Given two shapes, the ECD be-

tween them is nothing but the Chamfer Distance between

the corresponding edge samplings.

Analysis. Our method achieves comparable performance

to the state-of-the-art in terms of Chamfer Distance. As

for visual quality, our method also outperforms most other
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Chamfer Distance (CD) Edge Chamfer Distance (ECD) Light Field Distance (LFD)

Atlas0 Atlas25 OccNet32 IM-NET32 Ours Atlas0 Atlas25 OccNet32 IM-NET32 Ours Atlas0 Atlas25 OccNet32 IM-NET32 Ours

airplane 0.587 0.440 1.534 2.211 0.759 0.396 0.575 1.494 0.815 0.487 5129.36 4680.37 7760.42 7581.13 4496.91

bench 1.086 0.888 3.220 1.933 1.226 0.658 0.857 2.131 1.400 0.475 4387.28 4220.10 4922.89 4281.18 3380.46

cabinet 1.231 1.173 1.099 1.902 1.188 3.676 2.821 10.804 9.521 0.435 1369.90 1558.45 1187.08 1347.97 989.12

car 0.799 0.688 0.870 1.390 0.841 1.385 1.279 8.428 6.085 0.702 1870.42 1754.87 1790.00 1932.78 1694.81

chair 1.629 1.258 1.484 1.783 1.340 1.440 1.951 4.262 3.545 0.872 3993.94 3625.23 3354.00 3473.62 2961.20

display 1.516 1.285 2.171 2.370 1.856 2.267 2.911 6.059 5.509 0.697 2940.36 3004.44 2565.07 3232.06 2533.86

lamp 3.858 3.248 12.528 6.387 3.480 2.458 2.690 8.510 4.308 2.144 7566.25 7162.20 8038.98 6958.52 6726.92

speaker 2.328 1.957 2.662 3.120 2.616 9.199 5.324 11.271 9.889 1.075 2054.18 2075.69 2393.50 1955.40 1748.26

rifle 1.001 0.715 2.015 2.052 0.888 0.288 0.318 1.463 1.882 0.231 6162.03 6124.89 6615.20 6070.86 4741.70

couch 1.471 1.233 1.246 2.344 1.645 2.253 3.817 10.179 8.531 0.869 2387.09 2343.11 1956.26 2184.28 1880.21

table 1.996 1.376 3.734 2.778 1.643 1.122 1.716 3.900 3.097 0.515 3598.59 3286.05 3371.20 3347.12 2627.82

phone 1.048 0.975 1.183 2.268 1.383 10.459 11.585 16.021 14.684 1.477 1817.61 1816.22 1995.98 1964.46 1555.47

vessel 1.179 0.966 1.691 2.385 1.585 0.782 0.889 12.375 3.253 0.588 4551.17 4430.04 5066.99 4494.14 3931.73

mean 1.487 1.170 2.538 2.361 1.432 1.866 2.069 6.245 4.617 0.743 3644.91 3436.14 3795.23 3700.22 2939.15

Table 3: Single view reconstruction – comparison to the state of the art. Atlas25 denotes AtlasNet with 25 square patches,

while Atlas0 uses a single spherical patch. Subscripts to OccNet and IM-NET show sampling resolution. For fair compar-

isons, we use resolution 323 so that OccNet and IM-NET output meshes with comparable number of vertices and faces.

CD ECD LFD #V #F

Atlas0 1.487 1.866 3644.91 7446 14888

Atlas25 1.170 2.069 3436.14 2500 4050

OccNet32 2.538 6.245 3795.23 1511 3017

OccNet64 1.950 6.654 3254.55 6756 13508

OccNet128 1.945 6.766 3224.33 27270 54538

IM-NET32 2.361 4.617 3700.22 1204 2404

IM-NET64 1.467 4.426 2940.56 5007 10009

IM-NET128 1.387 1.971 2810.47 20504 41005

IM-NET256 1.371 2.273 2804.77 82965 165929

Ours 1.432 0.743 2939.15 1191 1913

Table 4: Low-poly analysis – the dataset-averaged metrics

in single view reconstruction. We highlight the number of

vertices #V and triangles #F in the predicted meshes.

methods, which is reflected by the superior results in terms

of Light Field Distance. Similarly to Figure 6, we manually

color each convex to show part correspondences in Figure 9.

We visualize the triangulations of the output meshes in Fig-

ure 8: our method outputs meshes with a smaller number

of polygons than state-of-the-art methods. Note that these

methods cannot generate low-poly meshes, and their ver-

tices are always distributed quasi-uniformly.

Finally, note that our method is the only one amongst

those tested capable of representing sharp edges – this can

be observed quantitatively in terms of Edge Chamfer Dis-

tance, where BSP-Net performs much better. Note that At-

lasNet could also generate edges in theory, but the shape is

not watertight and the edges are irregular, as it can be seen

in the zoom-ins of Figure 8. We also analyze these met-

rics aggregated on the entire testing set in Table 4. In this

final analysis, we also include OccNet128 and IM-NET256,

which are the original resolutions used by the authors. Note

the average number of polygons inferred by our method is

655 (recall #polygons ≤ #triangles in polygonal meshes).

5. Conclusion, limitation, and future work

We introduce BSP-Net, an unsupervised method which

can generate compact and structured polygonal meshes in

the form of convex decomposition. Our network learns a

BSP-tree built on the same set of planes, and in turn, the

same set of convexes, to minimize a reconstruction loss for

the training shapes. These planes and convexes are defined

by weights learned by the network. Compared to state-of-

the-art methods, meshes generated by BSP-Net exhibit su-

perior visual quality, in particular, sharp geometric details,

when comparable number of primitives are employed.

The main limitation of BSP-Net is that it can only

decompose a shape as a union of convexes. Concave

shapes, e.g., a teacup or ring, have to be decomposed into

many small convex pieces, which is unnatural and leads

to wasting of a considerable amount of representation bud-

get (planes and convexes). A better way to represent such

shapes is to do a difference operation rather than union.

How to generalize BSP-Net to express a variety of CSG op-

erations is an interesting direction for future work.

Current training times for BSP-Net are quite significant:

6 days for 4, 096 planes and 256 convexes for the SVR

task trained across all categories; inference is fast however.

While most shapes only need a small number of planes to

represent, we cannot reduce the total number of planes as

they are needed to well represent a large set of shapes. It

would be ideal if the network can adapt the primitive count

based on the complexity of the input shapes; this may call

for an architectural change to the network.

While its applicability to RGBD data could leverage the

auto-decoder ideas explored by [22], the generalization of

our method beyond curated datasets [2], and the ability to

train from only RGB images are of critical importance.
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