
Camera Trace Erasing

Chang Chen∗1, Zhiwei Xiong � 1, Xiaoming Liu 2, and Feng Wu1

1 University of Science and Technology of China 2 Michigan State University

changc@mail.ustc.edu.cn, {zwxiong,fengwu}@ustc.edu.cn, liuxm@cse.msu.edu

Abstract

Camera trace is a unique noise produced in digital imag-

ing process. Most existing forensic methods analyze cam-

era trace to identify image origins. In this paper, we ad-

dress a new low-level vision problem, camera trace erasing,

to reveal the weakness of trace-based forensic methods. A

comprehensive investigation on existing anti-forensic meth-

ods reveals that it is non-trivial to effectively erase cam-

era trace while avoiding the destruction of content signal.

To reconcile these two demands, we propose Siamese Trace

Erasing (SiamTE), in which a novel hybrid loss is designed

on the basis of Siamese architecture for network training.

Specifically, we propose embedded similarity, truncated fi-

delity, and cross identity to form the hybrid loss. Compared

with existing anti-forensic methods, SiamTE has a clear ad-

vantage for camera trace erasing, which is demonstrated in

three representative tasks. Code and dataset are available

at https://github.com/ngchc/CameraTE.

1. Introduction

Noise is inevitable in digital imaging process. Camera

trace is such a kind of noise that is unique to each type

of imaging device. Specifically, camera trace is produced

by the different response characteristics of camera sensor

to light [30], and then manipulated by the in-camera pro-

cessing pipeline [34]. Therefore, camera trace implicitly

encodes information of camera type into the imaging re-

sults in a form of noise. Based on the analysis on cam-

era trace, researches have proposed a variety of methods

for image forensic tasks, in terms of origin identification

[14, 29], tampering detection [7, 52, 53], and forgery local-

ization [10, 32, 47], to name a few. These methods play an

important role in the steady development of image-based

social networks [51].

Nevertheless, there is little systematic research on the

performance of these forensic methods in an adversarial

case. In this paper, we address camera trace erasing in order

to reveal the weakness of trace-based forensic methods. As
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Figure 1. An example of camera trace erasing in the classification

task. (a) Given an image, the state-of-the-art classifier [29] can

predict the right image origin (red bar) with high confidence (mea-

sured by normalized logit value). (b) A median filter effectively

erases camera trace, which misleads the prediction (dark blue bar),

yet at the cost of signal destruction. (c) A real-world image denois-

ing method [48], though gently removing the visible noise, is not

effective enough to erase camera trace. (d) Our proposed method,

SiamTE, effectively erases the camera trace without visible de-

struction of content signal. Zoom in for a better visual experience.

an example shown in Fig. 1, a median filter effectively de-

grades the classification accuracy of a forensic method [29],

yet at the cost of signal destruction. While a real-world

image denoiser [48] gently removes the visible noise, the

residual camera trace in the processed image is still suffi-

cient for the classifier to make a right prediction. There-

fore, it is non-trivial to effectively erase camera trace while

avoiding the destruction of content signal.

We propose Siamese Trace Erasing (SiamTE) to recon-

cile these two demands, which is implemented by a Con-

volutional Neural Network (CNN). Specifically, we design

a novel hybrid loss on the basis of Siamese architecture [9]

for network training. This hybrid loss contains three terms:

embedded similarity, truncated fidelity, and cross identity.

For the embedded similarity loss, we gather images cap-

tured by different types of cameras as a group of input, and

measure the similarity between network outputs. Theoreti-

cally, given a suitable metric for camera trace, the similar-

ity of images captured by different types of cameras will
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increase along with the decrease of camera trace. It is thus

possible to measure the degree of camera trace erasing by

calculating this similarity. Inspired by deep metric learn-

ing [27], we adopt the normalized Euclidean distance in a

learned embedding space to be such a metric.

However, the embedded similarity loss alone is not suffi-

cient to guide the network towards desired outputs, mainly

due to the issue of over-manipulation. We then introduce a

truncated fidelity loss to restrict the degree of image manip-

ulation, by minimizing the Manhattan distance between net-

work inputs and outputs. More specifically, we truncate the

distance values below a threshold to zero, which preserves

essential manipulation for camera trace erasing while avoid-

ing potential over-manipulation. Besides the above two loss

items, we further propose a cross identity loss for better dis-

entanglement between camera trace and content signal.

To evaluate the anti-forensic performance of SiamTE, we

conduct experiments on two datasets, in which images are

captured by different types of cameras. We take three foren-

sic tasks, i.e., classification, clustering, and verification into

consideration. In the classification task, we adopt CNN-

based methods for evaluation [29]. In the clustering task,

we perform K-means clustering on CNN-extracted features

[3]. In the verification task, we adopt a classic forensic

method using hand-crafted features [14]. Compared with

the existing methods, i.e., filtering, compression, denois-

ing, deblocking, and gradient-based adversarial methods,

SiamTE significantly boosts the anti-forensic performance

in all three tasks, without visible destruction of content sig-

nal. It demonstrates a clear advantage of SiamTE for cam-

era trace erasing.

Contributions of this paper are summarized as follows:

• We address a new low-level vision problem, termed as

camera trace erasing, to reveal the weakness of trace-

based forensic methods.

• We propose SiamTE as an advanced solution and design

a novel hybrid loss based on Siamese architecture for

network training.

• SiamTE achieves a significant and consistent perfor-

mance improvement over existing anti-forensic methods

in terms of different datasets and tasks.

2. Related Work

Image anti-forensics. In order to counter image foren-

sics, researches have proposed a variety of anti-forensic

methods to disguise the manipulation history of images

(Fig. 2). Among these methods, median filter and JPEG

compression attract most research interests. Kirchner et al.

adopt a median filter to hide traces of image resampling

[25]. Though effective, the median filter itself will leave

a distinctive pattern, termed as streaking artifact [4, 21, 49].

As a compensation, researches propose methods for streak-

ing artifact removal, in order to disguise the manipulation

im
Anti-forensics

Filtering

Compression

Trace Erasing im*

...

Forensics

Classification

Clustering

Verification
...

Figure 2. Image anti-forensics and image forensics. Forensics

could fail when im is processed to im∗ by anti-forensic methods.

history of median filter [7,23]. For JPEG compression, Fan

et al. propose a variational approach to hide the traces (i.e.,

the blocking artifact) of compression [12]. Furthermore,

a dictionary-based method [2] and a GAN-based method

[31] are also proposed for JPEG anti-forensics. In addi-

tion to deblocking after compression, researches propose

anti-forensic methods in the JPEG compression process, by

adding dithering to the transform coefficients [39, 44, 45].

Camera trace erasing can be categorized to image anti-

forensics. Compared with the existing settings, we make a

step forward to address a more realistic trace. Unlike the

streaking artifact caused by median filter and the blocking

artifact caused by JPEG compression, it is difficult to con-

clude a fixed pattern for camera trace, since it varies from

camera to camera. Besides, we involve filtering, compres-

sion, and deblocking methods for comparison and conduct a

comprehensive investigation to these anti-forensic methods

in the problem of camera trace erasing.

Adversarial technique. The adversarial technique is

designed to verify the security of defense system [40]. In

this research direction, adversarial machine learning has at-

tracted a lot of attention, due to the rapid development of

learning-based methods [28]. Researchers have discovered

that an adversarial method can easily trigger malfunctions

of a trained neural network, by adding gradient-based per-

turbation to network inputs [15, 16, 17].

Our proposed SiamTE can be viewed as an adversarial

method, since it degrades the performance of trace-based

forensic methods. But different from the common solutions,

SiamTE works without the support of gradient information,

which makes it capable of handling more kinds of images,

whose camera types are out of the known labels.

Real-world image denoising. Image denoising is a clas-

sic research topic in low-level computer vision. Recently,

researchers have widened their focus from synthetic noise

(e.g., Gaussian noise) [5, 8, 11, 26, 46, 50] to the real-world

ones [1, 6, 20, 34, 37, 48]. Since it is difficult to character-

ize a real-world noise produced by the complex and diverse

in-camera processing pipelines, researcher have to define

the noise-free image, in order to obtain the ground truth for

evaluation. Two kinds of methods have been proposed for

this definition, i.e., (a) multi-frame averaging [1,34] and (b)

paired-acquisition under low-ISO value [38].

Camera trace can be viewed as one kind of real-world

noise. However, the existing definitions of noise-free im-

ages are not suitable for camera trace erasing. For (a), re-
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searchers have found that a part of camera trace can still

survive or even be enhanced after frame averaging [19, 30].

For (b), an image cannot get rid of camera trace even if it

is captured at a low-ISO setting. Thus, we directly define

camera trace based on its characteristics. To the best of our

knowledge, it is the first time that a specific definition is pro-

vided to a real-world noise. Besides, we adopt two repre-

sentative real-world denoising methods for comparison and

demonstrate the advantage of our proposed method.

3. Siamese Trace Erasing

3.1. Problem formulation

We view a captured image (im for short) as two parts.

One is camera trace (trs for short) and the other is content

signal (sig for short), which can be formulated as

im = sig + trs. (1)

The goal of a camera trace erasing method F (·) is to achieve

F (im) = sig. As detailed in Sec. 2, existing methods can-

not provide a suitable definition to either the sig part or the

trs part for a single image.

To address this issue, we propose to take multiple im-

ages into consideration at the same time. Firstly, we define

that camera trace should be a distinguishable part in an im-

age. In other words, a certain kind of camera trace should

be different from the other one, when these two images are

captured by different types of cameras. From this defini-

tion, there shall exist a certain kind of similarity between

images, which increases along with the decrease of the dis-

tinguishable part (i.e., camera trace) in each image. Taking

two images (im1 and im2) as an example, we denote φ(·, ·)
as the similarity between two images. With these notations,

we have an inequation as

φ(F1(im1), F1(im2)) > φ(F2(im1), F2(im2)), (2)

when a trace erasing method F1(·) is better than F2(·).
Moreover, we define that camera trace should be the only

distinguishable part, regardless of the content signal. Ide-

ally, when sign = F (imn), trsn = imn − F (imn), n =
1, 2, we have an equation as

φ(sig1 + trs2, sig2 + trs1) = φ(sig1 + trs1, sig2 + trs2).
(3)

We use the above formulation to define camera trace and

motivate our proposed trace erasing method.

3.2. Hybrid loss guided SiamTE

Let FΘ(·) denote a parametric method for camera trace

erasing, where Θ is the trainable parameters. In this paper,

we adopt the CNN structure proposed in [6] as an embodi-

ment of FΘ(·). It is worth mentioning that, the focus of this

paper is not the network design. FΘ(·) can be implemented

by other network structures.

+
+
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Figure 3. Flowchart of training strategy. imn(n = 1, 2) denote

images captured by the nth type of camera with labels lbn(n =
1, 2). sign and trsn denote the estimated content signal and cam-

era trace, respectively. FΘ(·) denotes a parametric method for

camera trace erasing. E(·) denotes a mapping for image embed-

ding. C(·) denotes a classier for image origin identification. The

hybrid loss contains embedded similarity Les, truncated fidelity

Ltf , and the cross identity part with cross-entropy loss Lce. Blue:

trainable model, Green: fixed oracles, and Red: loss functions.

For the setup of network, we adopt the Siamese architec-

ture proposed in [9]. Taking two images as an example, we

illustrate the Siamese architecture in Fig. 3, where FΘ(·) is

duplicated in two branches with shared parameters. Such

a design can be easily generalized to multiple images, by

adding more branches. Following the name of architecture,

we term our proposed method as Siamese Trace Erasing

(SiamTE). To train the network, we propose a hybrid loss

as detailed below and shown in Fig. 3.

Embedded similarity loss Les. Motivated by inequa-

tion (2), we propose the embedded similarity loss to guide

the network training. Inspired by deep metric learning

[27], we adopt a learned metric to calculate the similarity

between images, by embedding images to a trace-related

space with E(·). In this embedding space, we calculate the

normalized Euclidean distance between features to obtain

the similarity. The calculation process of embedded simi-

larity loss is summarized in Algorithm 1.

Truncated fidelity loss Ltf . Generally, the intensity of

camera trace is limited compared to content signal since

it is a by-product in imaging process. Motivated by this

prior knowledge, we propose truncated fidelity loss to re-

strict the manipulation of a camera trace method FΘ(·).
Specifically, we calculate the Manhattan distance between

im and FΘ(im) to measure the degree of manipulation.

To preserve essential manipulation while avoiding potential

over-manipulation, we truncate the distance values below a

threshold T to zero, which can be formulated as

Ltf =

{

|im− FΘ(im)|, |im− FΘ(im)| > T

0, |im− FΘ(im)| ≤ T
. (4)

Cross identity loss Lci. Motivated by equation (3), we

propose cross identity loss for better disentanglement be-

tween camera trace and content signal. Suppose we have G
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Algorithm 1 Calculation of embedded similarity loss

Require:

1: im[·]: G images captured by different cameras;

2: FΘ(·): a method for trace erasing with parameters Θ;

3: E(·): a learned mapping for image embedding;

4: N(·): an operator for L2 normalization;

5: S(·, k): an operator for cyclic shift with k step size;

6: D(·, ·): an operator to calculate Euclidean distance;

7: M : a margin for Euclidean distance.

Output: embedded similarity loss of im, Les

8: for each g ∈ [1, G] do

9: Trace erasing: sig[g] = FΘ(im[g]);
10: Embedding: feat[g] = E(sig[g]);
11: Normalization: feat[g] = N(feat[g]);
12: end for

13: Initialize Les to zero;

14: for k = 1; k < G; k = k + 1 do

15: dist = max(0, D(feat, S(feat, k))−M);
16: Les = Les + mean(dist);
17: end for

18: Average: Les = Les/(G− 1);
19: return Les

1 2 3 4

1 2 3 4

4321
4321

1432

4321 2143

(a) (b)

k = 1

k = 2

Figure 4. Calculating one-to-one operation in a parallel computing

friendly way. Given G images in a group (G = 4 in this example),

the number of sequential executions can be reduced from (a) P2

G

(or C2

G when an operation is commutative) to (b) G − 1. With

the cyclic shift S(·, k), the operations colored in red arrows can be

calculated in parallel. For each execution, the step size of cyclic

shift k traverses from 1 to G− 1.

types of cameras, images captured from different types of

cameras are grouped as network input imn, n = 1, 2, ..., G.

Let trsm denotes a camera trace produced by the mth cam-

era. The cross identity loss aims to maximize the probabil-

ity of synthetic images sign+trsm, n = 1, 2, ..., G(n 6= m)
to be identified as the ones captured by the mth camera

device. In our implementation, we combine an estimated

trace imm − FΘ(imm) with signals from the other devices

FΘ(imn), n = 1, 2, ..., G(n 6= m), to obtain these syn-

thetic images. Then, we forward them into a trained clas-

sifier C(·) to obtain feedback. The calculation process of

cross identity loss is summarized in Algorithm 2.

3.3. Implementation details

In Algorithms 1 and 2, we adopt a cyclic shift opera-

tor S(·, k) with a step size of k, in order to calculate the

one-to-one operation between multiple images in a paral-

Algorithm 2 Calculation of cross identity loss

Require:

1: im[·]: G images captured by different cameras;

2: lb[·]: the corresponding origin labels of im[·];
3: FΘ(·): a method for trace erasing with parameters Θ;

4: C(·): a method for image origin classification;

5: S(·, k): an operator for cyclic shift with k step size;

6: Lce(·, ·): an operator to calculate cross-entropy loss.

Output: cross identity loss of im, Lci

7: for each g ∈ [1, G] do

8: Trace extraction: trs[g] = im[g]− FΘ(im[g]);
9: end for

10: Initialize Lci to zero;

11: for k = 1; k < G; k = k + 1 do

12: Cross identity: pred = C(FΘ(im) + S(trs, k));
13: Lci = Lci + mean(Lce(pred, S(lb, k)));
14: end for

15: Average: Lci = Lci/(G− 1);
16: return Lci

lel computing friendly way. We illustrate the operation of

cyclic shift in Fig. 4. For the image origin classifier C(·),
we train a ResNet [18] on KCMI+ (a dataset detailed in

Sec. 4.1). The weights of convolutions in ResNet are initial-

ized by an ImageNet pretrained model [35]. After training,

we utilize the stacked convolutions in this network as the

embedding function E(·) for Les. Lastly, we linearly com-

bine the above three loss functions to form the hybrid loss

as λ1Les + λ2Ltf + λ3Lci, where λn(n = 1, 2, 3) denote

the weighting factor.

4. Experiments and Results

4.1. Datasets and settings

KCMI. Kaggle Camera Model Identification (KCMI)

is a dataset proposed by IEEE’s Signal Processing Soci-

ety [43]. In KCMI, 2, 750 images are captured with 10 types

of cameras. We separate 550 images from it to build a test

set KCMI-550, with 55 images for each camera. For train-

ing and validation, we first retrieve and download additional

2, 800 images from Flickr, which are captured with the same

10 types of cameras. Then, we combine them with the rest

2, 200 images in KCMI to build KCMI+, with 500 images

for each camera.

VISION. It is a large-scale dataset for source identifi-

cation [42], in which images are captured by 30 types of

cameras. Among these cameras, 28 are different from those

in KCMI. We adopt 1, 500 images from VISION to build a

test set VISION-1500, with 50 images for each camera.

Settings of training. We adopt KCMI+ to train SiamTE.

Images from KCMI+ are randomly copped into patches

with a size of 336 × 336. We randomly gather 4 patches
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(a) ORI (b) MF5 (c) CP30 (d) AD2

(e) DB (f) DN-I (g) DN-E (h) Ours

Figure 5. Visual comparison on an image from KMCI-550.

as a group (i.e., G = 4), in which patches are cropped from

images captured by different types of cameras. 64 groups

are randomly gathered into a mini-batch for the stochastic

gradient descent. We adopt Adam [24] for training with the

momentum factor set as 0.9. In our implementations, we

set λ1:λ2:λ3 as 3:1000:1 or 3:500:1 for the hybrid loss. For

the hyper-parameters, we set the margin M = 0.5 and the

threshold T = 3.

4.2. Image forensic tasks and metrics

Classification. In this task, given an input image, the

forensic methods predict a camera type as output. We adopt

two kinds of CNN-based classifiers proposed in [29] for

evaluation, named as ResNet50 and DenseNet201 accord-

ing to respective network structures. Since the input size

of classification networks (224× 224) is much smaller than

that of a full image, we randomly crop 4 patches in an im-

age as its representative, and choose the majority prediction

among 4 patches as the final output. Since the classification

accuracy varies with different cropped patches, we repeat

each experiment 10 times and report the averaged results.

KCMI-550 is adopted for evaluation.

Clustering. Besides the classification task conducted

on KCMI-550, we perform clustering on VISION-1500 to

evaluate the generalization ability of our proposed method.

Specifically, for a SiamTE trained on KCMI+, most of cam-

era types on VISION-1500 are unseen1 during training.

Thus, clustering is a more challenging task. We adopt the

1The unseen camera type is the one not contained in the training set

(i.e., unknown to methods), but we still know its origin.

Table 1. Quantitative comparison in the classification task.

Method
Accuracy

NIQE L1 dist.

to ORIResNet50 DenseNet201

ORI 1
99.80± 0.18 99.87± 0.12 3.083 -

MF3 [7] 66.62± 2.08 75.95± 1.43 3.939 2.055

MF5 [7] 21.33± 1.09 44.33± 1.64 4.799 3.849

GF3 [41] 90.18± 0.66 93.07± 1.02 4.256 2.186

GF5 [41] 73.46± 1.56 80.18± 1.29 4.593 3.115

CP30 [36] 56.31± 1.64 58.35± 1.06 4.283 3.632

CP40 [36] 77.02± 1.51 75.27± 1.22 3.838 3.202

CP50 [36] 91.29± 0.73 86.56± 1.37 3.510 2.917

AD1 [16] 45.49± 1.43 55.53± 1.34 3.265 0.988

AD2 [16] 21.13± 1.25 32.73± 1.53 3.934 1.973

DB [50] 90.04± 1.03 92.82± 1.05 3.044 1.301

DN-I [48] 59.49± 1.79 64.87± 1.06 3.961 2.017

DN-E [6] 44.42± 1.66 56.82± 1.32 4.008 2.710

Ours 20.42± 1.19 28.11± 1.76 3.676 2.004

1 Images from KCMI-550 (ORI) are adopted for evaluation.

stacked convolutional layers in ResNet50 and DenseNet201

[29] for feature extraction, and perform K-means clustering

on extracted features [3]. Since VISION-1500 contains 30
types of cameras, we set the number of clustering center

K = 30, 60, and 90 for evaluation, respectively. In order to

provide quantitative results for clustering performance, we

define an accuracy for clustering. Specifically, in a group

of clustered images, we assign the majority camera type

to them as predictions and compare these predictions with

known image origins. Therefore, such a clustering accuracy

will decrease when images with different camera types are
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Table 2. Quantitative comparison in the clustering task. Images from VISION-1500 (ORI) are adopted for evaluation.

Method 1

Accuracy

NIQE L1 dist.

to ORIResNet50

(K = 30) 2
ResNet50

(K = 60)

ResNet50

(K = 90)

DenseNet201

(K = 30) 2
DenseNet201

(K = 60)

DenseNet201

(K = 90)

ORI 56.79± 2.08 70.27± 1.01 75.44± 1.30 59.06± 1.79 73.09± 1.27 78.77± 1.53 3.585 -

MF3 [7] 43.03± 1.36 54.42± 1.15 58.60± 1.08 45.23± 1.14 55.73± 1.13 61.79± 1.32 4.043 1.959

MF5 [7] 31.45± 1.06 38.53± 0.63 42.79± 1.15 34.97± 1.02 42.79± 0.98 48.14± 0.76 5.227 3.525

GF3 [41] 49.95± 1.74 61.68± 1.55 64.99± 1.25 51.17± 0.98 61.02± 1.74 66.19± 0.86 4.413 2.029

GF5 [41] 44.69± 1.27 51.82± 0.93 55.87± 0.56 41.47± 1.49 52.43± 1.56 57.40± 1.02 4.795 2.847

CP30 [36] 26.55± 1.06 35.32± 1.55 39.41± 0.74 25.23± 1.08 33.27± 0.80 37.68± 1.12 4.811 3.564

CP40 [36] 33.57± 1.62 43.45± 1.61 47.82± 1.60 31.44± 1.13 40.28± 0.89 44.12± 1.10 4.253 3.175

CP50 [36] 40.91± 1.30 49.62± 1.76 53.70± 0.95 35.95± 1.24 45.78± 0.84 50.87± 1.19 3.965 2.918

DB [50] 52.87± 1.61 64.13± 1.68 70.22± 1.56 53.62± 1.92 67.44± 0.90 72.44± 1.64 3.299 1.327

DN-I [48] 35.83± 1.11 46.44± 0.87 51.23± 0.73 37.06± 1.09 46.31± 1.17 51.84± 0.81 4.275 2.214

DN-E [6] 28.47± 0.89 37.83± 1.40 42.64± 0.86 28.45± 1.01 37.76± 0.71 43.71± 0.82 4.128 2.613

Ours 23.44± 0.82 33.37± 1.06 37.30± 0.83 22.94± 0.97 31.99± 1.05 37.24± 0.98 4.082 2.097

1 AD is not involved for comparison, since it cannot generalize to images with unseen camera types, as detailed in Sec. 4.3.
2 Features extracted by the stacked convolutional layers are adopted for K-means clustering [3].

(a) ORI (b) MF5 (c) GF5 (d) CP30

(e) DB (f) DN-I (g) DN-E (h) Ours

Figure 6. Visual comparison on an image from VISION-1500.

wrongly clustered together. We randomly crop 128 patches

in an image as its representative and repeat each experiment

10 times to obtain the averaged results.

Verification. Furthermore, we conduct evaluation in

the verification task. Given two input images, the foren-

sic method in this task predicts if they are captured by the

same type of camera. We adopt KCMI+ to build fingerprints

for each type of camera, by averaging the extracted noise

residuals from images captured by the same type of cam-

era. We adopt a hand-crafted method to extract the noise

residual [14]. Then, we adopt Peak-to-Correlation Energy

(PCE) [13] to measure the correlation between an image

from KCMI-550 and its corresponding camera fingerprint.

The higher PCE means a forensic method can identify the

image origin with higher confidence [22].

Metrics for image assessment. In addition to the spe-

cific metrics for each task, we provide an auxiliary metric to

measure the manipulation degree of a trace erasing method,

by calculating the Manhattan (L1) distance between input

and output of the method. Generally, a large L1 distance in-

dicates that the input image has been heavily manipulated,

which usually causes a destruction to content signal. While

a small L1 distance may indicate that a method fails to per-

form a valid manipulation on the input. Moreover, we con-

duct objective quality assessments using the non-reference

metric NIQE [33] (a smaller value denotes a higher quality).
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Table 3. Quantitative comparison in the verification task. Images from KCMI-550 (ORI) are adopted for evaluation.

Method
Peak-to-Correlation Energy

NIQE L1 dist.

to ORI1 2 3 4 5 6 7 8 9 10 Avg. 1

ORI 647.7 390.7 1604.0 300.2 2068.2 1388.6 1170.4 11.9 2896.0 2592.8 1307.1 3.772 -

MF3 [7] 236.7 133.9 630.8 119.9 623.6 612.2 400.6 5.9 686.4 921.8 437.1 4.699 2.325

GF3 [41] 411.9 275.6 1143.9 271.1 1290.1 1066.1 897.5 9.0 1850.8 1717.5 893.3 4.589 2.521

CP50 [36] 65.7 58.4 250.3 61.1 274.4 144.0 148.7 2.5 343.9 493.5 184.3 4.070 3.104

AD2 [16] 321.4 196.5 1061.8 152.2 1118.9 637.7 643.8 7.1 1802.2 1568.0 751.0 4.855 1.994

DB [50] 399.2 267.4 1197.9 229.8 1407.9 877.0 862.0 8.2 2388.6 1740.8 937.9 3.832 1.312

DN-I [48] 226.5 147.0 553.4 58.7 339.4 418.0 311.3 5.5 183.9 471.2 271.5 4.600 2.097

DN-E [6] 263.0 198.8 854.7 209.6 989.5 584.3 682.7 6.3 1613.2 1219.6 662.2 4.801 3.007

Ours 53.7 66.9 107.1 74.1 271.9 74.9 233.4 2.1 410.6 266.5 156.1 4.652 2.491

1
10 camera types represented by serial numbers are described in the supplementary document. Images are centrally cropped to simplify the calculation.

4.3. Evaluation on anti­forensics performance

We conduct a comprehensive investigation on various

existing anti-forensic methods for camera trace erasing,

including median filter (MF), Gaussian filter (GF), JPEG

compression (CP), gradient-based adversarial method (AD)

[16], blind image deblocking (DB) [50], internal similarity

based real-world denoising (DN-I) [48], and learning-based

real-world denoising (DN-E) [6]. The number after MF and

GF (i.e., 3 and 5) denotes the kernel size of filter, the num-

ber after CP (i.e., 30, 40, and 50) denotes the quality factor,

and the number after AD (i.e., 1 and 2) denotes the scale

factor of adversarial dithering.

As described in Sec. 4.2, we adopt the L1 distance to

measure the degree of image manipulation. Taking the re-

sults of CP in Table 1 as an example, a better anti-forensic

performance is achieved with a larger degree of manipula-

tion (e.g., CP30 vs. CP50). However, such a performance

improvement comes at the cost of more severe signal de-

struction (reflected by a larger NIQE value). Thus, to mea-

sure the efficiency of a camera trace erasing method, we

need to consider the degree of manipulation at the same

time. An efficient method should achieve good anti-forensic

performance with as little manipulation as possible.

According to the quantitative results listed in Tables 1,

2, 3 and visual results shown in Figs. 5 and 6, we analyze

the performance of above mentioned anti-forensic methods.

Median filter and JPEG compression are effective to erase

camera trace, yet the processed images suffer from blurring

and blocking artifacts. Gaussian filter is less effective since

it cannot significantly degrade the performance of forensic

methods even at a large degree of manipulation. The de-

blocking method [50] cannot provide a valid manipulation

to erase camera trace, since it can only remove the part of

blocking artifact in camera trace. The overall performance

of the two real-world image denoising methods [6, 48] is

relatively better than other baseline methods, yet still has a

notable gap to ours.

The gradient-based adversarial method is specially de-

signed for CNN-based classifiers [16]. It thus achieves a

Table 4. Ablation study of the hybrid loss.

Hybrid Loss Accuracy 1

NIQE L1 dist.

to ORILes Ltf Lci ResNet50 DenseNet201

✔ ✔ ✔ 20.42± 1.19 28.11± 1.76 3.676 2.004

✔ ✔ 37.45± 1.19 42.65± 2.26 3.695 2.030

✔ ✔ 10.89± 1.11 11.71± 0.85 5.291 17.724

✔ ✔ 11.02± 0.43 10.42± 0.26 4.610 2.045

1 Comparisons are conducted on KCMI-550 in the classification task.

(a) Original (b) Ours w/o Lci (c) Ours

Figure 7. Visual comparison for ablation study. Two image patches

from KCMI-550 are adopted for comparison.

satisfactory anti-forensic performance on CNN-based clas-

sifiers, which is on par with our proposed method (as listed

in Table 1). However, the generalization ability of this

adversarial method is poor. On one hand, the adversarial

dithering is less effective than ours in the verification task,

since a classic forensic method using hand-crafted features

rather than a CNN-based one is adopted in this task (as

listed in Table 3). On the other hand, the calculation of

gradient is dependent on labels. Therefore, the adversar-

ial method cannot generalize to images with unseen camera

types, which makes it not capable of processing images in

the clustering task, thus not listed in Table 2.

Compared with the above baseline methods, our pro-

posed SiamTE is more efficient for camera trace erasing.

Specifically, at the similar (or lower) degree of manipula-

tion, SiamTE significantly reduces the classification accu-
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Figure 8. Visualization of camera trace extracted by SiamTE in spatial and frequency domains. Image patches in smooth areas are cropped

from VISION with a size of 500×500. Brightness and contrast of camera trace in spatial domain are adjusted for a better visual experience.

racy of ResNet50 from 99.80% to 20.42%, as listed in Ta-

ble 1. In the clustering task, the performance of K-means

clustering is halved by SiamTE, as listed in Table 2. In

the verification task, SiamTE achieves 87.2% decrease on

the correlation between an image and its camera type, as

listed in Table 3. From the visual comparisons conducted in

Figs. 5 and 6, the perceptual quality of our results are sat-

isfactory, which is also verified by the lower NIQE values

listed in Tables 1 and 2. The comprehensive experiments

demonstrate a clear advantage of SiamTE for camera trace

erasing over existing anti-forensic methods.

4.4. Ablation study of hybrid loss

Our proposed hybrid loss consists of three parts: (a)

embedded similarity Les, truncated fidelity Ltf , and cross

identity Lci. In this section, we provide ablation study to

demonstrate the function of each part. As listed in Table 4,

each part of the hybrid loss has a contribution to the overall

performance. Without Les, the anti-forensic performance

in terms of classification accuracy is significantly weak-

ened. Without Ltf , the degree of manipulation loses con-

trol, which results in heavy destruction of content signal,

as reflected by the large NIQE and L1 distance. Without

Lci, unfavorable artifacts are introduced to the visual re-

sults, which degrade the image quality and may reveal the

adversarial process, as shown in Fig. 7.

4.5. Analysis on camera trace

In this section, we analyze the extracted camera trace

separately. With a trained SiamTE, we extract camera trace

from KCMI+ and KCMI-550, respectively. We then train a

DenseNet201 classifier on KCMI+ to identify origin from

the extracted camera trace instead of the image itself. On

KCMI-550, we achieve an accuracy of 93.21± 0.31% with

camera trace, which is close to that of 99.87 ± 0.12% with

original images. It verifies that the extracted camera trace

contains most of the camera-distinguishable information

Figure 9. Visualization of camera trace in a single image captured

by GalaxyN3. From left to right: original image, camera trace ex-

tracted by SiamTE, and patches in spatial and frequency domains.

from original images. We visualize the extracted camera

trace in Fig. 8, which demonstrates that camera trace varies

with different types of cameras. In comparison, patches in a

single image have similar camera trace, as shown in Fig. 9.

5. Conclusion

We address a new low-level vision problem, termed as

camera trace erasing, to reveal the weakness of trace-based

forensic methods. It is of great importance to verify the

security of image forensics. We conduct a comprehensive

investigation to existing anti-forensic methods, and propose

SiamTE as an advanced solution, which significantly boosts

the anti-forensic performance in three representative tasks.

We design a novel hybrid loss on the basis of Siamese archi-

tecture, which guides SiamTE to effectively erase camera

trace without visible destruction of content signal.
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