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Abstract

Despite Visual Question Answering (VQA) has realized

impressive progress over the last few years, today’s VQA

models tend to capture superficial linguistic correlations in

the train set and fail to generalize to the test set with differ-

ent QA distributions. To reduce the language biases, several

recent works introduce an auxiliary question-only model to

regularize the training of targeted VQA model, and achieve

dominating performance on VQA-CP. However, since the

complexity of design, current methods are unable to equip

the ensemble-based models with two indispensable charac-

teristics of an ideal VQA model: 1) visual-explainable: the

model should rely on the right visual regions when making

decisions. 2) question-sensitive: the model should be sensi-

tive to the linguistic variations in question. To this end, we

propose a model-agnostic Counterfactual Samples Synthe-

sizing (CSS) training scheme. The CSS generates numerous

counterfactual training samples by masking critical objects

in images or words in questions, and assigning different

ground-truth answers. After training with the complemen-

tary samples (i.e., the original and generated samples), the

VQA models are forced to focus on all critical objects and

words, which significantly improves both visual-explainable

and question-sensitive abilities. In return, the performance

of these models is further boosted. Extensive ablations have

shown the effectiveness of CSS. Particularly, by building on

top of the model LMH [14], we achieve a record-breaking

performance of 58.95% on VQA-CP v2, with 6.5% gains.1

1. Introduction

Visual Question Answering (VQA), i.e., answering nat-

ural language questions about the visual content, is one of

the core techniques towards complete AI. With the release

of multiple large scale VQA datasets (e.g., VQA v1 [6] and

v2 [17]), VQA has received unprecedented attention and

∗Long Chen and Xin Yan are co-first authors with equal contributions.
†Corresponding author.
1Codes: https://github.com/yanxinzju/CSS-VQA
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Figure 1: The two indispensable characteristics of an ideal VQA

model. (a) visual-explainable ability: the model not only needs

to predict correct answer (e.g., “surfing”), but also relies on the

right reference regions when making this prediction. (b) question-

sensitive ability: the model should be sensitive to the linguistic

variations, e.g., after replacing the critical word “luggage” with

“bus”, the predicted answers of two questions should be different.

hundreds of models have been developed. However, since

the inevitable annotation artifacts in the real image datasets,

today’s VQA models always over-rely on superficial lin-

guistic correlations (i.e., language biases) [2, 42, 23, 17].

For example, a model answering “2” for all “how many X”

questions can still get satisfactory performance regardless

of the X. Recently, to disentangle the bias factors and clearly

monitor the progress of VQA research, a diagnostic bench-

mark VQA-CP (VQA under Changing Priors) [3] has been

proposed. The VQA-CP deliberately has different question-

answer distributions in the train and test splits. The perfor-

mance of many state-of-the-art VQA models [5, 15, 40, 4]

drop significantly on VQA-CP compared to other datasets.

Currently, the prevailing solutions to mitigate the bias is-

sues are ensemble-based methods: they introduce an aux-
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Figure 2: (a): A training sample from the VQA-CP. (b): The syn-

thesized training sample by V-CSS. It masks ciritcal objects (e.g.,

“tie”) in image and assigns different ground-truth answers (“not

green”). (c): The synthesized training sample by Q-CSS. It re-

places critical words (e.g., “tie”) with special token “[MASK]” in

question and assigns different ground-truth answers (“not green”).

iliary question-only model to regularize the training of tar-

geted VQA model. Specifically, these methods can further

be grouped into two sub-types: 1) adversary-based [33, 18,

7]: they train two models in an adversarial manner [16, 12],

i.e., minimizing the loss of VQA model while maximizing

the loss of question-only model. Since the two models are

designed to share the same question encoder, the adversary-

based methods aim to reduce the language biases by learn-

ing a bias-neutral question representation. Unfortunately,

the adversarial training scheme brings significant noise into

gradients and results in an unstable training process [18]. 2)

fusion-based [10, 14, 27]: they late fuse the predicted an-

swer distributions of the two models, and derive the train-

ing gradients based on the fused answer distributions. The

design philosophy of the fusion-based methods, is to let the

targeted VQA model focuses more on the samples, which

cannot be answered correctly by the question-only model.

Although the ensemble-based methods have dominated

the performance on VQA-CP, it is worth noting that current

methods fail to equip them with two indispensable charac-

teristics of an ideal VQA model: 1) visual-explainable: the

model should rely on the right visual regions when making

decisions, i.e., right for the right reasons [34]. As shown in

Figure 1 (a), although both two models can predict the cor-

rect answer “surfing”, they actually refer to totally differ-

ent reference regions when making this answer prediction.

2) question-sensitive: the model should be sensitive to the

linguistic variations in question. As shown in Figure 1 (b),

for two questions with similar sentence structure (e.g., only

replacing word “luggage” with “bus”), if the meanings of

two questions are different, the model should perceive the

discrepancy and make corresponding predictions.

In this paper, we propose a novel model-agnostic Coun-

terfactual Samples Synthesizing (CSS) training scheme.

The CSS serves as a plug-and-play component to improve

the VQA models’ visual-explainable and question-sensitive

abilities, even for complex ensemble-based methods. As

shown in Figure 2, CSS consists of two different types of

samples synthesizing mechanisms: V-CSS and Q-CSS. For

V-CSS, it synthesizes a counterfactual image by masking

critical objects in the original image. By “critical”, we mean

that these objects are important in answering a certain ques-

tion (e.g., object for the question “what color is

the man’s tie”). Then, the counterfactual image and

original question compose a new image-question (VQ) pair.

For Q-CSS, it synthesizes a counterfactual question by re-

placing critical words in the original question with a spe-

cial token “[MASK]”. Similarly, the counterfactual quer-

stion and original image compose a new VQ pair. Given

a VQ pair (from V-CSS or Q-CSS), a standard VQA train-

ing sample triplet still needs the corresponding ground-truth

answers. To avoid the expensive manual annotations, we

design a dynamic answer assigning mechanism to approx-

imate ground-truth answers for all synthesized VQ pairs

(e.g., “not green” in Figure 2). Then, we train the VQA

models with all original and synthesized samples. After

training with numerous complementary samples, the VQA

models are forced to focus on critical objects and words.

Extensive ablations including both qualitative and quan-

titative results have demonstrated the effectiveness of CSS.

The CSS can be seamlessly incorporated into the ensemble-

based methods, which not only improves their both visual-

explainable and question-sensitive abilities, but also con-

sistently boosts the performance on VQA-CP. Particularly,

by building of top on model LMH [14], we achieve a new

record-breaking performance of 58.95% on VQA-CP v2.

2. Related Work

Language Biases in VQA. Despite VQA is a multi-

modal task, a large body of research [21, 2, 42, 17] has

shown the existence of language biases in VQA. There are

two main solutions to reduce the language biases:

1. Balancing Datasets to Reduce Biases. The most straight-

forward solution is to create more balanced datasets. For ex-

ample, Zhang et al. [42] collected complementary abstract

scenes with opposite answers for all binary questions. And

Goyal et al. [17] extended this idea into real images and all

types of questions. Although these “balanced” datasets have

reduced biases to some extent, the statistical biases from

questions still can be leveraged [3]. As shown in the bench-

mark VQA-CP, the performance of numerous models drop

significantly compared to these “balanced” datasets. In this

paper, we follow the same spirit of dataset balancing and

train VQA models with more complementary samples. Es-

pecially, CSS doesn’t need any extra manual annotations.

2. Designing Models to Reduce Biases. Another solution is
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to design specific debiasing models. So far, the most effec-

tive debiasing models for VQA are ensemble-based meth-

ods [33, 18, 7, 10, 14, 27]. In this paper, we propose a novel

CSS training scheme, which can be seamlessly incorporated

into the ensemble-based models to further reduce the biases.

Visual-Explainable Ability in VQA Models. To im-

prove visual-explainable ability, early works [32, 26, 43]

directly apply human attention as supervision to guide the

models’ attention maps. However, since the existence of

strong biases, even with appropriate attention maps, the re-

maining layers of network may still disregard the visual sig-

nal [36]. Thus, some recent works [36, 39] utilize Grad-

CAM [35] to obtain private contribution of each object to

correct answers, and encourage the rank of all object con-

tributions to be consistent with human annotations. Unfor-

tunately, these models have two drawbacks: 1) They need

extra human annotations. 2) The training is not end-to-end.

Question-Sensitive Ability in VQA Models. If VQA

systems really “understand” the question, they should be

sensitive to the linguistic variations in question. Surpris-

ingly, to the best of our knowledge, there is only one

work [37] has studied the influence of linguistic variations

in VQA. Specifically, it designs a cycle-consistent loss be-

tween two dual tasks, and utilizes sampled noises to gener-

ate diverse questions. However, Shah et al. [37] only con-

siders the robustness to different rephrasings of questions.

In contrast, we also encourage the model to perceive the

difference of questions when changing some critical words.

Counterfactual Training Samples for VQA. Some

concurrent works [1, 30] also try to synthesize counterfac-

tual samples for VQA. Different from these works that all

resort to GAN [16] to generate images, CSS only mask crit-

ical objects or words, which is easier and more adoptable.

3. Approach

We consider the common formulation of VQA task as a

multi-class classification problem. Without loss of general-

ity, given a dataset D = {Ii, Qi, ai}
N
i consisting of triplets

of images Ii ∈ I, questions Qi ∈ Q and answers ai ∈ A,

VQA task learns a mapping fvqa : I×Q → [0, 1]|A|, which

produces an answer distribution given image-question pair.

For simplicity, we omit subscript i in the following sections.

In this section, we first introduce the base bottom-up top-

down model [4], and the ensemble-based methods for debi-

asing in Section 3.1. Then, we introduce the details of the

Counterfactual Samples Synthesizing (CSS) in Section 3.2.

3.1. Preliminaries

Bottom-Up Top-Down (UpDn) Model. For each image I ,

the UpDn uses an image encoder ev to output a set of object

features: V = {v1, ...,vnv
}, where vi is i-th object feature.

For each question Q, the UpDn uses a question encoder eq
to output a set of word features: Q = {w1, ...,wnq

}, where

Algorithm 1 Ensemble-based Model (fusion-based)

1: function VQA(I,Q, a, cond)

2: V ← ev(I)
3: Q← eq(Q)
4: Pvqa(a)← fvqa(V ,Q)
5: Pq(a)← fq(Q) ⊲ question-only model

6: P̂vqa(a)←M(Pvqa(a), Pq(a))

7: Loss← XE(P̂vqa(a), a) ⊲ update parameters

8: if cond then

9: return V ,Q, Pvqa(a)
10: end if

11: end function

wj is j-th word feature. Then both V and Q are fed into

the model fvqa to predict answer distributions:

Pvqa(a|I,Q) = fvqa(V ,Q). (1)

Model fvqa typically contains an attention mechanism [13,

29, 41], and it is trained with cross-entropy loss [38, 11].

Ensemble-Based Models. As we discussed in Section 1,

the ensemble-based models can be grouped into two sub-

types: adversary-based and fusion-based. Since adversary-

based models [33, 18, 7] suffer severe unstable training and

relatively worse performance, in this section, we only intro-

duce the fusion-based models [10, 14, 27]. As shown in Al-

gorithm 1, they introduce an auxiliary question-only model

fq which takes Q as input and predicts answer distribution:

Pq(a|Q) = fq(Q). (2)

Then, they combine the two answer distributions and ob-

tain a new answer distribution P̂vqa(a) by a function M :

P̂vqa(a|I,Q) = M(Pvqa(a|I,Q), Pq(a|Q)). (3)

In the training stage, the XE loss is computed based on the

fused answer distribution P̂vqa(a) and the training gradi-

ents are backpropagated through both fvqa and fq . In test

stage, only model fvqa is used as the plain VQA models.

3.2. Counterfactual Samples Synthesizing (CSS)

The overall structure of CSS training scheme is shown

in Algorithm 2. Specifically, for any VQA model, given a

training sample (I,Q, a), CSS consists of three main steps:

1. Training VQA model with original sample (I,Q, a);

2. Synthesizing a counterfactual sample (I−, Q, a−) by

V-CSS or (I,Q−, a−) by Q-CSS;

3. Training VQA model with the counterfactual sample.

In the following, we introduce the details of V-CSS and

Q-CSS (i.e., the second step). As shown in Algorithm 2, for

each training sample, we only use one certain synthesizing

mechanism, and δ is the trade-off weight (See Figure 4 (c)

for more details about the influence of different δ).
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Algorithm 2 Counterfactual Samples Synthesizing

1: function CSS(I,Q, a)

2: V ,Q, Pvqa(a)← VQA(I,Q, a,True)
3: cond ∼ U [0, 1]
4: if cond ≥ δ then ⊲ execute V-CSS

5: I ← IO SEL(I,Q)
6: s(a,vi)← S(Pvqa(a),vi)
7: I+, I− ← CO SEL(I, {s(a,vi)})
8: a− ← DA ASS(I+, Q,VQA, a)
9: VQA(I−, Q, a−, False)

10: else ⊲ execute Q-CSS

11: s(a,wi)← S(Pvqa(a),wi)
12: Q+, Q− ← CW SEL({s(a,wi)})
13: a− ← DA ASS(I,Q+,VQA, a)
14: VQA(I,Q−, a−, False)
15: end if

16: end function

3.2.1 V-CSS

We sequentially introduce all steps of V-CSS following its

execution path (line 5 to 8 in Algorithm 2), which consists

of four main steps: initial objects selection (IO SEL), ob-

ject local contributions calculation, critical objects selection

(CO SEL), and dynamic answer assigning (DA ASS).

1. Initial Objects Selection (IO SEL). In general, for

any specific QA pair (Q, a), only a few objects in image

I are related. To narrow the scope of critical objects selec-

tion, we first construct a smaller object set I, and assume all

objects in I are possibly important in answering this ques-

tion. Since we lack annotations about the critical objects for

each sample, we followed [39] to extract the objects which

are highly related with the QA. Specifically, we first assign

POS tags to each word in the QA using the spaCy POS tag-

ger [19] and extract nouns in QA. Then, we calculate the

cosine similarity between the GloVe [31] embedding of ob-

ject categories and the extracted nouns, the similarity scores

between all objects in I and the QA are denoted as SIM.

We select |I| objects with the highest SIM scores as I.

2. Object Local Contributions Calculation. After ob-

taining the object set I, we start to calculate the local contri-

bution of each object to the predicted probability of ground-

truth answer. Following recent works [22, 36, 39] which

utilize the modified Grad-CAM [35] to derive the local con-

tribution of each participant, we calculate the contribution

of i-th object feature to the ground-truth answer a as:

s(a,vi) = S(Pvqa(a),vi) := (∇vi
Pvqa(a))

T
1, (4)

where Pvqa(a) is the predicted answer probability of ground

truth answer a, vi is i-th object feature, and 1 is an all-

ones vector. Obviously, if the score s(a,vi) is higher, the

contributions of object vi to answer a is larger.

Algorithm 3 Dynamic Answer Assigning

1: function DA ASS(I+, Q+,VQA, a)

2: VQA.eval() ⊲ don’t update parameters

3: , , P+
vqa(a)← VQA(I

+, Q+, a,True)
4: a+ ← top-N(argsortai∈A(P

+
vqa(ai)))

5: a− := {ai|ai ∈ a, ai /∈ a+} ⊲ a is gt answer set

6: return a−

7: end function

𝐼 𝐼" 𝐼#

𝑄 𝑄" 𝑄#

What color is the 

kite?

What color [MASK] 

[MASK] kite?

What color is the 

[MASK]?

Figure 3: An informal illustration example of the I+, I−, Q+, and

Q− in CSS. For I+ and I−, they are two mutual exclusive object

sets. For Q+ and Q−, we show the example when word ”kite” is

selected as critical word.

3. Critical Objects Selection (CO SEL). After obtain-

ing the private contribution scores s(a,vi) for all objects

in I, we select the top-K objects with highest scores as the

critical object set I+. The K is a dynamic number for each

image, which is the smallest number meets Eq. (5):

∑

vi∈I+

exp(s(a,vi))/
∑

vj∈I

exp(s(a,vj)) > η, (5)

where η is a constant, we set η = 0.65 in all experiments

(See Figure 4 for more details about the dynamic K setting).

Then, the counterfactual visual input I− is the absolute

complement of set I+ in set I , i.e., I− = I\I+. We show

an example of I , I+, and I− in Figure 3.

4. Dynamic Answer Assigning (DA ASS). Given the

counterfactual visual input I− and original question Q, we

compose a new VQ pair (I−, Q). To assign ground truth

answers for VQ pair (I−, Q), we design a dynamic answer

assigning (DA ASS) mechanism. The details of DA ASS

are shown in Algorithm 3. Specifically, we first feed an-

other VQ pair (I+, Q) into the VQA model, and obtain the

predicted answer distribution P+
vqa(a). Based on P+

vqa(a),
we select the top-N answers with highest predicted proba-

bilities as a+. Then we define a− := {ai|ai ∈ a, ai /∈ a+}.
In an extreme case, if the model predicts all ground truth

answer correctly for VQ pair (I+, Q), i.e., a ⊂ a+, then a−

is a ∅, i.e., zero for all answer candidates. The basic motiva-

tion is that if current model can predict ground truth answer

for (I+, Q) (i.e., I+ contains critial objects and I− not), the

ground truth for (I−, Q) should not contain original ground

truth answers anymore, e.g., ”not green” in Figure 2.
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3.2.2 Q-CSS

All steps in Q-CSS are similar to V-CSS. Following its ex-

ecution path (line 11 to 13 in Algorithm 2), it consists of

word local contribution calculation, critical words selection

(CW SEL), and dynamic answer assigning (DA ASS).

1. Word Local Contribution Calculation. Similar with

the V-CSS (cf. Eq. (4)), we calculate the contribution of i-th
word feature to the ground-truth answer a as:

s(a,wi) = S(Pvqa(a),wi) := (∇wi
Pvqa(a))

T
1. (6)

2. Critical Words Selection (CW SEL.) In this step,

we first extract question-type words for each question Q2

(e.g., ”what color” in Figure 3). Then, we select top-K

words with highest scores from the remaining sentence (ex-

cept the question-type words) as critical words. The coun-

terfactual question Q− is the sentence by replacing all crit-

ical words in Q with a special token “[MASK]”. Mean-

while, the Q+ is the sentence by replacing all other words

(except question-type and critical words) with “[MASK]”.

We show an example of Q, Q+, and Q− in Figure 3.

3. Dynamic Answer Assigning (DA ASS.) This step is

identical to the DA ASS in V-CSS, i.e., Algorithm 3. For

Q-CSS, the input for DA ASS is the VQ pair (I,Q+).

4. Experiments

Settings. We evaluated the proposed CSS for VQA mainly

on the VQA-CP test set [3]. We also presented experimen-

tal results on the VQA v2 validation set [17] for complete-

ness. For model accuracies, we followed the standard VQA

evaluation metric [6]. For fair comparisons, we did all the

same data preprocessing steps with the widely-used UpDn

model [4] using the publicly available reimplementation3.

4.1. Ablative Studies

4.1.1 Hyperparameters of V-CSS and Q-CSS

We run a number of ablations to analyze the influence of dif-

ferent hyperparameters of V-CSS and Q-CSS. Specifically,

we conducted all ablations by building on top of ensemble-

based model LMH [14]. Results are illustrated in Figure 4.

The size of I in V-CSS. The influence of different size of

I is shown in Figure 4 (a). We can observe that the model’s

performance gradually decreases with the increase of |I|.
The size of critical objects in V-CSS. The influence of

masking different numbers of critical objects is shown in

Figure 4 (a). We compared the dynamic K (Eq. (5)) with

some fixed constants (e.g., 1, 3, 5). From the results, we can

observe that the dynamic K achieves the best performance.

The size of critical words in Q-CSS. The influence of re-

placing different sizes of critical words is shown in Figure 4

2We use the default question-type annotations in VQA-CP dataset.
3https://github.com/hengyuan-hu/bottom-up-attention-vqa

Model All Y/N Num Other

P
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UpDn [4]

Baseline 39.74 42.27 11.93 46.05

Baseline† 39.68 41.93 12.68 45.91

+Q-CSS 40.05 42.16 12.30 46.56

+V-CSS 40.98 43.12 12.28 46.86

+CSS 41.16 43.96 12.78 47.48

E
n
se

m
b
le

-B
as

ed
M

o
d
el

s

PoE [14, 27]

Baseline 39.93 – – –

Baseline† 39.86 41.96 12.59 46.25

+Q-CSS 40.73 42.99 12.49 47.28

+V-CSS 49.65 74.98 16.41 45.50

+CSS 48.32 70.44 13.84 46.20

RUBi [10]

Baseline 44.23 – – –

Baseline† 45.23 64.85 11.83 44.11

+Q-CSS 46.31 68.70 12.15 43.95

+V-CSS 46.00 62.08 11.84 46.95

+CSS 46.67 67.26 11.62 45.13

LMH [14]

Baseline 52.05 – – –

Baseline† 52.45 69.81 44.46 45.54

+Q-CSS 56.66 80.82 45.83 46.98

+V-CSS 58.23 80.53 52.48 48.13

+CSS 58.95 84.37 49.42 48.21

Table 1: Accuracies (%) on VQA-CP v2 test set of different VQA

architectures. CSS denotes the model with both V-CSS and Q-

CSS.† represents these results are based on our reimplementation.

(b). From the results, we can observe that replacing only

one word (i.e., top-1) achieves the best performance.

The proportion δ of V-CSS and Q-CSS. The influence of

different δ is shown in Figure 4 (c). From the results, we

can observe that the performance is best when δ = 0.5 .

4.1.2 Architecture Agnostic

Settings. Since the proposed CSS is a model-agnostic train-

ing scheme, which can be seamlessly incorporated into dif-

ferent VQA architectures. To evaluate the effectiveness of

CSS to boost the debiasing performance of different back-

bones, we incorporated the CSS into multiple architectures

including: UpDn [4], PoE (Product of Experts) [14, 27],

RUBi [10], LMH [14]. Especially, PoE, RUBi, LMH are

ensemble-based methods. All results are shown in Table 1.

Results. Compared to these baseline models, the CSS can

consistently improve the performance for all architectures.

The improvement is more significant in the ensemble-based

models (e.g., 6.50% and 9.79% absolute performance gains

in LMH and PoE). Furthermore, when both two types of

CSS are used, models often achieve the best performance.

4.2. Comparisons with State­of­the­Arts

4.2.1 Performance on VQA-CP v2 and VQA v2

Settings. We incorporated the CSS into model LMH [14],

which is dubbed as LMH-CSS, and compared it with the

state-of-the-art models on both VQA-CP v2 and VQA v2.

According to the backbone of these models, we group them

into: 1) AReg [33], MuRel [9], GRL [18], RUBi [10],
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Figure 4: Ablations. Accuracies (%) on VQA-CP v2 test set of different hyperparameters settings of V-CSS or Q-CSS. (a) The results of

different size of I and critical objects in V-CSS. All results come from model LMH+V-CSS. (b) The results of different size of critical words

in Q-CSS. All results come from model LMH+Q-CSS. (c) The results of different δ. All results come from model LMH+V-CSS+Q-CSS.

SCR [39], LMH [14], HINT [36]. These models utilize

the UpDn [4] as their backbone. 2) HAN [28], GVQA [3],

ReGAT [25], NSM [20]. These models utilize other differ-

ent backbones, e.g., BLOCK [8], BAN [24] etc. Especially,

the AReg, GRL, RUBi, LMH are ensemble-based models.

Results. The results are reported in Table 3. When trained

and tested on the VQA-CP v2 dataset (i.e., left side of Ta-

ble 3), the LMH-CSS achieves a new state-of-the-art per-

formance over all question categories. Particularly, CSS

improves the performance of LMH with a 6.50% absolu-

tion performance gains (58.95% vs. 52.45%). When trained

and tested on the VQA v2 dataset (i.e., middle side of Ta-

ble 3), the CSS results in a minor drop in the performance

by 1.74% for LMH. For completeness, we further com-

pared the performance drop between the two benchmarks.

Different from previous models that suffer severe perfor-

mance drops (e.g., 23.74% in UpDn, and 9.19% in LMH),

the LMH-CSS can significantly decrease the performance

drop into 0.96%, which demonstrate that the effectiveness

of CSS to further reduce the language biases in VQA.

4.2.2 Performance on VQA-CP v1

Settings. We further compared the LMH-CSS with state-of-

the-art models on VQA-CP v1. Similarly, we group these

baseline models into: 1) GVQA with SAN [40] backbone,

2) AReg, GRL, RUBi, and LMH with UpDn backbone.

Results. Results are reported in Table 2. Compared to these

baseline models, the LMH-CSS achieves a new state-of-the-

art performance on VQA-CP v1. Particularly, the CSS im-

proves the performance of LMH with a 5.68% absolution

performance gains (60.95% vs. 55.27%).

4.3. Improving Visual­Explainable Ability

We will validate the effectiveness of CSS to improve the

visual-explainable ability by answering the following ques-

tions: Q1: Can existing visual-explainable models be in-

corporated into the ensemble-based framework? Q2: How

Model All Yes/No Num Other

GVQA [3] 39.23 64.72 11.87 24.86

UpDn [4] 39.74 42.27 11.93 46.05

+AReg† [33] 41.17 65.49 15.48 35.48

+GRL† [18] 45.69 77.64 13.21 26.97

+RUBi†∗ [10] 50.90 80.83 13.84 36.02

+LMH†∗ [14] 55.27 76.47 26.66 45.68

+LMH-CSS 60.95 85.60 40.57 44.62

Table 2: Accuracies (%) on VQA-CP v1 test set of state-of-the-art

models. † represents the ensemble-based methods. ∗ indicates the

results from our reimplementation using offical released codes.

does CSS improve the model’s visual-explainable ability?

4.3.1 CSS vs. SCR (Q1)

Settings. We equipped the existing state-of-the-art visual-

explainable model SCR [39] into the LMH framework, and

compared it with CSS. Results are reported in Table 4 (a).

Results. Since the training of all SOTA visual-explainable

models (e.g., SCR, HINT) are not end-to-end, for fair com-

parisons, we used a well-trained LMH (i.e., 52.45% accu-

racies on VQA-CP v2) as the initial model. However, we

observe that its performance continues to decrease from the

start, which shows that the existing visual-explainable mod-

els can not be easily incorporated into the ensemble-based

framework. In contrast, CSS can improve the performance.

4.3.2 Evaluations of Visual-Explainable Ability (Q2)

Settings. We evaluate the effectiveness of CSS to improve

the visual-explainable ability on both quantitative and qual-

itative results. For quantitative results, since we lack human

annotations about the critical objects for each question, we

regard the SIM score (Section 3.2.1 IO SEL) as pseudo

ground truth. Thus, we design a new metric Average Impor-

tance (AI): the average SIM score of the top-K objects

with highest |s(a,v)|. The results are shown in Table 4 (b).
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Model Venue Expl.
VQA-CP v2 test ↑ VQA v2 val ↑ Gap∆↓

All Yes/No Num Other All Yes/No Num Other All Other

HAN [28] ECCV’18 28.65 52.25 13.79 20.33 – – – – – –

GVQA [3] CVPR’18 31.30 57.99 13.68 22.14 48.24 72.03 31.17 34.65 16.94 12.51

ReGAT [25] ICCV’19 40.42 – – – 67.18 – – – 26.76 –

RUBi [10] NeurIPS’19 47.11 68.65 20.28 43.18 61.16 – – – 14.05 –

NSM [20] NeurIPS’19 45.80 – – – – – – – – –

UpDn [4] CVPR’18 39.74 42.27 11.93 46.05 63.48 81.18 42.14 55.66 23.74 9.61

+AReg† [33] NeurIPS’18 41.17 65.49 15.48 35.48 62.75 79.84 42.35 55.16 21.58 19.68

+MuRel [9] CVPR’19 39.54 42.85 13.17 45.04 – – – – – –

+GRL† [18] ACL’19 42.33 59.74 14.78 40.76 51.92 – – – 9.59 –

+RUBi†∗ [10] NeurIPS’19 45.23 64.85 11.83 44.11 50.56 49.45 41.02 53.95 5.33 9.84

+SCR [39] NeurIPS’19 48.47 70.41 10.42 47.29 62.30 77.40 40.90 56.50 13.83 9.21

+LMH†∗ [14] EMNLP’19 52.45 69.81 44.46 45.54 61.64 77.85 40.03 55.04 9.19 9.50

+LMH-CSS CVPR’20 58.95 84.37 49.42 48.21 59.91 73.25 39.77 55.11 0.96 6.90

+HINT [36] ICCV’19 HAT 47.70 70.04 10.68 46.31 62.35 80.49 41.75 54.01 14.65 7.70

+SCR [39] NeurIPS’19 HAT 49.17 71.55 10.72 47.49 62.20 78.90 41.40 54.30 13.03 6.81

+SCR [39] NeurIPS’19 VQA-X 49.45 72.36 10.93 48.02 62.20 78.80 41.60 54.40 12.75 6.38

Table 3: Accuracies (%) on VQA-CP v2 test set and VQA v2 val set of state-of-the-art models. The gap represents the accuracy difference

between VQA v2 and VQA-CP v2. † represents the ensemble-based methods. Expl. denotes the model has used extra human annotations,

e.g., human attention (HAT) or explanations (VQA-X). ∗ indicates the results from our reimplementation using official released codes.

Model All Yes/No Num Other

SCR 48.47 70.41 10.42 47.29

LMH 52.45 69.81 44.46 45.54

LMH+SCR continued decrease

LMH+CSS 58.95 84.37 49.42 48.21

(a) Accuracies (%) on VQA-CP v2 test set.

Model Top-1 Top-2 Top-3

UpDn 22.70 21.58 20.89

SCR 27.58 26.29 25.38

LMH 29.67 28.06 27.04

LMH+V-CSS 30.24 28.53 27.51

LMH+CSS 33.43 31.27 29.86

(b) AI score (%) on VQA-CP v2 test set.

Model k=1 k=2 k=3 k=4 CI

UpDn 49.94 38.80 31.55 28.08 6.01

LMH 51.68 39.84 33.38 29.11 7.44

LMH+Q-CSS 54.83 42.34 35.48 31.02 9.02

LMH+CSS 55.04 42.78 35.63 31.17 9.03

(c) Left: CS(k) (%) on VQA-CP-Rephrasing; Right: CI

score (%) on VQA-CP v2 test set.

Table 4: Quantitative results about the evaluation of the VQA models’ visual-explainable and question-sensitive abilities.

For qualitative results, we illustrated in Figure 5 (a).

Results. From Table 4 (b), we can observe that CSS dramat-

ically improves theAI scores, which means the actually in-

fluential objects are more related to the QA pair. From Fig-

ure 5 (a), we can find that the CSS helps the model to make

predictions based on critical objects (i.e., green boxes), and

suppress the influence of irrelevant objects (i.e., red boxes).

4.4. Improving Question­Sensitive Ability

We will validate the effectiveness of CSS to improve the

question-sensitive ability by answering the following ques-

tions: Q3: Does CSS helps to improve the robustness to

diverse rephrasings of questions? Q4: How does CSS im-

prove the model’s question-sensitive abilities?

4.4.1 Robustness to Rephrasings of Questions (Q3)

Settings. As discussed in previous work [37], being robust

to diverse rephrasing of questions is one of key behaviors

of a question-sensitive model. To more accurately evalu-

ate the robustness, we re-splited the existing dataset VQA-

Rephrasings [37] with the same splits as VQA-CP, and de-

noted it as VQA-CP-Rephrasings. For evaluation, we used

the standard metric Consensus Score CS(k). Results are re-

ported in Table 4 (c) (left). We refer readers to [37] for more

details about the VQA-Rephrasings and metric CS(k).

Results. From Table 4 (c), we can observe that Q-CSS dra-

matically improves the robustness to diverse rephrasings of

questions. Furthermore, V-CSS can help to further improve

the robustness, i.e., CSS achieves the best performance.

4.4.2 Evaluations of Question-Sensitive Ability (Q4)

Settings. We evaluate the effectiveness of CSS to improve

the question-sensitive ability on both quantitative and quali-

tative results. For quantitative results, since there is no stan-

dard evaluation metric, we design a new metric Confidence

Improvement (CI): Given a test sample (I,Q, a), we re-

move a critical noun in question Q, and obtain a new test

sample (I,Q∗, a)4. Then we feed both two samples into

evaluated model, and calcluate the confidence decreses of

the ground-truth answer. We formally define CI in Eq. 7:

CI =

∑
(I,Q)(Pvqa(a|I,Q)− Pvqa(a|I,Q

∗)) · 1(a = â)
∑

(I,Q) 1
(7)

4The auxiliary test set is released in: github.com/yanxinzju/CSS-VQA
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Q: What color is the fire 

truck?

Q: What color is the 

mens' shirts?

Q: What vehicle is in 

the foreground?

Q: How many plants are in 

the room?

Q: Why is one player

wearing a glove?

LMH+CSS: red ✓ LMH+CSS: motorcycle ✓LMH+CSS: 1✓ LMH+CSS: blue✓LMH+CSS: catcher ✓

LMH: red and white ✗ LMH: motorcycle ✓LMH: 5 ✗ LMH: blue ✓LMH: protection ✗

Q: Does this stove look updated?

LMH: 

Q: look ?

A: Yes ✗
LMH+CSS: 

Q: stove ?

A: No ✓

Q: What is the yellow object?

LMH: 

Q: ?

A: banana ✓
LMH+CSS: 

Q: ?

A: banana ✓

Q: Can you see trees in the window?

LMH: 

Q: ?

A: No ✗
LMH+CSS: 

Q: window?

A: Yes ✓

Q: Where is the lasagna?

LMH: 

Q: ?

A: oven ✓
LMH+CSS: 

Q: lasagna?

A: oven ✓

(a)

(b)

Figure 5: (a) visual-explainable ability: The green boxes denote their scores s(â,v)>0, i.e., positive contributions to final predictions;

The red boxes denote their scores s(â,v)<0, i.e., negative contributions to final predictions. Only objects which are highly related to the

QA pair are shown (i.e., SIM ≥ 0.6). (b) question-sensitive ability: The different shades of green color in the question denotes the

relative values of s(â,w). Thus, the word with darker green denotes the word has larger contribution to final predictions.

where â is the model predicted answer for sample (I,Q), 1
is an indicator function. The results are reported in Table 4

(c). For qualitative results, we illustrated in Figure 5 (b).

Results. From Table 4 (c), we can observe that CSS helps

the model to benefit more from the critical words, i.e., re-

moving critical words results in more confidence drops for

the ground-truth answers. From Figure 5 (b), we can find

that CSS helps the model to make predictions based on crit-

ical words (e.g., “stove” or “lasagna”), i.e., forcing model to

understand the whole questions before making predictions.

5. Conclusion

In this paper, we proposed a model-agnostic Counter-

factual Samples Synthesizing (CSS) training scheme to im-

prove the model’s visual-explainable and question-sensitive

abilities. The CSS generates counterfactual training sam-

ples by masking critical objects or words. Meanwhile, the

CSS can consistently boost the performance of different

VQA models. We validate the effectiveness of CSS through

extensive comparative and ablative experiments. Moving

forward, we are going to 1) extend CSS to other visual-

language tasks that suffer severe language biases; 2) design

a specific VQA backbone to benefits from CSS.
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