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Abstract

Estimating 3D poses of multiple humans in real-time is

a classic but still challenging task in computer vision. Its

major difficulty lies in the ambiguity in cross-view associ-

ation of 2D poses and the huge state space when there are

multiple people in multiple views. In this paper, we present

a novel solution for multi-human 3D pose estimation from

multiple calibrated camera views. It takes 2D poses in dif-

ferent camera coordinates as inputs and aims for the ac-

curate 3D poses in the global coordinate. Unlike previous

methods that associate 2D poses among all pairs of views

from scratch at every frame, we exploit the temporal con-

sistency in videos to match the 2D inputs with 3D poses di-

rectly in 3-space. More specifically, we propose to retain the

3D pose for each person and update them iteratively via the

cross-view multi-human tracking. This novel formulation

improves both accuracy and efficiency, as we demonstrated

on widely-used public datasets. To further verify the scal-

ability of our method, we propose a new large-scale multi-

human dataset with 12 to 28 camera views. Without bells

and whistles, our solution achieves 154 FPS on 12 cameras

and 34 FPS on 28 cameras, indicating its ability to handle

large-scale real-world applications. The proposed dataset

will be released at https://github.com/longcw/

crossview_3d_pose_tracking.

1. Introduction

Multi-human 3D pose estimation from videos has a wide

range of applications, including action recognition, sports

analysis, and human-computer interaction. With the rapid

development of deep neural network, most of the recent ef-

forts in this area have been devoted to monocular 3D pose

estimation [25, 26] . However, despite much progress, the

single-camera setting is still far from being resolved due to

the large variations of human poses and partial occlusion in

the monocular views. A natural solution for these problems

is to recover the 3D poses from multiple camera views.

Recent multi-view approaches generally employ the de-

tected 2D body joints from multiple views as inputs with

the advance of 2D human pose estimation [9, 11, 35], and

address the 3D pose estimation in a two-step formulation

[2, 13]. Specifically, the 2D joints of the same person are

first matched and associated across views, the 3D location

of each joint is subsequently determined by a multi-view

reconstruction method. In this formulation, the challenge

comes from three parts: 1) the detected 2D joints are noisy

and inaccurate since the pose estimation is imperfect; 2) the

cross-view association is ambiguous when multiple people

interacting with each other in crowded scenes; 3) the com-

putational complexity explodes as the number of people and

number of cameras increase.

To tackle the problem of cross-view association, 3D pic-

torial structure model (3DPS) is widely used in some previ-

ous methods [2, 8], where the 3D poses are recovered from

2D joints in a discretized 3-space. In this formulation, the

likelihood of a joint belonging to a spatial bin is given by the

geometric consistency [16], along with a pre-defined body

structure model. A severe problem of 3DPS is the expensive

computational cost due to the huge state space with multi-

ple people in multiple views. As an improvement, Dong et

al. [13] propose solving the cross-view association prob-

lem at the body level in advance before applying 3DPS.

They associate 2D poses of the same person from differ-

ent views as clusters and estimate 3D poses from the clus-

ters via 3DPS. Nevertheless, matching 2D poses between

all pairs of views still makes the computational complexity

explode as the number of cameras increases.

In contrast to previous methods that process inputs from

multiple cameras simultaneously, we propose a new solu-

tion with an iterative processing strategy. Specifically, we

propose exploiting the temporal consistency in videos to

match 2D poses of each view with 3D poses directly in 3-

space, where the 3D poses are retained and updated itera-

tively by the cross-view multi-human tracking. There are

two advantages in our formulation. Firstly, for the accu-

racy, matching in 3-space is expected to be robust to par-

tial occlusion and inaccurate 2D localization, as the 3D

poses consist of multi-view information. Secondly, for the

efficiency, processing camera views iteratively makes the
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computational complexity varies only linearly as the num-

ber of cameras changes, enabling the applications on large-

scale camera systems. To verify the effectiveness, we com-

pare our method with state-of-the-art approaches on several

widely-used public datasets, and moreover, we test it on a

self-collected dataset with more than 12 cameras, as shown

in Figure 1. With the proposed solution, we are able to esti-

mate 3D poses accurately in 12 cameras at over 100 FPS.

Below, we review related work in multi-human 3D pose

estimation and multi-view tracking, and then we present the

details of our new approach, which contains an efficient ge-

ometric affinity measurement for tracking in 3-space, along

with a novel 3D reconstruction algorithm that designed for

iterative processing in videos. In the experimental section,

we perform the evaluation on three public datasets: Campus

[2], Shelf [2], and CMU Panoptic [18], demonstrating both

state-of-the-art accuracy and efficiency of our method. We

also propose a new dataset that collected from large-scale

camera systems, to verify the scalability of our method for

real-world applications as the number of cameras increases.

2. Related work

Multi-human 3D pose estimation. The problem of 3D

human pose estimation has been studied from monocular

[26, 1, 21, 25, 12] and multi-view perspectives [8, 4, 13, 32].

Most of the existing monocular solutions are designed

for the single-person cases [28, 21, 12], where the estimated

poses are relatively centered around the pelvis joint, and the

absolute locations in the environment are unknown. Such

a relative coordinate setting limits the application of these

methods in surveillance scenarios.

To estimate multiple 3D poses from a monocular view,

Mehta et al. [22] use the location-maps [23] to infer 3D joint

positions at the respective 2D joint pixel locations. Moon et

al. [25] propose a root localization network to estimate the

camera-centered coordinates of the human roots. Despite

lots of recent progress in this area, the task of monocular

3D pose estimation is inherently ambiguous as multiple 3D

poses can map to the same 2D joints. The mapping result,

unfortunately, often has a large deviation in practice, espe-

cially when occlusion or motion blur occurs in images.

On the other hand, multi-camera systems are becoming

progressively available in the context of various applica-

tions such as sport analysis and video surveillance. Given

images from multiple camera views, most previous methods

[27, 29, 8, 2] are generally based on the 3D Pictorial Struc-

ture model (3DPS) [8], which discretizes the 3-space by an

N×N×N grid and assigns each joint to one of the N3 bins

(hypothesis). The cross-view association and reconstruction

are solved by minimizing the geometric error [16] between

the estimated 3D poses and 2D inputs among all the hy-

potheses. Considering all joints of multiple people in all

cameras simultaneously, these methods are generally com-

Figure 1: Multi-human multi-view 3D pose estimation. The

triangles in the 3D view represent camera locations.

putational expensive due to the huge state space. Recent

work from Dong et al. [13] propose to solve the cross-view

association problem at the body level first. 3DPS is subse-

quently applied to each cluster of the 2D poses of the same

person from different views. The state space is therefore

reduced as each person is processed individually. Never-

theless, the computational cost of cross-view association of

this method is still too high to achieve the real-time speed.

Multi-view tracking for 3D pose estimation. Multi-view

tracking for 3D pose estimation is not a new topic in com-

puter vision. However, it is still nontrivial to combine these

two tasks for fast and robust multi-human 3D pose estima-

tion, as facing the challenges mentioned above.

Markerless motion capture, aiming at 3D motion cap-

turing for a single person, has been studied for a decade

[33, 14, 34]. Tracking in these early works is developed

for joint localization and motion estimation. As the recent

progress in deep neural network, temporal information is

also investigated with the recurrent neural network [30, 20]

or convolutional neural network [28] for single-view 3D

pose estimation. However, these approaches are generally

designed for well-aligned single person cases, where the

critical cross-view association problem is neglected.

As for the multi-human case, Belagiannis et al. [4] pro-

pose employing cross-view tracking results to assist 3D

pose estimation under the framework of 3DPS. It introduces

the temporal consistency from an off-the-shelf cross-view

tracker [5] to reduce the state space of 3DPS. This approach

separates tracking and pose estimation into two tasks and
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runs at 1 fps, which is far from being applied to the time-

critical applications. There is also a very recent tracking ap-

proach [7] that uses the estimated 3D poses as inputs of the

tracker to improve the tracking quality, while the pose es-

timation is rarely benefited from the tracking results. Tang

et al. [32] propose to jointly perform multi-view 2D track-

ing and pose estimation for 3D scene reconstruction. The

2D detections are associated using a ground plane assump-

tion, which is efficient but limits the accuracy. In contrast,

we couple cross-view tracking and multi-human 3D pose

estimation in a unified framework, making these two tasks

benefit from each other for both accuracy and efficiency.

3. Method

In this section, we first give an overview of our frame-

work with iterative processing, then we detail the two com-

ponents of our framework, that is, cross-view tracking in 3-

space with geometric affinity measurement and incremental

3D pose reconstruction in videos.

3.1. Iterative processing for 3D pose estimation

Given an unknown number of people interacting with

each other in the scene covered by multiple calibrated cam-

eras, our approach takes the detected 2D body joints as in-

puts. We aim at estimating the 3D locations of a fixed set

of body joints for each person in the scene. Particularly,

our approach differs from previous methods in the way they

process frames from different cameras. In contrast to tak-

ing all camera views at a time in a batch mode, here we

assume each camera streams frames independently, where

the frames are collected in chronological order and fed into

the framework one-by-one iteratively.

With iterative processing, the overall computational cost

increases only linearly as the number of cameras increases,

and the strict synchronization between cameras is no longer

required, making the solution have the potential to be ap-

plied to large-scale camera systems. Such a modification is

straightforward, but not that easy to achieve, as the cross-

view association is generally ambiguous, especially when

only one view is observed at one time. Another challenge,

in this case, is to reconstruct 3D poses from different cam-

eras when these cameras are not strictly synchronized.

To solve the problems, we construct our framework from

two components: 1) cross-view tracking for body joint as-

sociation, and 2) incremental 3D pose reconstruction for un-

synchronized frames. Given a frame from a particular cam-

era, the task of tracking is to associate the detected 2D hu-

man bodies with tracked targets. Here, we represent the tar-

gets in 3-space using historically estimated 3D poses. The

cross-view association is therefore performed between 2D

joints and 3D poses in 3-space, as detailed in Section 3.2.

Subsequently, based on the association results, each 2D hu-

man body is assigned to a target or labeled as unmatched.

The 3D pose of each target is incrementally updated when

combining the newly observed and previously retained 2D

joints. Since these joints are from different times, conven-

tional reconstruction method such as triangulation [16] is

prone to inaccurate 3D locations. To deal with the unsyn-

chronized frames, we present our incremental triangulation

algorithm in Section 3.3.

3.2. Cross­view tracking with geometric affinity

In multi-view geometry, reconstructing the location of a

point in 3-space requires knowing the 2D locations of the

point in at least two views. Thus in our case, in order to

estimate the 3D poses, we have to associate the detected

2D joints across views first. Similar to [13], we associate

the joints at the body level, but not just across views, also

across times. This forms the cross-view tracking problem,

as discussed in this section.

Problem statement. We retain historical states of persons

in the scene as tracked targets, the problem becomes asso-

ciating these targets with the newly detected human bodies,

while the detections come from a different camera in every

iteration. Here, we begin with some notations and defini-

tions. We use x ∈ R
2 to represent 2D point in camera

coordinate, and X ∈ R
3 for 3D point in global coordinate.

For a frame from camera c at time t, a detected human body

D is denoted as 2D points xk
t,c of a fixed set of human joints

with indices k ∈ {1, ...,K}. Meanwhile, a target T is rep-

resented in 3-space using points Xk
t′ ∈ R

3 of the same set

of human joints, where t′ stands for the last updated time

of the joint. The historical 2D joints are also retained in the

corresponding targets.

Then, supposing there are M detections {Di,t,c|i =
1, ...,M} in the new frame, we need to associate these de-

tections to the last N tracked targets {Ti,t′ |i = 1, ..., N},

and afterwards update the 3D locations of targets based on

the matching results. Technically, this is a weighted bi-

partite graph matching problem, where the graph is deter-

mined by the affinity matrix A ∈ R
N×M between targets

and detections. Once the graph is determined, the problem

can be solved efficiently with the Hungarian algorithm [19].

Therefore, our major challenge is to measure the affinity of

each pair of targets and detections accurately and efficiently.

Affinity measurement. Given a pair of target and detection

〈Tt′ , Dt,c〉, the affinity is measured from both 2D and 3D

geometric correspondences:

A(Tt′ , Dt,c) =

K
∑

k=1

A2D(xk
t′′,c,x

k
t,c) +A3D(Xk

t′ ,x
k
t,c),

(1)

where xk
t′′,c is the last matched joint k of the target from

camera c. For each type of human joints the correspondence

is computed independently, thus we omit the index k in the

following discussion for notation simplicity.
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As shown in Figure 2a, the 2D correspondence is com-

puted based on the distance of detected joint xt,c and previ-

ously retained joint xt′′,c in the camera coordinate:

A2D(xt′′,c,xt,c) = w2D(1−
‖xt,c − xt′′,c‖

α2D(t− t′′)
) · e−λa(t−t′′).

(2)

There are three hyper-parameters w2D, α2D, and λa, stand-

ing for the weight of 2D correspondence, threshold of 2D

velocity, and the penalty rate of time interval, respectively.

Note that t > t′′ since frames are processed in chronolog-

ical order. A2D > 0 indicates these two joints may come

from the same person, and vice versa. The magnitude rep-

resents the confidence of the indication, which decreases

exponentially as the time interval increases.

2D correspondence is the most basic affinity measure-

ment that exploited by single-view tracking methods. In or-

der to track people across views, a 3D correspondence is in-

troduced, as illustrated in Figure 2b. We suppose that cam-

eras are well calibrated and the projection matrix of camera

c is provided as Pc ∈ R
3×4. We first back-project the de-

tected 2D point xt,c into 3-space as a ray:

X̃t(µ;xt,c) = P+
c x̃t,c + µX̃c, (3)

where P+
c ∈ R

4×3 is the pseudo-inverse of Pc and Xc is

the 3D location of the camera center. The symbol with su-

perscript tilde denotes the corresponding homogeneous co-

ordinate. The 3D correspondence is then defined as:

A3D(Xt′ ,xt,c) = w3D(1−
dl(X̂t,Xt(µ))

α3D
) · e−λa(t−t′),

(4)

where dl(·) denotes the point-to-line distance in 3-space and

α3D is the threshold of distance. Note that in this formula-

tion, the detected point is compared with a predicted point

X̂t at the same time t. A linear motion model is introduce

to predict the 3D location at time t:

X̂t = Xt′ +Vt′ · (t− t′), (5)

where t ≥ t′ and Vt′ is 3D velocity estimated via a linear

least-square method.

Here, for the purpose of verifying the iterative process-

ing strategy, we only employ the geometric consistency in

the affinity measurement for simplicity. This baseline for-

mulation already achieves state-of-the-art performance for

both human body association and 3D pose estimation, as we

demonstrated in experiments. The key contribution comes

from Equation 4, where we match the detected 2D joints

with targets directly in 3-space.

Compared with matching in pairs of views in the camera

coordinates [13], our formulation has three advantages: 1)

matching in 3-space is robust to partial occlusion and inac-

curate 2D localization, as the 3D pose actually combines the

x𝑡′′ x𝑡𝐴2𝐷
X𝑡′

Camera 𝑐

Person 1

Person 2

(a) 2D correspondence

Person 1

Person 2

Camera 𝑐x𝑡′′ x𝑡
෡𝐗𝑡 X𝑡(μ)𝐴3𝐷X𝑡′

X𝑐

(b) 3D correspondence

Figure 2: Geometric affinity measurement. (a) 2D corre-

spondence is computed within the same camera. (b) 3D

correspondence is measured between the predicted location

and the projected line in 3-space.

information from multiple views; 2) motion estimation in 3-

space is more feasible and reliable than that in 2D camera

coordinates; 3) the computational cost is significantly re-

duced since only one comparison is required in 3-space for

each pair of target and detection. To verify this, a quantita-

tive comparison is further conducted in ablation study.

Target update and initialization. With previous affinity

measurement, this section describes how we update and

initialize targets in a particular iteration. Firstly, we com-

pute the affinity matrix between targets and detections us-

ing Equation 1 and solve the association problem in bipar-

tite graph matching. Each detection is either assigned to

a target or labeled as unmatched based on the association

results. In the former case, if a detection is assigned to a

target, the 3D pose of the target will be updated gradually

with the new detection, as the 2D information is observed

over time. Thus, 3D pose reconstruction in our framework

is an incremental process, as detailed in Section 3.3.

As for the target initialization, we collect unmatched de-

tections from different cameras and associate them across

views using epipolar constraint [16]. Here for each camera,

only the most recent frame is retained, thus we assume all

detections are from very similar times and can be matched

directly. Particularly, we solve the association problem in

weighted graph partitioning [31, 10], to comply the cycle-

consistency constraint as there are multiple cameras [13].

Body pose of a new target is initialized in 3-space from the

detections when at least two views are matched. The overall

procedure of cross-view tracking is shown in Algorithm 1.

3.3. Incremental 3D pose reconstruction

Generally, given 2D poses of the same person at a time

in different views, the 3D pose can be reconstructed us-

ing triangulation. However, with the iterative processing,

2D poses in our framework may come from different times,

raising the incremental triangulation problem.
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Supposing the new frame is from camera c at time t, for

a target Tt′ with the matched detection Dt,c we collect 2D

points from different cameras for each type of human joints:

Jk
t = {xk

t,c} ∪ {xk
ti,ci

|ci 6= c}, (6)

where xk
t,c is the new point in camera c, and xk

ti,ci
denotes

the last observed point in camera ci. For each joint, the 3D

location is estimated independently, thus we omit the index

k in the following discussion for clarity. Here we aim at

estimating the 3D location Xt from the point collection Jt,

where the points are from different times.

We first briefly introduce the linear algebraic triangula-

tion algorithm and then explain our improvement that de-

signed for this problem. For each camera, the relationship

between 2D point xt,c and 3D point Xt can be written as:

x̃t,c × (PcX̃t) = 0, (7)

where × is the cross product, x̃t,c ∈ R
3 and X̃t ∈ R

4

are the homogeneous coordinates, and Pc ∈ R
3×4 denotes

the projection matrix. Writing Equation 7 out on multiple

cameras gives the equation of the form:

CX̃t = 0, (8)

with

C =













x1p
3T
1 − p1T

1

y1p
3T
1 − p2T

1

x2p
3T
2 − p1T

2

y2p
3T
2 − p2T

2

. . .













, (9)

where (xc, yc) denotes the 2D point xt,c, and piT
c is the i-

th row of Pc. If there are at least two views, Equation 8

is overdetermined and can be solved via singular value de-

composition (SVD). The final non-homogeneous coordi-

nate Xt can be obtained by dividing the homogeneous co-

ordinate X̃t by its fourth value: Xt = X̃t/(X̃t)4.

The conventional triangulation algorithm assumes that

2D points of different views are from the same time and in-

dependently of each other. However, in our case the points

are collected from different times (Equation 6). The time

difference between points varies from 0 to 300 ms in prac-

tice, according to the frame rate and temporary occlusion.

Aiming at estimating the 3D point Xt for the newest time

t, we argue that points from different times should have dif-

ferent importance when solving Equation 8. To this end, we

add weights wc to the coefficients of C corresponding to

different cameras:

(wc ◦C)X̃t = 0, (10)

where wc = (w1, w2, w3, w4, ...) and ◦ denotes Hadamard

product. This is a similar formulation to that in [17], where

Algorithm 1: Tracking procedure for each iteration

Input: New 2D human poses Dt,c = {Dj,t,c|j = 1, ...,M}
Previous targets Tt′ = {Ti,t′ |i = 1, ..., N} at time t′

Previous unmatched detections Du = {Dti,ci}
Output: New targets with 3D poses Tt = {Ti,t} at time t

1 Initialization: Tt ← ∅; A← AN×M ∈ R
N×M

/* cross-view association */

2 foreach Ti,t′ ∈ Tt′ do

3 foreach Dj,t,c ∈ Dt,c do

4 A(i, j)← A(Ti,t′ , Dj,t,c)

5 end

6 end

7 IndicesT , IndicesD ← HungarianAlgorithm(A)
/* target update */

8 foreach i, j ∈ IndicesT , IndicesD do

9 Ti,t ← Incremental3DReconstruction(Ti,t′ , Dj,t,c)

10 Tt ← Tt ∪ {Ti,t}

11 end

/* target initialization */

12 foreach j ∈ {1, ...,M} and j /∈ IndicesD do

13 Du ← Du ∪ {Dj,t,c}
14 end

15 Au ← EpipolarConstraint(Du)
16 foreach Dcluster ∈ GraphPartition(Au) do

17 if Length(Dcluster) ≥ 2 then

18 Tnew,t ← 3DReconstruction(Dcluster)
19 Tt ← Tt ∪ {Tnew,t}
20 Du ← Du − Dcluster

21 end

22 end

wc is estimated by a convolution neural network for the

confidences of 2D points. Differently, our method is de-

signed for incremental processing on time series:

wi = e−λt(t−ti)/
∥

∥ciT
∥

∥

2
, (11)

where λt is the penalty rate, ti ≤ t is the timestamp of the

point, and ciT denotes the i-th row of C. In this case, the

importance of the point increases as its timestamp closes

to the last time, making the estimated 3D point Xt closer

to the actual joint location at time t. The second term of

L2-norm is written to eliminate the bias from different 2D

locations in different views, as introduced in Equation 9.

4. Experiments

We perform the evaluation on three widely-used public

datasets: Campus [2], Shelf [2], and CMU Panoptic [18],

and compare our method with previous works in terms of

both accuracy and efficiency. We also propose a new dataset

with 12 to 28 camera views, to verify the scalability of our

method as the numbers of cameras and people increase.

4.1. Datasets

We first briefly introduce the public datasets and evalua-

tion metric for multi-human 3D pose estimation. Then we

present the detail of our proposed dataset and compare it

with existing public datasets.
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Campus and Shelf. The Campus is a small-scale dataset

that captured by three calibrated cameras. It consists of

three people interacting with each other on an open outdoor

square. The Shelf dataset is captured by five cameras with

a more complex setting, where four people are interacting

and disassembling a shelf in a small indoor area. The joint

annotations of these two datasets are provided by Belagian-

nis et al. [2] for evaluation. We follow the same evaluation

protocol as in previous works [2, 3, 15, 13] and compute

the PCP (percentage of correctly estimated parts) scores to

measure the accuracy of 3D pose estimation.

CMU Panoptic. The CMU Panoptic dataset [18] is cap-

tured in a closed studio with 480 VGA cameras and 31 HD

cameras. The hundreds of cameras are distributed over the

surface of a geodesic sphere with about 5 meters of width

and 4 meters of height. The studio is designed to simulate

and capture social activities of multiple people and therefore

the space inside the sphere is built without obstacle. For the

lack of the ground truth of 3D poses of multiple people, only

qualitative results are presented on this dataset. In contrast

to previous works [13, 17] that exploit only a few cameras

(about two to five) for 3D pose estimation, we present anal-

ysis with different numbers of cameras in our ablation study.

Our dataset. Our dataset, namely Store dataset, is cap-

tured inside two kinds of simulated stores with 12 and 28

cameras, respectively. Different from CMU Panoptic that

uses hundreds of cameras for a small closed area, we evenly

arrange the cameras on the ceiling of the store to simulate

the real-world environment. Each camera works indepen-

dently without strict synchronization, as we discussed in

Section 3.1. Moreover, there are lots of shelves inside the

second store, serving as obstacles, making the scene more

complex than previous datasets. A detailed comparison is

presented in Table 1. We use the Store dataset along with

the CMU Panoptic dataset to verify the scalability of our

method on the large-scale camera systems.

4.2. Comparison with state­of­the­art

We first present the quantitative comparison with other

state-of-the-art methods in Table 2. Belagiannis et al. in-

troduced 3DPS for multi-view multi-human 3D pose esti-

mation in [2]. Afterwards, they extended 3DPS for videos

by exploiting the temporal consistency in [4]. These early

works have a huge state space with a very expensive compu-

tational cost. Dong et al. [13] propose to cluster joints at the

body level to reduce the state space. An appearance model

[36] is also investigated in their work to mitigate the am-

biguity of the body-level association. Their approach takes

about 25 ms on a dedicated GPU to extract appearance fea-

tures and 20 ms for the body association, and 60 ms for the

3D reconstruction in 3DPS. Without bells and whistles, our

geometric-only method outperforms pervious 3DPS-based

models and achieves competitive accuracy with the very re-

Dataset Cameras People Area Obstacle

Campus 3 3 43 None

Shelf 5 4 19 Shelf

CMU Panoptic 480+31 7 17 None

Store layout1 (ours) 12 4 12 None

Store layout2 (ours) 28 16 23 Shelves

Table 1: Comparison of datasets. The area is computed in

square meters using convex hull of camera locations.

PCP(%)

Campus Actor1 Actor2 Actor3 Average FPS

CVPR14 [2] 82.0 72.4 73.7 75.8 -

ECCVW14 [4] 83.0 73.0 78.0 78.0 1

TPAMI16 [3] 93.5 75.7 85.4 84.5 -

MTA18 [15] 94.2 92.9 84.6 90.6 -

CVPR19 [13] 97.6 93.3 98.0 96.3 9.5

Ours 97.1 94.1 98.6 96.6 617

Shelf Actor1 Actor2 Actor3 Average FPS

CVPR14 [2] 66.1 65.0 83.2 71.4 -

ECCVW14 [4] 75.0 67.0 86.0 76.0 1

TPAMI16 [3] 75.3 69.7 87.6 77.5 -

MTA18 [15] 93.3 75.9 94.8 88.0 -

CVPR19 [13] 98.8 94.1 97.8 96.9 9.5

Ours 99.6 93.2 97.5 96.8 325

Table 2: Quantitative comparison on the Campus and Shelf

datasets. FPS of other methods is the average speed taken

from the papers, as per-dataset speed is not provided.

cent work [13], while our method is much faster with only

a single laptop CPU. Note that, for the fair comparison, we

use the same 2D pose detections for the experiments as that

in [13], which are provided by an off-the-shelf 2D pose es-

timation method [11].

4.3. Ablation study

To further verify the effectiveness of our solution, abla-

tion study is conducted to answer the following questions:

1) Whether matching in 3-space has achieved better results

comparing to its 2D counterparts? 2) How much is the con-

tribution of the incremental triangulation, is it really nec-

essary? 3) What is the speed of our method on large-scale

camera systems and how much is the contribution of the

iterative processing? 4) How is the quality of the tracking?

Matching in 2D or 3D? As described in Section 3.2, we

argue that matching in 3-space leads to more accurate as-

sociation results, since it robust to partial occlusion and in-

accurate 2D localization. To verify that, instead of compar-

ing the final PCP score, we measure the association accu-

racy directly and compare our method with four baselines,

as shown in Figure 3. The association accuracy is com-

puted for each camera based on the degree of agreement be-

tween clustered 2D poses and annotations. This formulation
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Figure 3: Association accuracy on the Campus dataset.

removes the impact of different reconstruction algorithms.

The first baseline is matching joints in pairs of views in the

2D camera coordinates via epipolar constraint. The follow-

ing three baselines are taken from the official implemen-

tation of [13], which employs geometric information and

human appearance features for matching 2D poses between

camera views. As seen in the figure, all these approaches

achieve good performance in Camera1 and Camera2 of the

Campus dataset, while the gap is revealed in the more dif-

ficult Camera3, which is placed closer to the people and

suffers more from occlusion. Our method that matching in

3-space outperforms the baselines with 32%, 5.2%, 9.2%,

4.6% association accuracy in Camera3, respectively.

Different 3D reconstruction methods. Cross-view associ-

ation is the first step of 3D pose estimation, while 3D re-

construction is also critical. Here, we retain the association

results of our method and estimate the 3D poses using dif-

ferent reconstruction algorithms. As presented in Table 3

four algorithms are considered: 3DPS, conventional trian-

gulation, incremental triangulation without normalization,

and our proposed. We select torso, upper arm, lower arm

for comparison because these body parts have different mo-

tion amplitudes that can evaluate for different cases. All the

four reconstruction algorithms achieve good performance

on the torso as it has a small range of motion and is easy

to detect. As for the lower arm, which can generally move

quickly, our incremental triangulation improves about 3%

to 5% PCP score compared with conventional triangulation.

To further verify if the incremental triangulation has the

ability to handle unsynchronized frames, we analyze the

performance drop when the input frame rate decreases. The

original Shelf dataset was captured with 25 FPS. We con-

struct datasets with different frame rates by sampling one

frame from every n frames in each camera. The compari-

son between incremental and conventional triangulation is

shown in Figure 4. Average time differences within every

2D joint collection Jk
t are also recorded in the figure. As
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Figure 4: PCP score in terms of input frame rate on the

Shelf dataset. The original frame rate is 25 FPS, therefore

the actual frame rate of each trail is 25/n.

Campus Torso Upper arm Lower arm Whole

3DPS 100.0 99.1 82.5 96.0

Triangulation 100.0 95.4 79.1 94.4

Ours, w/o norm 100.0 95.6 81.7 95.4

Ours, proposed 100.0 98.6 84.6 96.6

Shelf Torso Upper arm Lower arm Whole

3DPS 100.0 98.1 88.4 96.6

Triangulation 100.0 97.0 84.5 94.8

Ours, w/o norm 100.0 98.7 87.7 96.9

Ours, proposed 100.0 98.7 87.7 96.8

Table 3: PCP scores of different 3D reconstruction algo-

rithms on the Campus and Shelf datasets.

the input frame rate decreases and the time differences in-

crease, the performance of conventional triangulation drops

significantly, while that of ours keeps stable, indicating the

effectiveness of our method in handling the unsynchronized

frames. Therefore, we confirm that incremental triangula-

tion is essential for the iterative processing.

Speed on large-scale camera system. As already seen in

Table 2, our method is about 50 times faster than others

on the small-scale datasets Campus and Shelf. We further

test the proposed method on the large-scale Store dataset as

demonstrated in Figure 5. It finally achieves 154 FPS for

12 cameras with 4 people and 34 FPS for 28 cameras with

16 people. Note that when counting the running speed, we

follow the common practice that one frame represents that

all cameras are updated once.

Indeed, different implementation and hardware environ-

ment affect the running speed a lot. Our algorithm is imple-

mented in C++ without multi-processing and evaluated on

the laptop with an Intel i7 2.20 GHz CPU. In order to verify

the efficiency more fairly and understand the contribution

of iterative processing, we construct a baseline method that

matches joints in pairs of views in the camera coordinates

with the same testing environment. The comparison is con-
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Figure 5: Qualitative result on the Store dataset (layout 2). There are 28 cameras and 16 people in the scene and different

people are represented in different colors. The camera locations are illustrated in the 3D view as triangles in blue.
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Figure 6: Average running time of one frame with different

numbers of cameras on the CMU Panoptic dataset.

ducted on the CMU Panoptic dataset with its 31 HD cam-

eras, as the cameras are all placed in a closed small area that

changing the number of cameras does not affect the num-

ber of people observed. As shown in Figure 6, the running

time of the baseline method explodes as the number of cam-

eras increases, while that of ours varies almost linearly. The

result verifies the effectiveness of the iterative processing

strategy and demonstrates the ability of our method to work

with large-scale camera systems in real-world applications.

Tracking quality. We measure the tracking quality using

the Shelf dataset. Particularly, we project the estimated 3D

poses onto each camera and follow the same evaluation pro-

tocol as MOTChallenge [24]. We compare our result with

a simple single-view tracking baseline [6] as shown in Ta-

ble 4. In some easy cases, e.g. Camera2, the baseline single-

view tracker achieves similar performance as cross-view

tracking. But for the difficult cases such as Camera4, which

contain severe occlusion, our cross-view tracking outper-

forms its single-view counterpart significantly. The result

verifies that, in our framework, multi-human tracking can

be also boosted by multi-view 3D pose estimation.

Method Camera MOTA IDF1 FP FN IDS

Single-view Camera1 86.7 81.7 32 34 2

Camera2 97.6 63.9 4 4 4

Camera3 97.3 98.6 7 7 0

Camera4 68.8 41.8 77 79 3

Camera5 79.0 69.0 51 51 5

Cross-view Camera1 98.8 99.4 3 3 0

Camera2 99.2 99.6 1 1 2

Camera3 98.4 99.2 4 4 0

Camera4 97.6 98.8 6 6 0

Camera5 97.6 98.8 6 6 0

Table 4: Tracking performance on the Shelf dataset.

5. Conclusion

We have presented a novel solution for multi-human 3D

pose estimation from multiple camera views. By exploiting

the temporal consistency in videos, we propose to match the

2D inputs with 3D poses in 3-space directly, where the 3D

poses are retained and iteratively updated by a cross-view

tracking. In experiments, we have achieved state-of-the-art

accuracy and efficiency on three public datasets. The com-

prehensive ablation study demonstrates the effectiveness of

each component in our framework. Given its simple formu-

lation and efficiency, our solution can be extended easily by

other techniques such as appearance features, and applied

directly to other high-level tasks. In addition, we propose

a new large-scale Store dataset to simulate the real-world

scenarios, which verifies the scalability of our solution and

may also benefit future researches in this area.
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