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Abstract

Cross-modal retrieval between videos and texts has at-

tracted growing attentions due to the rapid emergence of

videos on the web. The current dominant approach is to

learn a joint embedding space to measure cross-modal sim-

ilarities. However, simple embeddings are insufficient to

represent complicated visual and textual details, such as

scenes, objects, actions and their compositions. To im-

prove fine-grained video-text retrieval, we propose a Hi-

erarchical Graph Reasoning (HGR) model, which decom-

poses video-text matching into global-to-local levels. The

model disentangles text into a hierarchical semantic graph

including three levels of events, actions, entities, and gen-

erates hierarchical textual embeddings via attention-based

graph reasoning. Different levels of texts can guide the

learning of diverse and hierarchical video representations

for cross-modal matching to capture both global and local

details. Experimental results on three video-text datasets

demonstrate the advantages of our model. Such hierarchi-

cal decomposition also enables better generalization across

datasets and improves the ability to distinguish fine-grained

semantic differences. Code will be released at https:

//github.com/cshizhe/hgr_v2t.

1. Introduction

The rapid emergence of videos on the Internet such as

on YouTube and TikTok has brought great challenges to

accurate retrieval of video contents. Traditional retrieval

methods [2, 4, 12] are mainly based on keyword search.

However, since keywords are limited and unstructured, it

is difficult to retrieve various fine-grained contents, such

as a compositional event “a white dog is chasing a cat”.

To address the limitation of keyword-based approach, more

and more researchers are paying attention to video retrieval

using natural language texts that contain richer and more
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University of Adelaide.
†Qin Jin is the corresponding author.

Figure 1. We factorize video-text matching into hierarchical lev-

els including events, actions, and entities to form a global to local

structure. On one hand, this enhances global matching with the

help of detailed semantic components, on the other hand, it im-

proves local matching with the help of global event structure.

structured details than keywords, a.k.a, cross-modal video-

text retrieval [6, 28, 43].

The current dominant approach for cross-modal retrieval

is to encode different modalities into a joint embedding

space [9] to measure cross-modal similarities, which can

be broadly classified into two categories. The first type of

works [6, 27, 28] embeds videos and texts into global vec-

tors. Despite of high efficiency, such global representation

is hard to capture fine-grained semantic details. For exam-

ple, understanding the video and text in Figure 1 involves

complicated reasoning about different actions (break, drop,

boil), entities (egg, into the cup etc.) as well as how all com-

ponents compose to the event (‘egg’ is the patient of action

‘break’ and ‘into the cup’ is the direction). To avoid losing

those details, another type of methods [32, 43] employs a

sequence of frames and words to represent videos and texts

respectively and aligns local components to compute overall

similarities. Although these approaches have achieved im-

proved performance for image-text retrieval [19, 22], learn-
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ing semantic alignments between videos and texts is more

challenging since video-text pairs are more weakly super-

vised than image-text pairs. Moreover, such sequential

representations neglect topological structures in videos and

texts, making it hard to understand relations between local

components within an event.

In this work, we propose a Hierarchical Graph Reason-

ing (HGR) model which takes the advantage of above global

and local approaches and makes up their deficiencies. As

shown in Figure 1, we decompose video-text matching into

three hierarchical semantic levels, which are responsible to

capture global events, local actions and entities respectively.

On the text side, the global event is represented by the whole

sentence, actions are denoted by verbs and entities refer to

noun phrases. We build a semantic role graph across lev-

els to capture how local components composite an event

and propose an attention-based graph reasoning method to

generate hierarchical textual embeddings. Different levels

of text are used to guide video encoding into correspond-

ing hierarchical embeddings to distinguish different aspects

in videos. We align cross-modal components at each se-

mantic level via attention mechanisms to facilitate match-

ing in weakly-supervised condition. Matching scores from

all three levels are aggregated together in order to enhance

fine-grained semantic coverage.

We carry out extensive experiments on three video-

text datasets. Consistent improvements over previous ap-

proaches demonstrate the effectiveness of our proposed

model. The hierarchical decomposition also enables bet-

ter generalization ability in cross-dataset evaluation. To

further evaluate fine-grained retrieval ability, we propose a

new binary selection task [15, 16] which requires systems

to select correct matching sentence for a given video from

two similar sentences with subtle difference. Our model

achieves better performance to recognize fine-grained se-

mantic changes and prefers more comprehensive video de-

scriptions due to the fusion of hierarchical matchings.

The contributions of this work are as follows:

• We propose a Hierarchical Graph Reasoning (HGR)

model for fine-grained video-text retrieval, which de-

composes video-text matching into global-to-local lev-

els. It improves global matching with the help of de-

tailed semantics and local matching with the help of

global event structures.

• The three disentangled levels in texts (event, actions

and entities) interact with each other via attention-

based graph reasoning and align with corresponding

levels of videos for cross-modal matching.

• The HGR model achieves improved performance on

different video-text datasets and better generalization

ability on unseen dataset. A new binary selection task

further demonstrates the ability of our model to distin-

guish fine-grained semantic differences.

2. Related Works

Image-Text Matching. Most of previous works [7, 9, 10,

18, 21] for image-text matching encode images and sen-

tences as fix-dimensional vectors in a common latent space

for similarity measure. Frome et al. [9] firstly propose the

joint embedding framework for images and words, and train

the model with contrastive ranking loss. Kiros et al. [21]

extend the framework to match images and sentences with

CNN to encode images and RNN for sentences. Faghri et

al. [7] improve training strategy with hard negative mining.

Huang et al. [18] and Gu et al. [10] explore reconstructions

in multi-task framework to enrich global representations.

However, it is hard to cover complicated semantics only

using fixed-dimensional vectors. Therefore, Karpathy et

al. [19] decompose image and sentences as multiple regions

and words, and propose using maximum alignment to com-

pute global matching similarity. Lee et al. [22] improve the

alignment with stacked cross-attention. Wu et al. [40] fac-

torize image descriptions into objects, attributes, relations

and sentences, however, they do not consider interactions

across levels and the decomposition might not be optimal

for video descriptions that focus on actions and events.

Video-Text Matching. Though sharing similarities with

image-text matching, the video-text matching task is more

challenging because videos contain multi-modalities and

spatial-temporal evolution [3, 26, 28]. Mithun et al. [28]

and Liu et al. [27] employ multimodal cues such as image,

motion and audio for video encoding. To encode sequen-

tial videos and texts, Dong et al. [6] utilize three branches,

i.e. mean pooling, biGRU and CNN to encode them. Yu et

al. [43] propose a joint sequence fusion model for sequen-

tial interaction of videos and texts. Song et al. [32] employ

multiple diverse representations for videos and texts for the

polysemous problem. Chen et al. [3] tackles the weakly-

supervised spatial-temporal grounding in videos. The most

similar work to ours is Wray et al. [39] and Zhang et al.

[44]. Wray et al. [39] disentangles action phrases into verbs

and nouns for fine-grained action retrieval, which however

is hard to apply on sentences with more complicated com-

positions. Zhang et al. [44] propose hierarchical modeling

of videos and paragraphs, but are not applicable to decom-

pose single sentences. Therefore, in this work we propose

to decompose a sentence as a hierarchical semantic graph

and integrate video-text matching at different levels.

Graph-based Reasoning. Graph convolutional network

(GCN) [20] is firstly proposed for graph recognition, which

employs convolution on neighbourhoods of nodes. Graph

attention networks [34] are further introduced to dynam-

ically attend over neighborhoods’ features. In order to

model graphs with different edge types, relational GCN [30]

is proposed to learn specific contextual transformation for

each relation type. The graph-based reasoning has great ap-
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Figure 2. Overview of the proposed Hierarchical Graph Reasoning (HGR) model for cross-modal video-text retrieval.

plications in computer vision tasks such as action recogni-

tion [33, 37], scene graph generation [42], referring expres-

sion grounding [23, 36], visual question answering [17, 24]

etc. Most of them [17, 23, 24, 36, 42] apply graph reasoning

on image regions to learn visual relationships. In this work,

we focus on reasoning over hierarchical graph structures on

video descriptions for fine-grained video-text matching.

3. Hierarchical Graph Reasoning Model

Figure 2 illustrates the overview of the HGR model

which consists of three blocks: 1) hierarchical textual en-

coding (Section 3.1) that constructs semantic role graphs

from texts and applies graph reasoning to obtain hierar-

chical text representations; 2) hierarchical video encoding

(Section 3.2) that maps videos into corresponding multi-

level representations; and 3) video-text matching (Sec-

tion 3.3) which aggregates global and local matchings at

different levels to compute overall cross-modal similarities.

3.1. Hierarchical Textual Encoding

Video descriptions naturally contain hierarchical struc-

tures. The overall sentence describes the global event in

the video which is composed of multiple actions in tem-

poral dimensions, and each action is composed of different

entities as its arguments such as agent and patient of the ac-

tion. Such global-to-local structure is beneficial for accurate

and comprehensive understanding of the semantic meanings

of video descriptions. Therefore, in this section, we intro-

duce how to obtain hierarchical textual representations from

a video description in a global-to-local topology.

Semantic Role Graph Structure. Given a video de-

scription C that consists of N words {c1, · · · , cN}, we con-

sider C as a global event node in the hierarchical graph.

Then we employ an off-the-shelf semantic role parsing

toolkit [31] to obtain verbs, noun phrases in C as well as the

semantic role of each noun phrase to the corresponding verb

(details of semantic roles are given in the supplementary).

The verbs are considered as action nodes and connected to

event node with direct edges, so that temporal relations of

different actions can be implicitly learned from event node

in following graph reasoning. The noun phrases are entity

nodes that are connected with different action nodes. The

edge type rij from entity node i to action node j is decided

by the semantic role of the entity in reference to the action,

while the edge type rji from action node j to any entity

node i is unified as an action type for simplicity. If an en-

tity node serves multiple semantic roles to different action

nodes, we duplicate the entity node for each semantic role.

Such semantic role relations are important to understand the

event structure, for example, “a dog chasing a cat” is ap-

parently different from “a cat chasing a dog” which only

switches semantic roles of the two entities. In the left side

of Figure 2, we present an example of the constructed graph.

Initial Graph Node Representation. We embed se-

mantic meaning of each node into a dense vector as ini-

tialization. For the global event node, we aim to summa-

rize the salient event described in the sentence. Therefore,

we first utilize an bidirectional LSTM (Bi-LSTM) [14] to

generate a sequence of contextual-aware word embeddings

{w1, · · · , wN} as follows:

−→w i =
−−−−→
LSTM(Wcci,

−→w i−1;
−→
θ ) (1)

←−w i =
←−−−−
LSTM(Wcci,

←−w i+1;
←−
θ ) (2)

wi = (−→w i +
←−w i)/2 (3)

where Wc is word embedding matrix,
−→
θ and

←−
θ are param-

eters in the two LSTMs. Then we average the word embed-

dings via an attention mechanism that focuses on important

words in the sentence as the global event embedding ge:

ge =

N
∑

i=1

αe,iwi (4)

αe,i =
exp(Wewi)

∑N

j=1
exp(Wewj)

(5)

where We is the parameter to be learned. For action and

entity nodes, though different LSTMs can be employed to

only encode their constitutive words independently, since
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semantic role parsing might separate words with mistakes,

contextual word representations can be beneficial to re-

solve such negative influences. Therefore, we reuse the

above Bi-LSTM word embeddings wi and apply max pool-

ing over words in each node as action node representations

ga = {ga,1, · · · , ga,Na
} and entity node representations

go = {go,1, · · · , go,No
}, where Na and No are numbers of

action and entity nodes respectively.

Attention-based Graph Reasoning. The connections

across different levels in the constructed graph not only ex-

plain how local nodes compose the global event, but also are

able to reduce ambiguity for each node. For example, the

entity “egg” in Figure 2 can have diverse appearances with-

out context, but the context from action “break” constrains

its semantics, so that it should have high similarity with

visual appearance of a “broken egg” rather than a “round

egg”. Therefore, we propose to reason over interactions in

the graph to obtain hierarchical textual representations.

Since edges in our graph are of different semantic roles,

a straightforward approach to model interactions in graph is

to utilize relational GCN [30], which requires to learn sep-

arate transformation weight matrix for each semantic role.

However, it can lead to rapid growth of parameters, which

makes it inefficient to learn from limited amount of video-

text data and prone to over-fitting on rare semantic roles.

To address this problem, we propose to factorize multi-

relational weights in GCN into two parts: a common trans-

formation matrix Wt ∈ R
D×D that is shared for all rela-

tionship types and a role embedding matrix Wr ∈ R
D×K

that is specific for different semantic roles, where D is the

dimension of node representation and K is the number of

semantic roles. For inputs to the first GCN layer, we multi-

ply initialized node embeddings gi ∈ {ge, ga, go} with their

corresponding semantic roles as:

g0i = gi ⊙Wrrij (6)

where rij is an one-hot vector denoting the edge type from

node i to j. Suppose gli is the output representation of node

i at l-th GCN layer, we employ a graph attention network to

select relevant contexts from neighbor nodes to enhance the

representation for each node:

β̃ij = (W q
a g

l
i)

T (W k
a g

l
j)/
√
D (7)

βij =
exp(β̃ij)

∑

j∈Ni
exp(β̃ij)

(8)

where Ni is neighborhood nodes of node i, W k
a and W q

a

are parameters to compute graph attention. Then the shared

Wt is utilized to transform contexts from attended nodes to

node i with residual connection:

gl+1

i = gli +W l+1
t

∑

j∈Ni

(βijg
l
j) (9)

Putting together Eq (6) and Eq (9), we can see that the trans-

formation from nodes in lower layer is specific for different

semantic role edges. Take the first GCN layer as an exam-

ple, the computation is as follows:

g1i = g0i +
∑

j∈Ni

(βij(W
1
t ⊙Wrrij)gj) (10)

where ⊙ is element-wise multiplication with broadcasting,

W 1
t ⊙Wrrij is the edge specific transformation at layer 1.

In this way, we significantly reduce the size of parameters

from L × K × D × D to L × D × D + K × D where

L is the number of layers of GCN, but still maintain role-

awareness when reasoning over graph. The outputs from

the L-th GCN layer are our final hierarchical textual repre-

sentations, which are denoted as ce for global event node,

ca for action nodes and co for entity nodes.

3.2. Hierarchical Video Encoding

Videos also contain multiple aspects such as objects, ac-

tions and events. However, it is challenging to directly parse

video into hierarchical structures as in texts which requires

temporal segmentation, object detection, tracking and so on.

We thus build three independent video embeddings instead

to focus on different level of aspects in the video.

Given video V as a sequence of frame-wise features

{f1, · · · , fM}, we utilize different weights W v
e ,W

v
a and

W v
o to encode videos into three level of embeddings:

vx,i = W v
x fi, x ∈ {e, a, o} (11)

For the global event level, we employ the attention mecha-

nism similar to Eq (4) to obtain one global vector to rep-

resent the salient event in the video as ve. And for the

action and entity level, the video representations are a se-

quence of frame-wise features va = {va,1, · · · , va,M} and

vo = {vo,1, · · · , vo,M} respectively. These features will be

sent to the following matching module to match with their

corresponding textual features at different levels, which

guarantees different transformation weights can be learned

to focus on different level video information with the guid-

ance of corresponding textual representation.

3.3. VideoText Matching

In order to cover both local and global semantics to

match videos and texts, we aggregate results from the three

hierarchical levels for the overall cross-modal similarity.

Global Matching. At the global event level, the video

and text are encoded into global vectors that capture salient

event semantics with attention mechanism. Therefore, we

simply utilize cosine similarity cos(v, c) ≡ vT c
||v||||c|| to mea-

sure the cross-modal similarity for global video and text

contents. The global matching score is se = cos(ve, ce).
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Table 1. Cross-modal retrieval comparison with state-of-the-art methods on MSR-VTT testing set.

Model
Text-to-Video Retrieval Video-to-Text Retrieval

rsum
R@1 R@5 R@10 MedR MnR R@1 R@5 R@10 MedR MnR

VSE [21] 5.0 16.4 24.6 47 215.1 7.7 20.3 31.2 28 185.8 105.2

VSE++ [7] 5.7 17.1 24.8 65 300.8 10.2 25.4 35.1 25 228.1 118.3

Mithum et al. [28] 5.8 17.6 25.2 61 296.6 10.5 26.7 35.9 25 266.6 121.7

W2VV [5] 6.1 18.7 27.5 45 - 11.8 28.9 39.1 21 - 132.1

Dual Encoding [6] 7.7 22.0 31.8 32 - 13.0 30.8 43.3 15 - 148.6

Our HGR 9.2 26.2 36.5 24 164.0 15.0 36.7 48.8 11 90.4 172.4

Local Attentive Matching. At the action and entity

level, there are multiple local components in the video and

text. Therefore, an alignment between cross-modal local

components is supposed to be learned to compute overall

matching score. For each cx,i ∈ cx where x ∈ {a, o}, we

first compute local similarities between each pair of cross-

modal local components sxij = cos(vx,j , cx,i). Such local

similarities implicitly reflect the alignment between local

texts and videos such as how strong a text node is relevant

to a video frame, but they lack proper normalization. There-

fore, we normalize sxij inspired by stacked attention [22] as

follows:

ϕx
ij = softmax(λ([sxij ]+/

√

∑

j

[sxij ]
2
+)) (12)

where [·]+ ≡ max(·, 0). The ϕx
ij is then utilized as atten-

tion weights over video frames for each local textual node

i, which dynamically aligns cx,i to video frames. We then

compute the similarity between cx,i and vx as weighted

average of local similarities sx,i =
∑

j ϕ
x
ijs

x
ij . The final

matching similarity summarizes all local component simi-

larities of text sx =
∑

i sx,i. The local attentive matching

does not require any local text-video groundings, and can be

learned from the weakly supervised global video-text pairs.

Training and Inference. We take the average of cross-

modal similarities at all levels as final video-text similarity:

s(v, c) = (se + sa + so)/3 (13)

The contrastive ranking loss is employed as training objec-

tive. For each positive pair (v+, c+), we find its hardest

negatives in a mini-batch (v+, c−) and (v−, c+), and push

their distances from the positive pair (v+, c+) further away

than a pre-defined margin ∆ as follows:

L(v+, c+) = [∆ + s(v+, c−)− s(v+, c+)]+

+[∆ + s(v−, c+)− s(v+, c+)]+
(14)

4. Experiments

To demonstrate the effectiveness of our HGR model, we

compare it with state-of-the-art (SOTA) methods on three

video-text datasets for text-to-video retrieval and video-to-

text retrieval. Extensive ablation studies are conducted to

investigate each component of our model. We also propose

a binary selection task to evaluate fine-grained discrimina-

tion ability of different models for cross-modal retrieval.

4.1. Experimental Settings

Datasets. We carry out experiments on MSR-VTT [41],

TGIF [25] and recent VATEX [38] video-text datasets. The

MSR-VTT dataset contains 10,000 videos with 20 text de-

scriptions for each video. We follow the standard split with

6,573 videos for training, 497 for validation and 2,990 for

testing. The TGIF dataset contains gif format videos, where

there are 79,451 videos for training, 10,651 for validation

and 11,310 for testing in the official split [25]. Each video is

annotated with 1 to 3 text descriptions. The VATEX dataset

includes 25,991 videos for training, 3,000 for validation and

6,000 for testing. Since the annotations on testing set are

private, we randomly split the validation set into two equal

parts with 1,500 videos as validation set and other 1,500

videos as our testing set. There are 10 sentences in English

and Chinese languages to describe each video. In this work,

we only utilize the English annotations.

Evaluation Metrics. We measure the retrieval performance

with common metrics in information retrieval, including

Recall at K (R@K), Median Rank (MedR) and Mean Rank

(MnR). R@K is the fraction of queries that correctly re-

trieve desired items in the top K of ranking list. We utilize

K = 1, 5, 10 following the tradition. The MedR and MnR

measures the median and average rank of correct items in

the retrieved ranking list respectively, where lower score in-

dicates a better model. We also take the sum of all R@K as

rsum to reflect the overall retrieval performance.

Implementation Details. For the video encoding, we use

Resnet152 pretrained on Imagenet [13] to extract frame-

wise features for MSR-VTT and TGIF. We utilize the of-

ficially provided I3D [1] video feature for VATEX dataset.

For the text encoding, we set the word embedding size as

300 and initialize with pretrained Glove embeddings [29].

We use two layers of attentional graph convolutions. The

dimension of joint embedding space for each level is 1024.
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Table 2. Generalization on unseen Youtute2Text testing set using different pre-trained models on MSR-VTT dataset.

Model
Text-to-Video Retrieval Video-to-Text Retrieval

rsum
R@1 R@5 R@10 MedR MnR R@1 R@5 R@10 MedR MnR

VSE [21] 11.0 28.6 39.9 18 48.7 15.4 31.0 42.4 19 128.0 168.3

VSE++ [7] 13.8 34.6 46.1 13 48.4 20.8 37.6 47.8 12 108.3 200.6

Dual Encoding [6] 12.7 32.0 43.8 15 52.7 18.7 37.2 45.7 15 142.6 190.0

Our HGR 16.4 38.3 49.8 11 49.2 23.0 42.2 53.4 8 77.8 223.2

Table 3. Text-to-video retrieval comparison with state-of-the-art

methods on TGIF and VATEX testing set.

Dataset Model R@1 R@5 R@10 MedR

TGIF

DeViSE [9] 0.8 3.5 6.0 379

VSE++ [7] 0.4 1.6 3.6 692

Order [35] 0.5 2.1 3.8 500

Corr-AE [8] 0.9 3.4 5.6 365

PVSE [32] 2.3 7.5 11.9 162

HGR 4.5 12.4 17.8 160

VATEX

VSE [21] 28.0 64.2 76.9 3

VSE++ [7] 33.7 70.1 81.0 2

Dual Encoding [6] 31.1 67.4 78.9 3

HGR 35.1 73.5 83.5 2

We set λ = 4 in local attentive matching. For training, we

set the margin ∆ = 0.2, and train the model for 50 epochs

with mini-batch size of 128. The epoch with the best rsum

on validation set is selected for inference.

4.2. Comparison with State of The Arts

Table 1 compares the proposed HGR model with SOTA

methods on the MSR-VTT testing set. For fair compari-

son, all the models utilize the same video features. Our

model achieves the best performance across different eval-

uation metrics on the MSR-VTT dataset. It outperforms the

state-of-the-art Dual Encoding [6] method even with half

less parameters and computations, which obtains 19.5%

and 15.4% relative gains on R@1 metric for text-to-video

and video-to-text retrieval respectively. The overall re-

trieval quality reflected by the rsum metric is also boosted

by a large margin (+23.8). We believe the major gain

comes from our global-to-local matching and attention-

based graph reasoning to learn hierarchical textual represen-

tations. Though Dual Encoding enhances global video and

sentence features via ensembling different networks such

as mean pooling, RNNs and CNNs, it may still focus on the

global event level and thus not as efficient as ours to capture

fine-grained semantic details in text for cross-modal video-

text retrieval.

To demonstrate the robustness of our approach on dif-

ferent datasets and features, we further provide quantitative

results on TGIF and VATEX datasets in Table 3. The mod-

els employ Resnet152 image features on the TGIF dataset

and I3D video features on the VATEX dataset. We can

see that our HGR model achieves consistent improvements

across different datasets and features compared to SOTA

models, which demonstrates that it is beneficial to improve

the cross-modal retrieval accuracy by decomposing videos

and texts into global-to-local hierarchical graph structures.

4.3. Generalization on Unseen Dataset

Current video-text retrieval methods are mainly evalu-

ated on the same dataset. However, it is important for the

model to generalize to out-of-domain data. Therefore, we

further conduct generalization evaluations: we first pretrain

a model on one dataset and then measure its performance on

another dataset that is unseen in the training. Specifically,

we utilize the MSR-VTT dataset for training and test mod-

els on the Youtube2Text testing split [11], which contains

670 videos and 41.5 descriptions per video on average.

Table 2 presents retrieval results on the Youtube2Text

dataset. The hard negative training strategy proposed in

VSE++ [7] enables the model to learn visual-semantic

matching more effectively, which also improves model’s

generalization ability on unseen data. The Dual Encoding

model though achieves better retrieval performance on the

MSR-VTT dataset as show in Table 1, it does not gener-

alize well on a new dataset compared with VSE++ with

overall 10.6 points decrease on rsum metric. Our HGR

model instead not only outperforms previous approaches on

in-domain evaluation, but also achieves significantly better

retrieval performance on out-of-domain dataset. This prop-

erty proves that improvements of our model does not re-

sult from using more complicated networks that might over-

fit datasets. Since we decompose texts into structures of

events, actions and entities from global to local and match

them with hierarchical video embeddings, our model is ca-

pable of learning better alignments of local components as

well as global event structures, which improves the gener-

alization ability on new compositions.

4.4. Ablation Studies

In order to investigate contributions of different compo-

nents in our proposed model, we carry out ablation stud-

ies on the MSR-VTT dataset in Table 4. The Row 1 in

Table 4 replaces graph attention mechanism in graph rea-
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Table 4. Ablation studies on MSR-VTT dataset to investigate contributions of different components of our HGR model.

Model
Text-to-Video Retrieval Video-to-Text Retrieval

rsum
R@1 R@5 R@10 MedR MnR R@1 R@5 R@10 MedR MnR

1 w/o graph attention 8.9 25.3 35.6 25 173.5 14.5 35.7 47.1 12 96.5 167.1

2 w/o role awareness 9.1 25.7 36.3 24 171.3 14.2 34.7 46.8 12 98.0 166.8

3 w/o hierarchical video 8.8 25.5 36.2 24 170.2 15.2 35.1 47.2 12 108.9 167.9

4 full HGR model 9.2 26.2 36.5 24 164.0 15.0 36.7 48.8 11 90.4 172.4

Figure 3. The attention distributions of action nodes at different

graph reasoning layers to gather contexts from other nodes. The

number in red after 1 denotes attention score in the first attention

layer, while the number in blue after 2 denotes attention score in

the second attention layer.

soning and simply utilizes average pooling over neighbor

nodes, which reduces the retrieval performance with 0.9 and

1.7 on R@10 metric than the full model in Row 4 for text-

to-video and video-to-text retrieval respectively. The role

awareness in Eq (6) is also beneficial in graph reasoning

comparing Row 2 and Row 4, which enables the model to

understand how different components relate with each other

within an event. In Figure 3, we present a learned pattern on

how action nodes interacting with neighbor nodes in graph

reasoning at different layers, which is strongly relevant to

semantic roles. At the first attention layer, the action node

such as “laying”, “putting” focuses more on its main argu-

ments such as agent “man”. Then at the second layer, action

nodes begin to reason over their temporal relations and thus

pay more attention to temporal arguments as well as implicit

contexts from global event node.

We also show that representing videos as hierarchical

embeddings is important to capture different aspects in

the video, which improves overall rsum performance from

167.9 in Row 3 to 172.4 in row 4. Since our video-text sim-

ilarities are aggregated from different levels, in Table 5 we

break down the performance at each level for video-text re-

trieval. We can see that the global event level performs the

best alone on rsum metric since local levels might not con-

tain overall event structures on itself. But different levels

are complementary with each other and their combination

significantly improves the retrieval performance.

Table 5. Break down of retrieval performance at different levels on

MSR-VTT testing set.

Text-to-Video Video-to-Text

rsum MedR MnR rsum MedR MnR

event 57.6 43 267.8 77.8 20.5 258.0

action 50.4 77 441.6 80.7 22 241.4

entity 44.7 62 251.3 58.4 37 230.0

fusion 71.9 24 164.0 100.6 11 90.4

4.5. Finegrained Binary Selection

To prove the ability of our model for fine-grained re-

trieval, we further propose a binary selection task that re-

quires the model to select a sentence that better matches

with a given video from two very similar but semanti-

cally different sentences. We utilize testing videos from the

Youtube2Text dataset and randomly select one ground-truth

video description for each video as positive sentence. The

negative sentence is generated by perturbing the ground-

truth sentence in one of the following ways:

1. switch roles: switching agent and patient of an action;

2. replace actions: replacing action with random action;

3. replace persons: replacing agent or patient entities

with random agents or patients;

4. replace scenes: randomly replacing scene entities;

5. incomplete events: only keeping part of all actions, en-

tities in the sentence;

We then ask human workers to ensure the automatic gener-

ated sentences are syntactically correct but indeed semanti-

cally inconsistent with the video content. Examples can be

found in the supplementary material.

Table 6 presents results in different binary selection

tasks. For the switching roles task, our model outperforms

VSE++ model with absolute 4.87%, but is slightly inferior

to Dual Encoding model. We suspect the reason is that

video descriptions in Youtube2Text are relatively short (7

words on average per sentence), which makes sequential

models with local contexts such as LSTM, CNN in Dual

Encoding model sufficient to capture the event structure.

For the replacing tasks, the HGR model achieves the best

performance to distinguish entity replacement especially for

scenes. The largest improvement of our HGR model lies in
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Table 6. Performance of different models on fine-grained binary selection task.

Model switch roles replace actions replace persons replace scenes incomplete events average

# of triplets 616 646 670 539 646 623.4

VSE++ [7] 64.61 74.46 85.67 83.30 78.79 77.37

Dual Encoding [6] 71.92 71.52 86.12 82.00 70.59 76.43

Our HGR 69.48 71.21 86.27 84.05 82.04 78.61

Figure 4. Text-to-video retrieval examples on MSR-VTT testing set. We visualize top 3 retrieved videos (green: correct; red: incorrect).

Figure 5. Video-to-text retrieval examples on MSR-VTT testing

set with top 3 retrieved texts (green: correct; red: incorrect).

the incomplete events task, where both the two sentences

are relevant to video contents but one captures more details.

Due to the fusion of hierarchical levels from global to local,

our model can select the more comprehensive sentence.

4.6. Qualitative Results

We visualize some examples on the MSR-VTT testing

split for text-to-video retrieval in Figure 4. In the left ex-

ample, our model successfully retrieves the correct video

which contains all actions and entities described in the sen-

tence, while the second video only lacks “pour oil” action

and the third video does not contain “chicken” entity. In

the middle example, the HGR model also distinguishes dif-

ferent relationship of actions such as “prepare to start a

track race” and “run in a track race”. The right example

shows a fail case, where the top retrieved videos are largely

relevant to the text query though are not ground-truth. In

Figure 5, we provide qualitative results on video-to-text re-

trieval as well, which demonstrate the effectiveness of our

HGR model for cross-modal retrieval on both directions.

5. Conclusion

Most successful cross-modal video-text retrieval systems

are based on joint embedding approaches. However, sim-

ple embeddings are insufficient to capture fine-grained se-

mantics in complicated videos and texts. Therefore, in

this work, we propose a Hierarchical Graph Reasoning

(HGR) model which decomposes videos and texts into hi-

erarchical semantic levels including events, actions, and en-

tities. It then generates hierarchical textual embeddings

via attention-based graph reasoning and aligns texts with

videos at different levels. Superior experimental results on

three video-text datasets demonstrate the advantages of our

model. The proposed HGR model also achieves better gen-

eralization performance on unseen dataset and is capable of

distinguishing fine-grained semantic differences. In the fu-

ture, we will improve video encoding with multi-modalities

and spatial-temporal reasoning.
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