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Abstract

In this paper, we propose a novel real-time 6D object

pose estimation framework, named G2L-Net. Our network

operates on point clouds from RGB-D detection in a divide-

and-conquer fashion. Specifically, our network consists of

three steps. First, we extract the coarse object point cloud

from the RGB-D image by 2D detection. Second, we feed

the coarse object point cloud to a translation localization

network to perform 3D segmentation and object translation

prediction. Third, via the predicted segmentation and trans-

lation, we transfer the fine object point cloud into a local

canonical coordinate, in which we train a rotation local-

ization network to estimate initial object rotation. In the

third step, we define point-wise embedding vector features

to capture viewpoint-aware information. To calculate more

accurate rotation, we adopt a rotation residual estimator

to estimate the residual between initial rotation and ground

truth, which can boost initial pose estimation performance.

Our proposed G2L-Net is real-time despite the fact multi-

ple steps are stacked via the proposed coarse-to-fine frame-

work. Extensive experiments on two benchmark datasets

show that G2L-Net achieves state-of-the-art performance in

terms of both accuracy and speed. 1

1. Introduction

Real-time performance is important in many computer

vision tasks, such as, object detection [35, 23], semantic

segmentation [36, 10], object tracking [5, 11], and pose es-

timation [29, 38, 16]. In this paper, we are interested in

real-time 6D object pose estimation, which has significant

impacts on augmented reality [25, 26], smart medical and

robotic manipulation [47, 39].

1Code: https://github.com/DC1991/G2L_Net.

R
G
B

D
e
p
th

CNN

+

3D	

segmentation	

&	Translation

localization

Rotation

localization

with	EVF

Global	localization

Rotation	

residual	

estimator

Translation localization Rotation localization

Figure 1. Three steps of G2L-Net. We propose a novel real-time

point cloud based network for 6D object pose estimation called

G2L-Net. Our G2L-Net contains global localization, object trans-

lation localization and rotation localization. For the rotation local-

ization, we propose point-wise embedding vector features (EVF)

and rotation residual estimator to access accurate rotation.

Deep learning methods have shown the state-of-the-art

performance in the pose estimation tasks, but many of them

[42, 33, 28, 21] cannot run in real-time. While there ex-

ist some real-time deep learning methods [29, 34, 38, 45]

(> 20fps), they use only RGB information from an image.

One major limitation of using RGB only is that features

learned from such information are sensitive to occlusion

and illumination changes, which precludes these methods

from being applied to complicated scenes. Deep learning

methods based on depth information [17, 21] are more suit-

able for realistically complicated scenes, but they are usu-

ally computation-intensive. One common issue for these

RGBD-based methods is that exploiting viewpoint infor-

mation from depth information is not very effective, thus

reducing their pose estimation accuracy. To overcome this,

these methods tend to use a post-refinement mechanism or

a hypotheses generation/verification mechanism to enhance

pose estimation accuracy. This, however, reduces the infer-

ence speed for pose estimation.

In this paper, to overcome the existing problems in

depth-based methods, we propose a global to local real-

time network (G2L-Net), with two added modules which

4233



are point-wise embedding vector features extractor and ro-

tation residual estimator. Built on [30], our method has

three major novelties: i) instead of locating the object point

cloud by a frustum, we locate the object point cloud by a

3D sphere, which can limit the 3D search range in a more

compact space (see Section 3.1 for details), ii) instead of

directly regressing the global point feature to estimate the

pose, we propose the point-wise embedding vector features

to effectively capture the viewpoint information, and iii)

we estimate the rotation residual between predicted rota-

tion and the ground truth. The rotation residual estimator

further boosts the pose estimation accuracy. We evaluate

our method on two widely-used 6D object pose estimation

datasets, i.e. LINEMOD [12] and YCB-Video [42] dataset.

Experimental results show that G2L-Net outperforms state-

of-the-art depth-based methods in terms of both accuracy

and speed on the LINEMOD dataset, and that G2L-Net

achieves comparable accuracy while is the fastest method

on the YCB-Video dataset.

In summary, the main contributions of this paper are as

follows:

• We propose a novel real-time framework to estimate

6D object pose from RGB-D data in a global to lo-

cal (G2L) way. Due to efficient feature extraction, the

framework runs at over 20fps on a GTX 1080 Ti GPU,

which is fast enough for many applications.

• We propose orientation-based point-wise embedding

vector features (EVF) which better utilize viewpoint

information than the conventional global point fea-

tures.

• We propose a rotation residual estimator to estimate

the residual between predicted rotation and ground

truth, which further improves the accuracy of rotation

prediction.

2. Related work

Pose estimation from RGB image: Traditional methods

[12, 19, 24] compute 6D object pose by matching RGB fea-

tures between a 3D model and test image. These methods

use handcrafted features that are not robust to background

clutter and image variations [44, 37, 29]. Learning-based

methods [33, 29, 34, 28, 15, 38] alleviate this problem by

training their model to predict 2D keypoints and compute

the object pose by the PnP algorithm [9, 20]. [42, 22, 21]

decouple the pose estimation into two sub-tasks: translation

estimation and rotation estimation. More concretely, they

regarded the translation and rotation estimation as a clas-

sification problem and trained neural networks to classify

the image feature into a discretized pose space. However,

the RGB image features may be affected by illumination

changes which result in pose estimation from RGB image

more sensitive to illumination changes.

Pose estimation from RGB image with depth informa-

tion: When depth information is available, previous ap-

proaches [2, 41, 13] learned features from the input RGB-D

data and adopted correspondence grouping and hypothesis

verification. However, some papers [44, 37] found that the

methods are sensitive to image variations and background

clutter. Besides, correspondence grouping and hypothesis

verification further increase the inference time presenting

real-time applications. Some methods [42, 16] employed

the depth information in a post-refinement procedure by

highly customized Iterative Closest Point (ICP) [6, 1] into

deep learning frameworks, which would significantly in-

crease the running time of the algorithms. Recently, several

deep learning methods [17, 21] utilized the depth input as

an extra channel along with the RGB channels. However,

combining depth and RGB information in this way cannot

make full use of geometric information in data and makes

it difficult to integrate information across viewpoints [27].

Instead, in this paper, we transfer depth maps to 3D point

clouds and directly process the 3D point clouds by Point-

Nets [31, 30] which extract 3D geometric features more ef-

ficiently than CNN-based architectures.

Pose estimation from point cloud: PointNets [31, 30], Qi

et al. have shown that employing depth information in 3D

space via the point cloud representation could achieve better

performance than that in 2.5D space. Based on that, some

PointNet-based methods [30, 40, 46, 43, 4] presented to di-

rectly estimate 6D object pose. They adopted a PoinNet-

like [31] architecture to access pose from point cloud. In

this work, we also make use of PointNet-like architecture

but in a different way. Different from 2D methods [42, 21],

we decouple 6D object pose estimation into three sub-tasks:

global localization, translation localization, and rotation lo-

calization. For the first two sub-tasks, we use similar meth-

ods in [30] but with some improvements described in Sec-

tion 3. For the third sub-task, we propose point-wise em-

bedding vector features that exploit the viewpoint informa-

tion more effectively and we also propose a rotation resid-

ual estimator that further improves the pose estimation ac-

curacy. We show that with these improvements, the pro-

posed G2L-net achieves higher accuracy than state-of-the-

art methods and runs at real-time speed.

3. Proposed method

In Figure 2, we show the inference pipeline of our

proposing G2L-Net which estimates the 6D object pose in

three steps: global localization, translation localization, and

rotation localization. In the global localization step, we use

a 3D sphere to fast locate the object position in 3D space. In

the translation localization step, we train a PointNet to per-

form 3D segmentation and estimate object translation. In
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Figure 2. Inference pipeline of the proposed G2L-Net. (a) For RGB image, we use a 2D detector to detect the bounding box (bbox) of the

target object and the object label which is used as a one-hot feature for the following networks. Also, we additionally choose the maximum

probability location in class probability map (cpm) as the sphere center (we transfer this 2D location to 3D with known camera parameters

and corresponding depth value) which is used to further reduce the 3D search space. (b) Given the point clouds in the object sphere, we use

a translation localization network to perform 3D segmentation and translation residual prediction. Then we use the 3D segmentation mask

and the predicted translation to transfer the object point cloud into a local canonical coordinate. (c) In the rotation localization network, we

first use the point-wise embedding vector feature extractor to extract embedding vector features. Then we feed this feature into two-point

clouds decoders: the top decoder directly outputs the rotation of the input point cloud and the bottom one outputs the residual of the output

of the top one between the ground truth. k is the dimension of the output vector. Hollow “ + ” denotes feature concatenation.

the third step, we estimate rotation with the proposed point-

wise embedding vector features and rotation residual esti-

mator. Please note, this rotation residual estimator is differ-

ent from the post-refinement component in previous meth-

ods [42, 16], it outputs rotation residual with initial rotation

synchronously. In the following subsections, we describe

each step in detail.

3.1. Global localization

To fast locate the global position of the target object

in the whole scene, we train a 2D CNN detector, YOLO-

V3 [35], to detect the object bounding box in RGB image,

and output object label which is used as one-hot class vec-

tor for better point cloud instance segmentation, translation

and rotation estimation. In [30], they use the 2D bounding

box to generate frustum proposals which only reduce the

3D search space of two axes (x,y). Differently, rather than

only using a 2D bounding box, we propose to employ a 3D

sphere to further reduce the 3D search space in the third axis

(z) (see Figure 3 for details). The center of the 3D sphere

is transferred from the 2D location which has the maximum

value in the class probability map with known camera pa-

rameters and corresponding depth value. The radius of this

3D sphere is the diameter of the detected object. We only

choose points in this compact 3D sphere, which makes the

learning task easier for the following steps.

3.2. Translation localization

Although the extracted point cloud is tight, there are still

two issues remained: 1) the point cloud in this 3D space

contains both object points and non-object points, and 2) the

object points cannot be transferred to a local canonical coor-

dinate due to unknown translation. To cope with the issues,

similar to [30], we train a two PointNets [31] to perform 3D

segmentation and output the residual distance ||T − T̄ ||2
between the mean value T̄ of the segmented points and ob-

ject translation T . This residual can be used to calculate the

translation of the object.

3.3. Rotation localization with embedding vector
feature

From the first two steps, we transfer the point cloud of

the object to a local canonical space where the viewpoint

information is more evident. Theoretically, we need at least

four different viewpoints to cover all points of an object (see

Figure 4) in 3D space [8]. For the pose estimation task, we
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(a) (b)

Figure 3. Global 3D sphere. In the global localization step, we

locate the object point clouds by bounding box as well as a 3D

sphere. (a) Locate the object point cloud only by bounding box.

In this case, it can only locate the object in two-dimensional space,

some points can still very far away from the object in the third axis.

(b) Locate the object point cloud by both the bounding box and 3D

sphere. All points lay in a more compact space.

Figure 4. Different viewpoints. For a 3D object, we need at least

four viewpoints to cover all the points of the 3D object.

usually have hundreds of different viewpoints for one ob-

ject during training. Then our goal is to use the viewpoint

information adequately. In [30], they use PointNets [31, 32]

to extract the global feature from the whole point cloud.

However, in our experiments, we found global point fea-

tures extracted from point clouds under similar viewpoints

are highly correlated, which limit the generalization perfor-

mance (see Figure 9 in the experiment section).

To overcome the limitation of global point features, we

propose point-wise embedding vector features. Specifically,

we design the rotation localization network architecture as

shown in Figure 5 to predict point-wise unit vectors point-

ing to keypoints (illustrated in Figure 6). The keypoints are
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Figure 5. Architecture of the rotation localization network. In

the training stage, there are three blocks in rotation localization

network. We train block A to predict the unit vectors pointing to

the keypoints, the loss function of this block is the mean square

error between the predicted and ground truth directional vectors.

By training this block, the network can learn how to extract point-

wise embedding vector features from the input point cloud. Note

that, block A is not deployed in the inference stage. Then we use

block B to integrate the point-wise embedding vector features to

predict object rotation. The loss function of this block is the mean

square error between the predicted rotation and ground truth. For

rotation residual estimator block C, we use the Euclidean distance

between the predicted 3D keypoints position (output of block B)

and ground truth as ground truth. k is the dimension of the output

rotation vector and v is the dimension of the output directional

vector. Hollow “ + ” denotes feature concatenation.

Figure 6. Point-wise vectors. Here we show point-wise vectors

pointing to one keypoint which is shown in green color, and other

keypoints are shown in black color. We train our network to pre-

dict such directional vectors

some pre-defined 3D points based on each 3D object model.

Two aspects need to be decided for the keypoints: number

and location. A simple way is to use the 8 corners of the

3D bounding box of object model as keypoints which we

show in Figure 7 (a). This definition is widely used by many

CNN based methods in 2D cases [33, 34, 28, 38]. Another

way is, as proposed in [29], to use the farthest point sam-

pling (FPS) algorithm to sample the keypoints in each ob-

ject model. Figure 7 shows examples of different keypoint
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(a) (b)

Figure 7. Visualization of different keypoint selection schemes.

The left image is a 3D object point cloud and its 3D bounding

box; the right image is the keypoint selected by FPS algorithm.

The keypoints are shown in red color.

selection schemes. In Section 4.4, we show how the number

and location of the keypoints influence the pose estimation

results.

Similar to [4], our proposed rotation localization net-

work takes object point cloud in the local canonical space

and outputs point-wise unit vectors pointing keypoints. The

loss function is defined as follows:

ℓ(θ) = min
θ

1

K |X |

K∑

k=1

∑

i

‖ṽk(Xi;θ)− vk(Xi)‖
2

2
, (1)

where K is the number of keypoints. θ is the network pa-

rameters. ṽk(Xi;θ) and vk(Xi) are the predicted vectors

and the ground truth, respectively. X ∈ ❘n×3 represents

the object points in the local coordinate space. |X | is the

number of object points.

Different from other state-of-the-art methods [29, 42, 4],

we adopt a multilayer perceptron (MLP) that takes point-

wise embedding vector features as input and outputs the

rotation of object as shown in Figure 5. Please note, dur-

ing inference, we use the rotation matrix to represent the

rotation which is computed from the keypoint positions us-

ing the Kabsch algorithm. Over the training process, as per

the definition of point-wise vectors, we used only the key-

point positions to represent rotation. In experiments, we

have found that our proposed method can make faster and

more accurate predictions than the methods [29, 42, 4].

Rotation residual estimator: To better utilize the

viewpoint information in the point-wise embedding vector

features, we add an extra network branch (block C in Fig-

ure 5) to estimate the residual between estimated rotation

(block B in Figure 5) and ground truth. However, we do not

have ground truth for this residual estimator. To address this

problem we train this estimator in online fashion. Assuming

that the ground truth for block B of rotation localization net-

work is P and the output of block B is P̃ , then the target of

our rotation residual estimator is ||P −P̃||2. As the rotation

network converging, it becomes harder to learn the resid-

ual. If the rotation localization network can fully exploit the

embedding vector feature, the role of rotation residual esti-

mator can be ignored. However, when the rotation network

cannot fully exploit the embedding vector feature, the rota-

tion residual estimator will have a big impact on the final

results, we show this property of rotation residual estimator

in Figure 9 (b). Please note, our proposed rotation resid-

ual estimator is different from the post-refinement module

in the previous state-of-the-art methods [42, 40, 22]. Our

proposed rotation residual estimator outputs rotation resid-

ual with estimated rotation synchronously, which saves the

running time.

4. Experiments

There are two parts in this experiments section. Firstly,

we do ablation studies on keypoints selection schemes and

empirically validate the three innovations introduced in our

new frame: 3D sphere (“SP”), point-wise embedding vector

features (“EVF”) and rotation residual estimator (“RRE”).

Then we test our proposed G2L-Net on two benchmark

datasets, i.e. LINEMOD and YCB-Video datasets. Our

method achieves state-of-the-art performance in real-time

on both datasets.

4.1. Implementation details

We implement our framework using Pytorch. We have

conducted all the experiments on an Intel i7-4930K 3.4GHz

CPU with one GTX 1080 Ti GPU. First, we fine-tune the

YOLO-v3 [35] architecture which is pre-trained on the Im-

ageNet [7] to locate the 2D region of interest and access the

class probability map. Then we jointly train our proposed

translation localization and rotation localization networks

using PointNet [31] as our backbone network. The archi-

tectures of these networks are shown in Figure 2. Note that,

other point-cloud network architectures [32, 46] can also be

adopted as our backbone network. For point cloud segmen-

tation we use cross-entropy as the loss function. For trans-

lation residual prediction, we employ the mean square error

and the unit in our experiment is mm. We train our rota-

tion localization network as described in Figure 5. We use

Adam [18] to optimize the proposed G2L-Net. We set the

initial learning rate as 0.001 and halve it every 50 epochs.

The maximum epoch is 200.

4.2. Datasets

LINEMOD [12] is a widely used dataset for 6D object pose

estimation. There are 13 objects in this dataset. For each ob-

ject, there are about 1100-1300 annotated images and each

has only one annotated object. This dataset exhibits many

challenges for pose estimation: texture-less objects, clut-

tered scenes, and lighting condition variations.
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(a) (b) (c)
Figure 8. Point cloud labeling. (a) The object model of cat in

LINEMOD dataset; (b) the point cloud from the depth images in

object region; (c) the transformed object model is overlapped on

the point cloud. We label each point according to the shortest dis-

tance between the point and the corresponding transformed object

model.

YCB-Video [42] contains 92 real video sequences for 21

YCB object instances [3]. This dataset is challenging due

to the image noise and occlusions.

However, both LINEMOD and YCB-Video datasets do

not contain the label for each point of the point cloud. To

train G2L-Net in a supervised fashion, we adopt an auto-

matic way to label each point of the point cloud of [?]. As

described in [?], we label each point in two steps§ First, for

the 3D model of an object, we transform it into the camera

coordinate using the corresponding ground truth. We adopt

the implementation provided by [14] for this process. Sec-

ond, for each point on the point cloud in the target region,

we compute its nearest distance to the transformed object

model. If the distance is less than a value ǫ = 8mm, we

label the point as 1 (belonging to the object), otherwise 0.

Figure 8 shows the labeling procedure.

4.3. Evaluation metrics

We employ the ADD metric [12] to evaluate our G2L-

Net on LINEMOD dataset:

1

|M|

∑

x∈M

‖(R · x + T)− (R̃ · x + T̃)‖, (2)

where |M| is the number of points in the object model. x

represents the point in object 3D model. R and T are the

ground truth pose, and R̃ and T̃ are the estimated pose. In

this metric, the mean distance between the two transformed

point sets is computed. When the average distance is less

than 10% of the 3D object model diameter, we consider that

estimated 6D pose as correct. For symmetric objects, we

employ ADD-S metric [12], where the average distance is

calculated using the shortest point distance:

1

|M|

∑

x1∈M

min
x2∈M

‖(R · x1 + T)− (R̃ · x2 + T̃)‖. (3)

When evaluating on YCB-Video dataset, same as [42,

29, 21], we use the ADD-S AUC metric proposed in [42],

Table 1. Ablation studies of different novelties on LINEMOD

dataset. The metric we used to measure performance is ADD(-S)

metric. “SP” means 3D sphere, “EVF” means embedding vector

feature, and “RRE” denotes rotation residual estimator.

Method SP EVF RRE Acc Speed(fps)

EXP1 × × × 93.4% 25

EXP2 X × × 95.8% 25

EXP3 X X × 98.4% 23

EXP4 X X X 98.7% 23

Table 2. Ablation studies of different keypoints parameters on

LINEMOD dataset. The metric we used to measure performance

is ADD(-S) metric. BBX-8 means using the 8 corners of 3D

bounding box as keypoints. FPS-K denotes that we adopt K key-

points generated by the FPS algorithm.

Method BBX-8 FPS-4 FPS-8 FPS-12

Acc 98.7% 98.5% 98.4% 98.6%

Speed (fps) 23 23 23 23

which is the area under the accuracy-threshold curve. The

maximum threshold is set to 10cm [42].

4.4. Ablation studies

Compared to the baseline method [30], our proposed

method has three novelties. First, we fast locate the ob-

ject point clouds by a 3D sphere which is different from

the frustum method in [30]. Second, we use the proposed

point-wise embedding vector features to estimate rotation

of the point cloud which can better utilize the viewpoint in-

formation. Third, we propose a rotation residual estimator

to estimate the rotation residual between ground truth and

predicted rotation. From Table 1, we can see that the pro-

posed three improvements can boost performance.

We also compare the different keypoints selection

schemes in Table 2, however, it shows that different key-

points selection schemes make little difference in the final

results. For simplicity, we use the 8 corners of 3D bounding

box as keypoints in our experiments.

4.5. Generalization performance

In this section, we evaluate the generalization perfor-

mance of our G2L-Net. We gradually reduce the size of

training data to see how the performance of the algorithm

can be affected on LINEMOD dataset. From Figure 9 (a),

we can see that even only 5% of the training data, which is

1/3 of the normal setting, is used for the network training,

the performance (88.5%) is still comparable.

4.6. Comparison with the stateoftheart methods

Object 6D pose estimation on LINEMOD: Same as

other state-of-the-art methods, we use 15% of each object

sequence to train and the rest of the sequence to test on
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Table 3. 6D pose estimation accuracy on LINEMOD dataset. We use ADD metric to evaluate the methods. For symmetric objects

Egg Box and Glue, we use ADD-S metric. Note that, we summarize the pose estimation results reported in the original papers on

LINEMOD dataset.

Method PVNet [29]
PoseCNN +

DeepIM [42, 21]
DPOD [45] Frustum-P [30] Hinterstoisser [13] DenseFusion [40] Ours

Input RGB RGB RGB RGB+Depth Depth RGB+Depth RGB+Depth

Refinement × X X(×) × X X(×) ×
Ape 43.6% 77.0% 87.7% (53.3%) 85.5% 98.5% 92.3% (79.5%) 96.8%

Bench Vise 99.9% 97.5% 98.5% (95.3%) 93.2% 99.0 % 93.2%(84.2%) 96.1%

Camera 86.9% 93.5 96.0% (90.4%) 90.0% 99.3% 94.4%(76.5%) 98.2%

Can 95.5% 96.5% 99.7% (94.1%) 91.4% 98.7% 93.1%(86.6%) 98.0%

Cat 79.3% 82.1% 94.7% (60.4%) 96.5% 99.9% 96.5%(88.8%) 99.2%

Driller 96.4% 95.0% 98.8% (97.7%) 96.8% 93.4% 87.0%(77.7%) 99.8%

Duck 52.6% 77.7% 86.3% (66.0%) 82.9% 98.2% 92.3%(76.3%) 97.7%

Egg Box 99.2% 97.1% 99.9% (99.7%) 99.9% 98.8% 99.8%(99.9%) 100%

Glue 95.7% 99.4% 96.8% (93.8%) 99.2% 75.4% 100% (99.4%) 100%

Hole Puncher 81.9% 52.8% 86.9% (65.8%) 92.2% 98.1% 92.1%(79.0%) 99.0%

Iron 98.9% 98.3% 100% (99.8%) 93.7% 98.3% 97.0% (92.1%) 99.3%

Lamp 99.3% 97.5% 96.8% (88.1%) 98.2% 96.0% 95.3%(92.3%) 99.5%

Phone 92.4% 87.7% 94.7% (74.2%) 94.2% 98.6% 92.8%(88.0%) 98.9%

Speed(FPS) 25 5 33(40) 12 8 16(20) 23

Average 86.3% 88.6% 95.2% (83.0%) 93.4% 96.3 % 94.3 %(86.2%) 98.7 %

(a) (b)

Figure 9. Visualization of method performance on LINEMOD

dataset. (a) Influence of training data size using the ADD metric.

When using the same training size, compared to Frustum-P [30],

our method improves the performance significantly. For simplic-

ity, here we provide ground truth 2D bounding box and randomly

choose an object point as 3D sphere center for evaluation. (b) As

the rotation localization network converging, the impacts of rota-

tion residual estimator (RRE) decreases.

LINEMOD dataset. In Table 3, we compare our method

with state-of-the-art RGB and RGB-D methods. The num-

bers in brackets are the results without post-refinement.

We use Frustum-P [30] as our baseline. We re-implement

Frustum-P to regress 3D bounding box corners of the

objects. From Table 3, we can see that our method outper-

forms the baseline by 5.4% in ADD accuracy and runs 2

times faster than the baseline method. Comparing to the

second-best method [13] that using depth information, our

method outperforms it by 2.4% in ADD accuracy and runs

about 3 times faster than it. Although DPOD and PVNet

are faster than our method, they only take RGB image as

input. When using depth information, our method achieves

Table 4. 6D Pose estimation accuracy on the YCB-V dataset. We

use ADD-S AUC metric to evaluate the methods.

Method(RGB+Depth) PoseCNN [42] + ICP MCN [21]
DenseFusion [40]

(no refinement)
Ours

002 master chef can 95.8% 96.2% 95.2% 94.0%

003 cracker box 91.8% 90.9 % 92.5% 88.7%

004 sugar box 98.2% 95.3% 95.1% 96.0%

005 tomato soup can 94.5% 97.5% 93.7% 86.4%

006 mustard bottle 98.4% 97.0% 95.9% 95.9%

007 tuna fish can 97.1% 95.1% 94.9% 96.0%

008 pudding box 97.9% 94.5% 94.7% 93.5%

009 gelatin box 98.8% 96.0% 95.8% 96.8%

010 potted meat can 92.8% 96.7% 90.1% 86.2%

011 banana 96.9% 94.4% 91.5% 96.3%

019 pitcher base 97.8% 96.2% 94.6% 91.8%

021 bleach cleanser 96.8% 95.4% 94.3% 92.0%

024 bowl 78.3% 82.0% 86.6% 86.7%

025 mug 95.1% 96.8% 95.5% 95.4%

035 power drill 98.0% 93.1% 92.4% 95.2%

036 wood block 90.5% 93.6% 85.5% 86.2%

037 scissors 92.2% 94.2% 96.4% 83.8%

040 large marker 97.2% 95.4% 94.7% 96.8%

051 large clamp 75.4% 93.3% 71.6% 94.4%

052 extra large clamp 65.3% 90.9% 69.0% 92.3%

061 foam brick 97.1% 95.9% 92.4% 94.7%

Average 93.0% 94.3 % 91.2 % 92.4 %

Speed (fps) < 0.1 < 10 20 21

the fastest inference speed. In Figure 10, we provide a

visual comparison of predict pose versus ground truth pose.

Object 6D pose estimation on YCB-Video:

Different from LIMEMOD dataset, in YCB-Video

dataset, each frame may contain multiple target objects.

Our method can also estimate 6D pose for multiple objects

in fast speed. Table 4 compares our method with other state-

of-the-art methods [42, 21, 40] on YCB-Video dataset un-

der ADD-S AUC metric. From Table 4, we can see that our

method achieves a comparable accuracy (92.4%) and is the
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Figure 10. Qualitative pose estimation results on LINEMOD dataset. Green 3D bounding boxes denote ground truth. Blue 3D bounding

boxes represent our results. Our results match ground truth well.

Figure 11. Visualizing pose estimation results on YCB-Video.

White 3D bounding boxes are ground truth. Colorful 3D bounding

boxes represent our results. For different objects, our prediction

matches ground truth well.

fastest one (21fps) among all comparisons. In Figure 11,

we also provide visualization results on this dataset.

4.7. Running time

For a single object, given a 480 × 640 RGB-D image,

our method runs at 23fps on a PC environment (an Intel i7-

4930K 3.4GHz CPU and one GTX 1080 Ti GPU). Specif-

ically, the 2D detector takes 11ms for object location, and

pose estimation part which includes translation localization

and rotation localization takes 32ms. The rotation residual

estimator takes less than 1ms.

5. Conclusion

In this paper, we propose a novel real-time 6D object

pose estimation framework. Our G2L-Net decouples the

object pose estimation into three sub-tasks: global localiza-

tion, translation localization and rotation localization with

embedding vector features. In the global localization, we

use a 3D sphere to constrain the 3D search space into a more

compact space than 3D frustum. Then we perform 3D seg-

mentation and object translation estimation. We use the 3D

segmentation mask and the estimated object translation to

transfer the object points into local coordinate space. Since

viewpoint information is more evident in this canonical

space, our network can better capture the viewpoint infor-

mation with our proposed point-wise embedding vector fea-

tures. In addition, to fully utilize the viewpoint information,

we add the rotation estimation estimator, which learns the

residual between the estimated rotation and ground truth.

In experiments, we demonstrate that our method achieves

state-of-the-art performance in real-time.

Although our G2L-Net achieves state-of-the-art per-

formance, there are some limitations to our framework.

First, our G2L-Net relies on a robust 2D detector to detect

the region of interest. Second, while our network exploits

viewpoint information from the object point cloud, the

texture information is not well adopted. In future work, we

have a plan to overcome these limitations.
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