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Abstract

Enabling bi-directional retrieval of images and texts is

important for understanding the correspondence between

vision and language. Existing methods leverage the atten-

tion mechanism to explore such correspondence in a fine-

grained manner. However, most of them consider all se-

mantics equally and thus align them uniformly, regardless

of their diverse complexities. In fact, semantics are diverse

(i.e. involving different kinds of semantic concepts), and

humans usually follow a latent structure to combine them

into understandable languages. It may be difficult to op-

timally capture such sophisticated correspondences in ex-

isting methods. In this paper, to address such a deficiency,

we propose an Iterative Matching with Recurrent Attention

Memory (IMRAM) method, in which correspondences be-

tween images and texts are captured with multiple steps of

alignments. Specifically, we introduce an iterative match-

ing scheme to explore such fine-grained correspondence

progressively. A memory distillation unit is used to refine

alignment knowledge from early steps to later ones. Exper-

iment results on three benchmark datasets, i.e. Flickr8K,

Flickr30K, and MS COCO, show that our IMRAM achieves

state-of-the-art performance, well demonstrating its effec-

tiveness. Experiments on a practical business advertise-

ment dataset, named KWAI-AD, further validates the ap-

plicability of our method in practical scenarios.

1. Introduction

Due to the explosive increase of multimedia data from

social media and web applications, enabling bi-directional

∗This work was supported by the National Natural Science Foundation

of China (Nos. U1936202, 61925107). Corresponding author: Guiguang

Ding

cross-modal image-text retrieval is in great demand and has

become prevalent in both academia and industry. Mean-

while, this task is challenging because it requires to under-

stand not only the content of images and texts but also their

inter-modal correspondence.

In recent years, a large number of researches have been

proposed and achieved great progress. Early works at-

tempted to directly map the information of images and texts

into a common latent embedding space. For example, Wang

et al. [26] adopted a deep network with two branches to, re-

spectively, map images and texts into an embedding space.

However, these works coarsely capture the correspondence

between modalities and thus are unable to depict the fine-

grained interactions between vision and language.

To gain a deeper understanding of such fine-grained cor-

respondences, recent researches further explored the at-

tention mechanism for cross-modal image-text retrieval.

Karpathy et al. [11] extracted features of fragments for each

image and text (i.e. image regions and text words), and

proposed a dense alignment between each fragment pair.

Lee et al. [13] proposed a stacked cross attention model,

in which attention was used to align each fragment with all

fragments from another modality. It can neatly discover the

fine-grained correspondence and thus achieves state-of-the-

art performance on several benchmark datasets.

However, due to the large heterogeneity gap between im-

ages and texts, existing attention-based models, e.g. [13],

may not well seize the optimal pairwise relationships

among a number of region-word fragments pairs. Actu-

ally, semantics are complicated, because they are diverse

(i.e. composed by different kinds of semantic concepts with

different meanings, such as objects (e.g. nouns), attributes

(e.g. adjectives) and relations (e.g. verbs)). And there gen-

erally exist strong correlations among different concepts,

e.g. relational terms (e.g. verbs) usually indicate relation-
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ships between objects (e.g. nouns). Moreover, humans usu-

ally follow a latent structure (e.g. a tree-like structure [25])

to combine different semantic concepts into understandable

languages, which indicates that semantics shared between

images and texts exhibit a complicated distribution. How-

ever, existing state-of-the-art models treat different kinds of

semantics equally and align them together uniformly, taking

little consideration of the complexity of semantics.

In reality, when humans perform comparisons between

images and texts, we usually associate low-level semantic

concepts, e.g. objects, at the first glimpse. Then, higher-

level semantics, e.g. attributes and relationships, are mined

by revisiting images and texts to obtain a better understand-

ing [21]. This intuition is favorably consistent with the

aforementioned complicated semantics, and meanwhile, it

indicates that the complicated correspondence between im-

ages and texts should be exploited progressively.

Motivated by this, in this paper, we propose an itera-

tive matching framework with recurrent attention memory

for cross-modal image-text retrieval, termed IMRAM. Our

way of exploring the correspondence between images and

texts is characterized by two main features: (1) an itera-

tive matching scheme with a cross-modal attention unit to

align fragments across different modalities; (2) a memory

distillation unit to dynamically aggregate information from

early matching steps to later ones. The iterative matching

scheme can progressively update the cross-modal attention

core to accumulate cues for locating the matched semantics,

while the memory distillation unit can refine the latent cor-

respondence by enhancing the interaction of cross-modality

information. Leveraging these two features, different kinds

of semantics are treated distributively and well captured at

different matching steps.

We conduct extensive experiments on several benchmark

datasets for cross-modal image-text retrieval, i.e. Flickr8K,

Flickr30K, and MS COCO. Experiment results show that

our proposed IMRAM can outperform the state-of-the-art

models. Subtle analyses are also carried out to provide

more insights about IMRAM. We observe that: (1) the fine-

grained latent correspondence between images and texts can

be well refined during the iterative matching process; (2)

different kinds of semantics, respectively, play dominant

roles at different matching steps in terms of contributions

to the performance improvement.

These observations can account for the effectiveness and

reasonableness of our proposed method, which encourages

us to validate its potential in practical scenarios. Hence,

we collect a new dataset, named KWAI-AD, by crawling

about 81K image-text pairs on an advertisement platform, in

which each image is associated with at least one advertise-

ment textual title. We then evaluate our proposed method

on the KWAI-AD dataset and make comparisons with the

state-of-the-art models. Results show that our method per-

forms considerably better than compared models, further

demonstrating the effectiveness of our method in the prac-

tical business advertisement scenario. The source code

is available at: https://github.com/HuiChen24/

IMRAM.

The contributions of our work are three folds: 1) First,

we propose an iterative matching method for cross-modal

image-text retrieval to handle the complexity of semantics.

2) Second, we formulate the proposed iterative matching

method with a recurrent attention memory which incorpo-

rates a cross-modal attention unit and a memory distillation

unit to refine the correspondence between images and texts.

3) Third, we verify our method on benchmark datasets

(i.e. Flickr8K, Flickr30K, and MS COCO) and a real-world

business advertisement dataset (i.e. our proposed KWAI-

AD dataset). Experimental results show that our method

outperforms compared methods in all datasets. Thorough

analyses on our model also well demonstrate the superior-

ity and reasonableness of our method.

2. Related work

Our work is concerned about the task of cross-modal

image-text retrieval which essentially aims to explore the

latent correspondence between vision and language. Ex-

isting matching methods can be roughly categorized into

two lines: (1) coarse-grained matching methods aiming to

mine the correspondence globally by mapping the whole

images and the full texts into a common embedding space,

(2) fine-grained matching ones aiming to explore the corre-

spondence between image fragments and text fragments at

a fine-grained level.

Coarse-grained matching methods. Wang et al. [26]

used a deep network with two branches of multilayer per-

ceptrons to deal with images and texts, and optimized it

with intra- and inter-structure preserving objectives. Kiros

et al. [12] adopted a CNN and a Gate Recurrent Unit

(GRU) with a hinge-based triplet ranking loss to optimize

the model by averaging the individual violations across the

negatives. Alternatively, Faghri et al. [5] reformed the rank-

ing objective with a hard triplet loss function parameterized

by only hard negatives.

Fine-grained matching methods. Recently, several

works have been devoted to exploring the latent fine-grained

vision-language correspondence for cross-modal image-

text [1, 11, 20, 8, 18, 13]. Karpathy et al. [11] extracted

features for fragments of each image and text, i.e. image

regions and text words, and aligned them in the embedding

space. Niu et al. [20] organized texts as a semantic tree with

each node corresponding to a phrase, and then used a hier-

archical long short term memory (LSTM, a variant of RNN)

to extract phrase-level features for text. Huang et al. [8] pre-

sented a context-modulated attention scheme to selectively

attend to salient pairwise image-sentence instances. Then a
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Figure 1. Framework of the proposed model.

multi-modal LSTM was used to sequentially aggregate lo-

cal similarities into a global one. Nam et al. [18] proposed

a dual attention mechanism in which salient semantics in

images and texts were obtained by two attentions, and the

similarity was computed by aggregating a sequence of lo-

cal similarities. Lee et al. [13] proposed a stacked cross

attention model which aligns each fragment with all other

fragments from the other modality. They achieved state-

of-the-art performance on several benchmark datasets for

cross-modal retrieval.

While our method targets the same as [11, 13], differ-

ently, we apply an iterative matching scheme to refine the

fragment alignment. Besides, we adopt a memory unit

to distill the knowledge of matched semantics in images

and texts after each matching step. Our method can also

be regarded as a sequential matching method, as [18, 8].

However, within the sequential computations, we transfer

the knowledge about the fragment alignment to the suc-

cessive steps with the proposed recurrent attention mem-

ory, instead of using modality-specific context information.

Experiments also show that our method outperforms those

mentioned works.

We also noticed that some latest works make use of

large-scale external resources to improve performance. For

example, Mithun et al. [17] collected amounts of image-text

pairs from the Internet and optimized the retrieval model

with them. Moreover, inspired by the recent great success of

contextual representation learning for languages in the field

of natural language processing, researchers also explored to

apply BERT into cross-modal understanding field [2, 14].

However, such pre-trained cross-modal BERT models1 re-

quire large amounts of annotated image-text pairs, which

are not easy to obtain in the practical scenarios. On the con-

trary, our method is general and unlimited to the amount of

data. We leave the exploration of large-scale external data

to future works.

1Corresponding codes and models are not made publicly available.

3. Methodology

In this section, we will elaborate on the details of our

proposed IMRAM for cross-modal image-text retrieval.

Figure 1 shows the framework of our model. We will first

describe the way of learning the cross-modal feature repre-

sentations in our work in section 3.1. Then, we will intro-

duce the proposed recurrent attention memory as a module

in our matching framework in section 3.2. We will also

present how to incorporate the proposed recurrent attention

memory into the iterative matching scheme for cross-modal

image-text retrieval in section 3.3. Finally, the objective

function is discussed in section 3.4.

3.1. Crossmodal Feature Representation

Image representation. Benefiting from the develop-

ment of deep learning in computer vision [4, 7, 24], differ-

ent convolution neural networks have been widely used in

many tasks to extract visual information for images. To ob-

tain more descriptive information about the visual content

for image fragments, we employ a pretrained deep CNN,

e.g. Faster R-CNN. Specifically, given an image I , a CNN

detects image regions and extracts a feature vector fi for

each image region ri. We further transform fi to a d-

dimensional vector vi via a linear projection as follows:

vi = Wvfi + bv (1)

where Wv and bv are to-be-learned parameters.

For simplicity, we denote the image representation as

V = {vi|i = 1, ...,m,vi ∈ R
d}, where m is the number

of detected regions in I . We further normalize each region

feature vector in V as [13].

Text representation. Basically, texts can be represented

at either sentence-level or word-level. To enable the fine-

grained connection of vision and language, we extract the

word-level features for texts, which can be done through a

bi-directional GRU as the encoder.
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Specifically, for a text S with n words, we first rep-

resent each word wj with a contiguous embedding vector

ej = Wewj , ∀j ∈ [1, n], where We is a to-be-learned em-

bedding matrix. Then, to enhance the word-level represen-

tation with context information, we employ a bi-directional

GRU to summarize information from both forward and

backward directions in the text S:

−→
h j =

−−−−→
GRU(ej ,

−→
h j−1);

←−
h j =

←−−−−
GRU(ej ,

←−
h j+1)

(2)

where
−→
h j and

←−
h j denote hidden states from the forward

GRU and the backward GRU, respectively. Then, the repre-

sentation of the word wj is defined as tj =
−→
h j+

←−
h j

2
.

Eventually, we obtain a word-level feature set for the text

S, denoted as T = {tj |j = 1, ..., n, tj ∈ R
d}, where each

tj encodes the information of the word wj . Note that each

tj shares the same dimensionality as vi in Eq. 1. We also

normalize each word feature vector in T as [13].

3.2. RAM: Recurrent Attention Memory

The recurrent attention memory aims to align fragments

in the embedding space by refining the knowledge about

previous fragment alignments in a recurrent manner. It can

be regarded as a block that takes in two sets of feature

points, i.e. V and T , and estimates the similarity between

these two sets via a cross-modal attention unit. A memory

distillation unit is used to refine the attention result in or-

der to provide more knowledge for the next alignments. For

generalization, we denote the two input sets of features as a

query set X = {xi|i ∈ [1,m′],xi ∈ R
d} and a response

set Y = {yj |j ∈ [1, n′],yj ∈ R
d}, where m′ and n′ are the

numbers of feature points in X and Y , respectively. Note

that X can be either of V and T , while Y will be the other.

Cross-modal Attention Unit (CAU). The cross-modal

attention unit aims to summarize context information in Y

for each feature xi in X . To achieve this goal, we first

compute the similarity between each pair (xi,yj) using the

cosine function:

zij =
xT
i yj

||xi|| · ||yj ||
, ∀i ∈ [1,m′], ∀j ∈ [1, n′] (3)

As [13], we further normalize the similarity score z as:

z̄ij =
relu(zij)

√

∑m′

i=1
relu(zij)2

(4)

where relu(x) = max(0, x).
Attention is performed over the response set Y given a

feature xi in X:

cxi =
n′

∑

j=1

αijyj , s.t. αij =
exp(λz̄ij)

∑n′

j=1
exp(λz̄ij)

(5)

where λ is the inverse temperature parameter of the soft-

max function [3] to adjust the smoothness of the attention

distribution.

We define Cx = {cxi |i ∈ [1,m′], cxi ∈ R
d} as X-

grounded alignment features, in which each element cap-

tures related semantics shared by each xi and the whole Y .

Memory Distillation Unit (MDU). To refine the align-

ment knowledge for the next alignment, we adopt a memory

distillation unit which updates the query features X by ag-

gregating them with the corresponding X-grounded align-

ment feature Cx dynamically:

x∗i = f(xi, c
x
i ) (6)

where f() is a aggregating function. We can define f() with

different formulations, such as addition, multilayer percep-

tron (MLP), attention and so on. Here, we adopt a modified

gating mechanism for f():

gi = gate(Wg[xi, c
x
i ] + bg)

oi = tanh(Wo[xi, c
x
i ] + bo)

x∗i = gi ∗ xi + (1− gi) ∗ oi

(7)

where Wg,Wo, bg, bo are to-be-learned parameters. oi is

a fused feature which enhances the interaction between xi

and cxi . gi performs as a gate to select the most salient

information.

With the gating mechanism, information of the input

query can be refined by itself (i.e. xi) and the semantic in-

formation shared with the response (i.e. oi). The gate gi
can help to filter trivial information in the query, and en-

able the representation learning of each query fragment (i.e.

xi in X) to focus more on its individual shared semantics

with Y . Besides, the X-grounded alignment features Cx

summarize the context information of Y with regard to each

fragment in X . And in the next matching step, such context

information will assist to determine the shared semantics

with respect to Y , forming a recurrent computation process

as described in the subsequent section 3.3. Therefore, with

the help of C
x, the intra-modality relationships in Y are

implicitly involved and re-calibrated during the recurrent

process, which would enhance the interaction among cross-

modal features and thus benefit the representation learning.

RAM block. We integrate the cross-modal attention unit

and the memory distillation unit into a RAM block, formu-

lated as:

Cx,X∗ = RAM(X,Y ) (8)

where Cx and X∗ are derived by Eq. 5 and 6.

3.3. Iterative Matching with Recurrent Attention
Memory

In this section, we describe how to employ the recurrent

attention memory introduced above to enable the iterative

matching for cross-modal image-text retrieval.
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Table 1. Comparison with the state-of-the-art models on Flickr8K. As results of SCAN [13] are not reported on Flickr8K, here we show

our experiment results by running codes provided by authors.

Method
Text Retrieval Image Retrieval

R@sum
R@1 R@5 R@10 R@1 R@5 R@10

DeViSE [6] 4.8 16.5 27.3 5.9 20.1 29.6 104.2

DVSA [11] 16.5 40.6 54.2 11.8 32.1 44.7 199.9

m-CNN [16] 24.8 53.7 67.1 20.3 47.6 61.7 275.2

SCAN* 52.2 81.0 89.2 38.3 67.8 78.9 407.4

Image-IMRAM 48.5 78.1 85.3 32.0 61.4 73.9 379.2

Text-IMRAM 52.1 81.5 90.1 40.2 69.0 79.2 412.1

Full-IMRAM 54.7 84.2 91.0 41.0 69.2 79.9 420.0

Specifically, given an image I and a text S, we derive

two strategies for iterative matching grounded on I and S,

respectively, using two independent RAM blocks:

Cv
k ,Vk = RAMv(Vk−1,T )

Ct
k,Tk = RAMt(Tk−1,V )

(9)

where Vk, Tk indicate the step-wise features of the image

I and the text S, respectively. And k is the matching step,

and V0 = V , T0 = T .

We iteratively perform RAM() for a total of K steps.

And at each step k, we can derive a matching score between

I and S:

Fk(I,S) =
1

m

m
∑

i=1

Fk(ri,S) +
1

n

n
∑

j=1

Fk(I,wj) (10)

where F (ri,S) and F (I,wj) are defined as the region-

based matching score and the word-based matching score,

respectively. They are derived as follows:

Fk(ri,S) = sim(vi, c
v
ki);

Fk(I,wj) = sim(ctkj , tj)
(11)

where sim() is the cosine function that measures the simi-

larity between two input features as Eq. 3. And vi ∈ V

corresponds to the region ri. tj ∈ T corresponds to the

word wj . cvki ∈ Cv
k and ctkj ∈ Ct

k are, respectively, the

context feature corresponding to the region ri and the word

wj . m and n are the numbers of image regions and text

words, respectively.

After K matching steps, we derive the similarity be-

tween I and S by summing all matching scores:

F (I,S) =

K
∑

k=1

Fk(I,S) (12)

3.4. Loss Function

In order to enforce matched image-text pairs to be clus-

tered and unmatched ones to be separated in the embedding

spaces, triplet-wise ranking objectives are widely used in

previous works [12, 5] to train the model in an end-to-end

manner. Following [5], instead of comparing with all neg-

atives, we only consider the hard negatives within a mini-

batch, i.e. the negative that is closest to a training query:

L =
B
∑

b=1

[∆− F (Ib, Sb) + F (Ib, Sb∗)]+

+

B
∑

b=1

[∆− F (Ib, Sb) + F (Ib∗ , Sb)]+

(13)

where [x]+ = max(x, 0), and F (I, S) is the semantic sim-

ilarity between I and S defined by Eq. 12. Images and

texts with the same subscript b are matched examples. Hard

negatives are indicated by the subscript b∗. ∆ is a margin

value.

Note that in the loss function, F (I,S) consists of

Fk(I,S) at each matching step (i.e. Eq. 12), and thus

optimizing the loss function would directly supervise the

learning of image-text correspondences at each matching

step, which is expected to help the model to yield higher-

quality alignment at each step. With the employed triplet-

wise ranking objective, the whole model parameters can be

optimized in an end-to-end manner, using widely-used op-

timizers like SGD, etc.

4. Experiment

4.1. Datasets and Evaluation Metric

Three benchmark datasets are used in our experiments,

including: (1) Flickr8K: contains 8,000 images and pro-

vides 5 texts for each image. We adopt its standard splits

as [20, 16], using 6,000 images for training, 1,000 images

for validation and another 1,000 images for testing. (2)

Flickr30K: consists of 31,000 images and 158,915 English

texts. Each image is annotated with 5 texts. We follow the

dataset splits as [13, 5] and use 29,000 images for train-

ing, 1,000 images for validation, and the remaining 1,000

images for testing. (3) MS COCO: is a large-scale image

description dataset containing about 123,287 images with

at least 5 texts for each. As previous works [13, 5], we use

113,287 images to train all models, 5,000 images for vali-

dation and another 5,000 images for testing. Results on MS
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Table 2. Comparison with state-of-the-art models on Flickr30K.

Method
Text Retrieval Image Retrieval

R@sum
R@1 R@5 R@10 R@1 R@5 R@10

DPC [27] 55.6 81.9 89.5 39.1 69.2 80.9 416.2

SCO [9] 55.5 82.0 89.3 41.1 70.5 80.1 418.5

SCAN* [13] 67.4 90.3 95.8 48.6 77.7 85.2 465.0

VSRN* [15] 71.3 90.6 96.0 54.7 81.8 88.2 482.6

Image-IMRAM 67.0 90.5 95.6 51.2 78.2 85.5 468.0

Text-IMRAM 68.8 91.6 96.0 53.0 79.0 87.1 475.5

Full-IMRAM 74.1 93.0 96.6 53.9 79.4 87.2 484.2

Table 3. Comparison with state-of-the-art models on MS COCO.

Method
Text Retrieval Image Retrieval

R@sum
R@1 R@5 R@10 R@1 R@5 R@10

1K

DPC [27] 65.6 89.8 95.5 47.1 79.9 90.0 467.9

SCO [9] 69.9 92.9 97.5 56.7 87.5 94.8 499.3

SCAN* [13] 72.7 94.8 98.4 58.8 88.4 94.8 507.9

PVSE [23] 69.2 91.6 96.6 55.2 86.5 93.7 492.8

VSRN* [15] 76.2 94.8 98.2 62.8 89.7 95.1 516.8

Image-IMRAM 76.1 95.3 98.2 61.0 88.6 94.5 513.7

Text-IMRAM 74.0 95.6 98.4 60.6 88.9 94.6 512.1

Full-IMRAM 76.7 95.6 98.5 61.7 89.1 95.0 516.6

5K

DPC [27] 41.2 70.5 81.1 25.3 53.4 66.4 337.9

SCO [9] 42.8 72.3 83.0 33.1 62.9 75.5 369.6

SCAN* [13] 50.4 82.2 90.0 38.6 69.3 80.4 410.9

PVSE [23] 45.2 74.3 84.5 32.4 63.0 75.0 374.4

VSRN* [15] 53.0 81.1 89.4 40.5 70.6 81.1 415.7

Image-IMRAM 53.2 82.5 90.4 38.9 68.5 79.2 412.7

Text-IMRAM 52.0 81.8 90.1 38.6 68.1 79.1 409.7

Full-IMRAM 53.7 83.2 91.0 39.7 69.1 79.8 416.5

Affective: Do not
make us alone!

Factual: A yellow
dog lies on the grass.

V.S.

Figure 2. Difference between our KWAI-AD dataset and standard

datasets, e.g. MS COCO.

COCO are reported by averaging over 5 folds of 1K test

images and testing on the full 5K test images as [13].

To further validate the effectiveness of our method in

practical scenarios, we build a new dataset, named KWAI-

AD. We collect 81,653 image-text pairs from a real-world

business advertisement platform, and we randomly sample

79,653 image-text pairs for training, 1,000 for validation

and the remaining 1,000 for testing. The uniqueness of our

dataset is that the provided texts are not detailed textual de-

scriptions of the content in the corresponding images, but

maintain weakly associations with them, conveying strong

affective semantics instead of factual semantics (seeing Fig-

ure 2). And thus our dataset is more challenging than con-

ventional datasets. However, it is of great importance in the

practical business scenario. Learning subtle links of adver-

tisement images with related well-designed titles could not

only enrich the understanding of vision and language but

also benefit the development of recommender systems and

social networks.

Evaluation Metric. To compare our proposed method

with the state-of-the-art methods, we adopt the same eval-

uation metrics in all datasets as [17, 13, 5]. Namely, we

adopt Recall at K (R@K) to measure the performance of

bi-directional retrieval tasks, i.e. retrieving texts given an

image query (Text Retrieval) and retrieving images given a

text query (Image Retrieval). We report R@1, R@5, and

R@10 for all datasets as in [13]. And to well reveal the ef-

fectiveness of the proposed method, we also report an extra

metric “R@sum”, which is the summation of all evaluation

metrics as [8].

4.2. Implementation Details

To systematically validate the effectiveness of the pro-

posed IMRAM, we experiment with three of its variants:

(1) Image-IMRAM only adopts the RAM block grounded

on images (i.e. only using the first term in Eq. 10); (2) Text-

IMRAM only adopts the RAM block grounded on texts (i.e.

only using the first term in Eq. 10); (3) Full-IMRAM. All

models are implemented by Pytorch v1.0. In all datasets,
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for each word in texts, the word embedding is initialized

by random weights with a dimensionality of 300. We use

a bi-directional GRU with one layer and set its hidden state

(i.e.
−→
h j and

←−
h j in Eq. 2) dimensionality as 1,024. The

dimensionality of each region feature (i.e. vi in V ) and and

each word feature (i.e. tj in T ) is set as 1,024. On three

benchmark datasets, we use Faster R-CNN pre-trained on

Visual Genome to extract 36 region features for each im-

age. For our KWAI-AD dataset, we simply use Inception

v3 to extract 64 features for each image.

4.3. Results on Three Benchmark Datasets

We compare our proposed IMRAM with published state-

of-the-art models in the three benchmark datasets2. We di-

rectly cite the best-reported results from respective papers

when available. And for our proposed models, we perform

3 steps of iterative matching by default.

Results. Comparison results are shown in Table 1, Ta-

ble 2 and Table 3 for Flickr8K, Flickr30K and MS COCO,

respectively. ‘*’ indicates the performance of an ensemble

model. ‘-’ means unreported results. We can see that our

proposed IMRAM can consistently achieve performance

improvements in terms of all metrics, compared to the state-

of-the-art models.

Specifically, our Full-IMRAM can outperform one of the

previous best model, i.e. SCAN* [13], by a large margin

of 12.6%, 19.2%, 8.7% and 5.6% in terms of the overall

performance R@sum in Flickr8K, Flickr30K, MS COCO

(1K) and MS COCO (5K), respectively. And among re-

call metrics for the text retrieval task, our Full-IMRAM

can obtain a maximal performance improvement of 3.2%
(R@5 in Flickr8K), 6.7% (R@1 in Flickr30K), 4.0% (R@1

in MS COCO (1K)) and 3.3% (R@1 in MS COCO (5K)),

respectively. As for the image retrieval task, the maximal

improvements are 2.7% (R@1 in Flickr8K), 5.3% (R@1

in Flickr30K), 2.9% (R@1 in MS COCO (1K)) and 1.1%
(R@1 in MS COCO (5K)), respectively. And compared

with VSRN* [15], our single model can achieve compet-

itive results in both Flick30K and MS COCO. These re-

sults well demonstrate that the proposed method exhibits

great effectiveness for cross-modal image-text retrieval. Be-

sides, our models can consistently achieve state-of-the-

art performance not only in small datasets, i.e. Flickr8K

and Flickr30K, but also in the large-scale dataset, i.e. MS

COCO, which well demonstrates its robustness.

4.4. Model Analysis

Effect of the total steps of matching, K. For all three

variants of IMRAM, we gradually increase K from 1 to 3 to

train and evaluate them on the benchmark datasets. Due to

the limited space, we only report results on MS COCO (5K

2We omit models that require additional data augmentation [19, 22, 17,

14, 2, 10].

Table 4. The effect of the total steps of matching, K, on variants

of IMRAM in MS COCO (5K).

Model K
Text Retrieval Image Retrieval

R@1 R@10 R@1 R@10

Image

1 40.8 85.7 34.6 76.2

2 51.5 89.5 37.7 78.3

-IMRAM 3 53.2 90.4 38.9 79.2

Text

1 46.2 87.0 34.4 75.9

2 50.4 89.2 37.4 78.3

-IMRAM 3 51.4 89.9 39.2 79.2

Full

1 49.7 88.9 35.4 76.7

2 53.1 90.2 39.1 79.5

-IMRAM 3 53.7 91.0 39.7 79.8

Table 5. The effect of the aggregating function in the proposed

memory distillation unit of Text-IMRAM (K = 3) in Flickr30K.

Memory
Text Retrieval Image Retrieval

R@1 R@10 R@1 R@10

add 64.5 95.1 49.2 84.9

mlp 66.6 96.4 52.8 86.2

att 66.1 95.5 52.1 86.2

gate 66.2 96.4 52.5 86.1

ours 68.8 96.0 53.0 87.1

Table 6. Statistical results of salient semantics at each matching

step, k, in Text-IMRAM (K = 3) in MS COCO.

k nouns (%) verbs (%) adjectives (%)

1 99.0 32.0 35.3

2 99.0 38.8 37.9

3 99.0 40.2 39.1

test) in Table 4. We can observe that for all variants, K = 2
and K = 3 can consistently achieve better performance

than K = 1. And K = 3 performs better or comparatively,

compared with K = 2. This observation well demon-

strates that the iterative matching scheme effectively im-

proves model performance. Besides, our Full-IMRAM con-

sistently outperforms Image-IMRAM and Text-IMRAM for

different values of K.

Effect of the memory distillation unit. The aggrega-

tion function f(x,y) in Eq. 6 is essential for the proposed

iterative matching process. We enumerate some basic ag-

gregation functions and compare them with ours: (1) add:

x+y; (2) mlp: x+ tanh(Wy+ b); (3) att: αx+(1−α)y
where α is a real-valued number parameterized by x and y;

(4) gate: βx+(1−β)y where β is a real-valued vector pa-

rameterized by x and y. We conduct the analysis with Text-

IMRAM (K = 3) in Flickr30K in Table 5. We can observe

that the aggregation function we use (i.e. Eq. 7) achieves

substantially better performance than baseline functions.

4.5. Qualitative Analysis

We intend to explore more insights for the effectiveness

of our models here. For the convenience of the explanation,
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An open book laid on top of a bed.

laid(0.241) laid(0.412) laid(0.421)

beautiful(0.336) beautiful(0.404) beautiful(0.423)

A woman and girl dressed up in beautiful dresses.

vvvbuilding(0.376) building(0.424) building(0.424)

Two people standing outside of a beautiful oriental building.

jeans(0.374) jeans(0.546) jeans(0.507)

A woman in an orange coat and jeans is squatting on a rock wall.

green(0.728)vvgreen(0.536) green(0.671)

A person in a green and white jacket and green pants is practicing on 

his snowboard.

A child holding a flowered umbrella and petting a yak.

petting(0.223) petting(0.360) petting(0.351)

𝑘 = 1 𝑘 = 2 𝑘 = 3 𝑘 = 1 𝑘 = 2 𝑘 = 3

Figure 3. Visualization of attention at each matching step in Text-IMRAM. Corresponding matched words are in blue, followed by the

matching similarity.

we mainly analyze semantic concepts from the view of lan-

guage, instead of from the view of vision, i.e. we treat each

word in the text as one semantic concept. Therefore, we

conduct the qualitative analysis on Text-IMRAM.

We first visualize the attention map at each matching step

in Text-IMRAM (K = 3) corresponding to different se-

mantic concepts in Figure 3. We can see that the attention

is refined and gradually focuses on the matched regions.

To quantitatively analyze the alignment of semantic con-

cepts, we first define a semantic concept in Text-IMRAM

as a salient one at the matching step k as follows: 1) Given

an image-text pair, at the matching step k, we derive the

word-based matching score by Eq. 11 for each word with

respect to the image, and derive the image-text matching

score by averaging all the word-based scores (see Eq. 10).

2) A semantic concept is salient if its corresponding word-

based score is greater than the image-text score. For a set of

image-text pairs randomly sampled from the testing set, we

can compute the percentage of such salient semantic con-

cepts for each model at different matching steps.

Then we analyze the change of the salient semantic con-

cepts captured at different matching steps in Text-IMRAM

(K = 3). Statistical results are shown in Table 6. We can

see that at the 1st matching step, nouns are easy to be rec-

ognized and dominant to help to match. While during the

subsequent matching steps, contributions of verbs and ad-

jectives increase.

4.6. Results on the NewlyCollected Ads Dataset

We evaluate our proposed IMRAM on our KWAI-AD

dataset. We compare our models with the state-of-the-art

SCAN models in [13]. Comparison results are shown in

Table 7. We can see that the overall performance on this

Table 7. Results on the Ads dataset.

Method
Text Retrieval Image Retrieval

R@1 R@10 R@1 R@10

i-t AVG [13] 7.4 21.1 2.1 9.3

Image-IMRAM 10.7 25.1 3.4 16.8

t-i AVG [13] 6.8 20.8 2.0 9.9

Text-IMRAM 8.4 21.5 2.3 15.9

i-t + t-i [13] 7.3 22.5 2.7 11.5

Full-IMRAM 10.2 27.7 3.4 21.7

dataset is greatly lower than those on benchmark datasets,

which indicates the challenges of cross-modal retrieval in

real-world business advertisement scenarios. Results also

show that our models can obtain substantial improvements

over compared models, which demonstrates the effective-

ness of the proposed method in this dataset.

5. Conclusion

In this paper, we propose an Iterative Matching method

with a Recurrent Attention Memory network (IMRAM) for

cross-modal image-text retrieval to handle the complexity

of semantics. Our IMRAM can explore the correspon-

dence between images and texts in a progressive manner

with two features: (1) an iterative matching scheme with a

cross-modal attention unit to align fragments from different

modalities; (2) a memory distillation unit to refine align-

ments knowledge from early steps to later ones. We validate

our models on three benchmarks (i.e. Flickr8K, Flickr30K

and MS COCO) as well as a new dataset (i.e. KWAI-AD)

for practical business advertisement scenarios. Experiment

results on all datasets show that our IMRAM outperforms

compared methods consistently and achieves state-of-the-

art performance.
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