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Abstract

Many existing studies reveal that annotation inconsis-
tency widely exists among a variety of facial expression
recognition (FER) datasets. The reason might be the sub-
jectivity of human annotators and the ambiguous nature
of the expression labels. One promising strategy tackling
such a problem is a recently proposed learning paradigm
called Label Distribution Learning (LDL), which allows
multiple labels with different intensity to be linked to one
expression. However, it is often impractical to directly ap-
ply label distribution learning because numerous existing
datasets only contain one-hot labels rather than label dis-
tributions. To solve the problem, we propose a novel ap-
proach named Label Distribution Learning on Auxiliary La-
bel Space Graphs(LDL-ALSG) that leverages the topologi-
cal information of the labels from related but more distinct
tasks, such as action unit recognition and facial landmark
detection. The underlying assumption is that facial images
should have similar expression distributions to their neigh-
bours in the label space of action unit recognition and facial
landmark detection. Our proposed method is evaluated on
a variety of datasets and outperforms those state-of-the-art
methods consistently with a huge margin.

1. Introduction

Facial Expression Recognition (FER) plays a vital role in
driver assistance, health care and many other daily scenes.
In recent years, the datasets of facial expression recognition
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Figure 1. A real-world expressive face can be ambiguous and
mixes multiple basic expressions. The label distribution on the
right side is the output of the network trained in our framework.
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Figure 2. Overview of the proposed LDL-ALSG. With our pro-
posed guidance loss, LDL-ALSG uses the facial images and their
nearest neighbors to guide the training of the backbone network.
Their neighbors are from the K-Nearest-Neighbor graphs con-
structed by the labels of training data in auxiliary tasks.

have increased substantially in quantity and size [9, 22, 27,
28], significantly improving the recognition rate of some
Convolutional Neural Networks (CNNs) based approaches,
which incorporated facial images with optical flows [33],
landmarks [40], or prior knowledge [26, 6] to enhance the
performance and interpretability.

Deep learning based methods are mainly affected by
three factors, which are data, model, and label [2]. Re-
searchers have widely studied data and model but paid less
heed to the label. Zeng et al. [39] explored the annotation
subjectivity by suggesting a three-step framework trained
on several inconsistently labeled datasets and abundant un-
labeled data, where they did not consider the label ambi-
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guity and the relative importance of each label. Zhou et
al. [46] introduced an Emotion Distribution Learning(EDL)
method that maps an expression image to an emotion dis-
tribution. However, Label distribution annotations needed
for EDL[46] are not given by most of the facial expres-
sion recognition datasets. Xu et al. [36] brought forward
the Graph Laplacian Label Enhancement(GLLE) to recover
distribution from a logic label, which does not fit for large
scale and in-the-wild datasets because of its high time com-
plexity caused by K-Nearest-Neighbor search as well as
strong assumption on feature space topology.

For real-world expressions, annotation inconsistency
widely exists and can be caused by various reasons. The
subjectivity of the annotation of expression labels creates
bias [39], because people with different background might
perceive differently. Facial expressions also incorporate
a varying degree of ambiguity [46] and often combine
basic expressions, especially for in-the-wild datasets (see
Fig.(1)).

We addressed the annotation inconsistency by perform-
ing label distribution learning with the topological infor-
mation of the auxiliary task’s label space. Label distribu-
tions indicate how much each label can describe an instance,
helping to handle the annotation bias and label ambiguity.
Learning the relative importance of each label requires addi-
tional information covering the gap between logical labels
and label distributions as most datasets do not provide la-
bel distribution annotations, making the learning difficult.
Xu et al. [36] utilized the topological information of feature
space, but their method made a strong assumption on the
feature space topology. We suggested that the topological
information of auxiliary task’s label space guide label dis-
tribution learning and introduce more information besides
current task and datasets. We assumed that facial images
should have similar expression distributions to their neigh-
bors in the label space of action unit recognition and fa-
cial landmark detection as shown in Fig.(3) and Fig.(4).
Therefore, we proposed a novel approach called Label Dis-
tribution Learning on Auxiliary Label Space Graphs(LDL-
ALSG) to solve the annotation inconsistency.

Our contributions are summarized as follows,

e To the best of our knowledge, the proposed LDL-
ALSG is the first label distribution learning framework
leveraging the label space topological information of
auxiliary tasks.

e Proposed LDL-ALSG framework is end-to-end and in-
dependent of the backbone network and put no addi-
tional burden on inference.

e Proposed LDL-ALSG can effectively deal with label
ambiguity and label noise, outperforming the state-of-
the-art approaches with a huge margin.
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Figure 3. Visualization of action units with TSNE for CK+ dataset.
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Figure 4. Visualization of facial landmarks with TSNE for CK+
dataset.

2. Related Works
2.1. Facial Expression Recognition

Facial expression recognition has remained as an active
research topic during the past decades. The development
of deep learning based methods has mostly centered on
data and model. Traditionally, previous works have used
handcrafted features to study facial expression recognition.
Examples include sparse coding [45], local binary patterns
(LBP) [30], non-negative matrix factorization (NMF) [44],
and Gabor Wavelets [5]. Emerging deep learning-based ap-
proaches adopted to examine Facial Expression Recogni-
tion have progressed remarkably on the recognition rate for
lab-controlled and in-the-wild datasets.

Deep learning-based methods require a sufficient amount
of labeled training data. In the past few years, Facial
Expression Recognition has been studied on numerous
large-scale datasets in addition to several traditional bench-
mark datasets comprising CK+ [27], MMI [34], and Oulu-
CASIA [42]. For instance, BU-4DFE [38] contains 60600
images of lab-controlled faces; EmotionNet [10] collected
nearly one million facial expression images from the In-
ternet; AffectNet [28] gathered up to one million facial
images and manually annotated around 450,000 images;
ExpW [41] downloaded about 100k in-the-wild expression
images from the Internet.

Aiming to improve deep learning models, some schol-
ars assembled network models in feature [4] and decision
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Figure 5. The framework of the proposed LDL-ALSG. Given an input facial image (denoted as the central image), its nearest neighbors
can be found in the prebuilt index-similarity list for action units and facial points. Then, both the central image and its neighbors will be
fed into the backbone network. The output distributions of all input images will be leveraged to minimize the classification loss and the
proposed guidance loss. Because neighbor images and outputs are simply for guidance, only gradients related to the central image will be

used to update the parameters of the network.

level [20] to leverage the diversity and complementarity of
different structures; Some fused facial images with land-
marks [45] and optical flows [33] using two stream network
architectures; Others [21, 37, 6] considered the difference
between the expressive face and its corresponding neutral
face a valid prior knowledge.

Although extensive research has paid attention to data
and model as aforementioned, only a small number of re-
search spotlighting the label is extant.

2.2. Methods for Label Inconsistency

Early efforts primarily come from the crowdsourcing
community [43, 35, 23, 7], which concentrates on estimat-
ing the ground truth out of a set of inconsistent and noisy
annotations in the same dataset. Some methods leverage
a small set of clean data to assess the quality of the labels
during the training process [35, 23, 7]. For example, Azadi
et al. [1] proposed AIR to train the feature extractors and
Sukhbaatar et al. [32] suggested estimating the distribution
of noisy labels. Zeng et al. [39] advocated the Inconsistent
Pseudo Annotations to Latent Truth (IPA2LT), which can
learn a classifier from more than one dataset with different
annotation preferences.

These methods omit the ambiguity of facial expres-
sions. Inconsistent annotations caused by subjectivity do
not equate with incorrect annotations. We treated the in-
consistent annotations as not only the noise but also labels
that can describe the image for a certain degree.

2.3. Methods for Label Ambiguity and Label Noise

As Fig.(1) shows, the facial expression usually blends
with different basic expressions, causing the label ambigu-
ity and label noise that also exists in other computer vision
tasks, such as head pose and facial age estimation. Label
distribution learning and label enhancement have been pro-
posed in recent years to mitigate the adverse impact of la-
bel ambiguity. As for label distribution learning, by utiliz-
ing prior knowledge, [11, 14, 13, 12, 31] transferred logical
labels to discretized bivariate Gaussian label distribution,
which is centered at the ground-truth label. [25, 17] es-
tablished the relationship between instances and labels by
graphs and transferred logical labels into label distribution.
Zhou et al. [46] suggested an emotion distribution learning
(EDL) method to deal with a more common case in which
each expression associates with multiple emotion labels.

Label enhancement (LE) methods address the unavail-
ability of label distributions. For instance, the fussy clus-
tering based label enhancement method minimize the ob-
jective function iteratively by clustering the feature vector
through C-means clustering. The kernel based label en-
hancement method [19] involved the kernel function in cal-
culating the center of each feature space. The computation
of the radius and the distance between samples and centers
leads to membership degrees and label distributions. The la-
bel propagation based label enhancement method [24] seeks
to recover the label distribution by using the iterative label
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propagation technique. The manifold learning based label
enhancement method [17] assumes that each data point can
be reconstructed using its neighbors through a graph that
represents the topological structure of the feature space. Re-
cently, Xu et al. [36] came up with the Graph Laplacian La-
bel Enhancement (GLLE) that mines the hidden importance
from training instances through the topological information
of the feature space. This method based on the smooth-
ness assumption that the points close to each other are more
likely to share a label.

Label enhancement methods depend on the topologi-
cal information of feature space and some of them require
strong assumptions such as local linear assumption and lo-
cal smoothness assumption [36], remaining unfit for where
features originate in deep neural networks and input data are
images. Our method uses the topological information of the
label space from auxiliary tasks, from which we can obtain
additional information to guide the learning on the current
task.

3. Label Distribution Learning on Auxiliary
Label Space Graphs

The auxiliary label space is the label space of an auxil-
iary task that correlates to the current task and with which
shares the same type of inputs, i.e., facial images. For facial
expression recognition, Action Unit Recognition (AUR)
and facial landmark detection (FLD), which describe facial
structures and movements from different angles, are two
auxiliary tasks. Besides, the label space of auxiliary tasks
should be less ambiguous and can be effectively obtained
through well-developed methods.

As illustrated in Fig.(2), overall, LDL-ALSG leverages
the deviation between images and their neighbors’ predic-
tions to guide the training of the backbone network. A guid-
ance loss function is proposed to utilize the label space’s
topological information of auxiliary tasks. Note that LDL-
ALSG does not require datasets to provide distribution la-
bels.

We selected facial landmark detection and action unit
recognition as auxiliary tasks. Facial landmark detec-
tion and action unit recognition focus on facial structures
and movements intimately correlated with facial expression
recognition. Compared with facial expressions, which is
ambiguous in nature, facial landmarks and action units are
more consistent because human annotators are prone to an-
notate them with consistent labels. Thus, facial landmarks
and action units can help to address the label inconsistency.
We assumed that two nearby images in the label space of
auxiliary tasks should have close label distributions with
each other: if action units and facial landmarks of two fa-
cial images are nearest neighbors, their label distributions of
facial expression should be similar. We visualize the CK+
dataset as an example in Fig.(3) and Fig.(4). Despite the

possible unavailability of the action units and facial points,
we can still benefit from many well-developed action unit
recognition and facial landmark detection methods.

The main notations used in this paper are listed as fol-
lows. The instance variable is denoted by x, the particular
i-th instance is represented as x;, the label variable is il-
lustrated by y, the particular j-th label value is designated
as y; , and the logical label vector of x; is indicated by
li = (I41,1¥2,...,1%) in which c is the number of possible
labels. The particular j-th label value of task t is denoted as
y§ , and the label vector of x; in auxiliary task t is indicated

by It = (14,12, ..., 1%) where k is the dimension of the
label in task ¢. f(x|@) denotes the backbone model with a
softmax prediction.

3.1. Problem Formulations

The process of LDL-ALSG is defined as follows: given a
training set S = (mi7li7l§|1 <i<n,1<t<T) whereT
is the number of auxiliary tasks, LDL-ALSG is the learning
process of finding a model f(x|#) that maps input x; to
label distribution using I; and I£.

This model can be trained by solving the following prob-

lem
T

inL(0) + A Q0 1
arg min L(6) + 21: 1(0) M

Where L is a loss function , £2;(8) is the function to mine
hidden label importance utilizing the topological informa-
tion from the label space of related tasks.

Since the logical label can be viewed as a simplifica-
tion of label distribution, we assumed that it should be
close enough to the origin label to indicate the ground truth.
Therefore, the L is the KL-divergence between the ground-
truth label and label distribution output. Hence, we obtained
the following classification loss

1
f(2i|6)

L=KL(¥, f(x]6)) =Y 1% log( ), ()

To obtain the hidden label importance from the training data
using the label space topological information of auxiliary
tasks, we utilize the deviation between the network pre-
diction of i-th central image f(x;|0) and that of neighbor
images j in auxiliary tasks f(a;|@) to guide the update of
network parameters. We need to estimate their distances or
similarities to describe the relative importance of the net-
work predictions for neighbor images. Thus, we specified
the local similarity aﬁj similar to GLLE[36], which is de-
fined as

]

IS ST b
ot — exp(——54—) ifl; € N'(i) 3)
0 otherwise
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Figure 6. Approximate K-Nearest-Neighbor Graphs for the training data are built in advance. Each graph contains all the images in the
training set. The indexes of each image and its neighbors will be stored in a list (denoted as the index-similarity list) along with neighbors’
local similarity values. This figure is a simplified example for convenient explanation. In this example, node O is the central image. node 1
and node 2 are two images nearest to node 0 in action unit space. Similarly, node 3 and node 4 are two images nearest to node O in facial

point space. Best viewed in color.

where N (i) means the set of x;’s K-nearest neighbors in
the label space of auxiliary task t. Similar to the smoothness
assumption[47], we assume that the images close to each
other in the auxiliary label space are more likely to have
similar expression distributions. That is to say the larger the
aj; is, the closer the distances between f(x;|0) and f(x;(6)
could be. Hence, we have the following task guidance loss

on F@,[0)
= 3w lOent gy

3.2. The overall LDL-ALSG framework

Q(f(x10)) ) @

Formulating the LDL-ALSG problem into an optimiza-
tion framework over Eq.(2) and Eq.(4) yields the total loss
function

T(0) =33 z%m(@)

i c

+>\ZZ% (2;10)log( E li)]

t=1 3

Our proposed LDL-ALSG is a label-side solution to ex-
pression ambiguity and annotation inconsistency so we can
use any deep CNN as the backbone. After the network is
fully trained, only the network parameters are needed for
inference, and the trained network can independently per-
form prediction without any components related to auxiliary
tasks.

Training data preparation: Before the training begins, the
training data is prepared offline. As aforementioned, action
units and facial points can be effectively extracted through
well-developed methods. In our experiments, we used [3]
to extract action units and facial points, which are then ap-
plied to build their own K-Nearest Neighbor (KNN) graphs

separately. With the intention of bypassing the limitation
of high time complexity of the kNN algorithm, we exerted
an approximate KNN [18] to build the approximate kNN
graphs (aKNN-graph). In our experiment, a server with 16
cpu cores can build two graphs of 300K images within 4
minutes.

For each image in the training set, we stored its index
and neighbors from both graphs coupled with the local sim-
ilarity values defined in Eq.(3) in a list. Then, we discarded
the AKNN graphs and used the generated index-similarity
list to train the backbone network, as shown in Fig.(6).
Batch generation: To effectively minimize the target func-
tion with the guidance of auxiliary tasks, each training batch
consists of groups of images. Each group contains a central
image together with its neighbor images and local similarity
values from the generated index-similarity list as shown in
Fig.(5). The local similarity values will be used to calculate
guidance loss. Forward path: All the images in a batch
will be forwarded equally, and the network will predict la-
bel distributions for each of them. With the predicted label
distributions and logical ground truth labels, the task guid-
ance loss and classification loss can be easily calculated.
Backward path: Because we focused solely on predictions
of central images, predictions of neighbor images are used
to guide the update of model parameters only and do not
contribute to the classification loss. Predictions of neighbor
images will be detached, meaning that the total loss is back
propagated only through the central images as the red lines
shown in Fig.(5).

4. Experiments
4.1. Datasets

We mainly used two types of datasets, including in-the-
wild datasets (RAF [22], AffectNet [28] and SFEW [8]) and
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In-the-Wild Lab-Controlled (Posed) Average
AffNet RAF SFEW | CK+ CFEE MMI Oulu-CASIA | Wild Posed Overall
Baseline [39] | 5797 81.81 52.19 | 8899 77.22 67.79 59.35 63.99 7334  69.33
AIR[1] | 54.23 6737 49.88 | 43.87 6447 59.64 47.03 60.80 53.75  56.10
NAL[15] | 5597 8422 5813 | 91.20 7584 64.71 61.00 66.11 73.19  70.15
IPA2LT (LTNet)*[39] | 57.85 83.80 53.15 | 91.82 78.02 68.22 62.69 64.93 75.19 70.79
LDL-ALSG(AU) | 58.32 8532 56.50 | 91.35 77.59 70.49 63.85 6694 7585 7201
LDL-ALSG(FL) | 59.35 85.53 5491 |91.19 78.28 70.29 63.53 66.60 75.82  71.87
LDL-ALSG(AU+FL) | 58.29 8533 55.87 | 93.08 77.97 70.03 63.94 66.64 76.25 7213

Table 1. Test accuracy (%) of different methods on various test sets with both in-the-wild and lab-controlled facial expressions. (Bold: the

best. * means the results are produced by our implementation.

lab-controlled datasets (CK+ [27], CFEE [9], MMI [34] and
Oulu-CASIA [42]). We reported the per-dataset based per-
formance on the above seven datasets and the average per-
formance on lab-controlled, in-the-wild, and all datasets.

In-the-wild datasets incorporate facial expression images
in the real world. Typically, they are constructed by collect-
ing data from the Internet and have larger scales. RAF is
divided into training and test sets with a size of 12,271 and
3,068 respectively. Faces in RAF are labeled with six basic
(anger, disgust, fear, happy, sad and surprise) and neutral
expression. AffectNet contains more than 400k manually
annotated images. We selected approximately 280,000 im-
ages as the training set and 3,500 images as the test set, all
of which are labeled with six basic and neutral expressions.
SFEW [8] has 879 training samples and 406 validation sam-
ples, which are collected from movies.

The lab-controlled datasets combine facial expression
images recorded in the indoor controlled environment. CK+
has 593 sequences and 327 of them are annotated with seven
expressions (six basic expressions and contempt). Each se-
quence starts with a neutral face and ends with a peak ex-
pression. We chose the first frame as the neutral face and
the last frame as the expressive face, resulting in a total of
636 images. CFEE accommodates 230 subjects, each of
which has 22 images. Only images labeled with six basic
and neutral expressions are selected to conduct experiments.
MMI has 213 sequences recorded from 30 subjects. Each
sequence in MMI starts with a neutral face, shifts to a peak
expression, and return to a neutral face in the end. In our
experiments, for each sequence, the first two images are se-
lected as neutral faces while the middle one-third part are
chosen as expressive faces. Oulu-CASIA carries 480 se-
quences captured from 80 objects. We picked the first two
images as neutral faces and the last two fifth part as expres-
sive faces.

4.2. Experiment Settings

To make a fair comparison with other state-of-the-art ap-
proaches that focus on label-side improvement, we adopted

the cross-dataset evaluation protocol to show the effective-
ness of the proposed model by adhering to the settings of
other methods. Specifically, we adopted only the training
part of the AffectNet (AffTr) and RAF (RAFTr) datasets to
train the models and use the validation set of AffectNet for
validation.

Every training batch consists of 32 groups, each of which
has one central image along with 4 nearest neighbors from
action unit aKNN-graph and and 4 nearest neighbors from
facial point aKNN-graph, totaling 9 images for one group
and 288 images for each batch. After the backbone network
is fully trained, we only need the backbone network and
abandon the rest of the components.

Our experiments adopted the 50-layer Residual Net-
work [16] as the backbone network, and reimplment the
IPA2LT[39] method with the same backbone network and
training data. The backbone network was pretrained on the
training set of AffectNet and RAF. Parameters were opti-
mized via the stochastic gradient descent method. The mo-
mentum was 0.9, the weight decay was 0.0004, and the
learning rate was initialized as 0.001. Our baseline method
is a directly trained resnet-50 model with cross-entropy loss
and a 32 batch size. Our model and the state-of-the-art
model were trained for 10 epochs with 1 epoch of linear
learning rate warmup and 9 epochs of cosine learning rate
decay. A in Eq.(5) were both set to 0.0005. ¢ in Eq.(3) for
action units and facial points were set to 1 and 68, respec-
tively. The proposed LDL-ALSG was implemented using
PyTorch[29] and trained on two Tesla V100 GPUs.

4.3. Experiment Results

Comparison with State-of-the-Art. ~ We compared the
proposed approach with existing state-of-the-art methods
through extensive experiments under rigorous settings men-
tioned above. Table.(1) illustrates the qualtitative results.
The LDL-ALSG outperforms other related approaches with
a healthy margin in both lab-controlled and in-the-wild
datasets.

AIR and NAL were proposed primarily to address
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.. Accuracy
Training Data Method Wild Tab NIl
LDL-ALSG 66.64 7625 72.13
Clean data | IPA2LT(LTNet) | 64.93 75.19 70.79
Baseline 63.99 7334 69.33
LDL-ALSG 66.06 74.81 71.06
5% noise | IPA2LT(LTNet) | 6442 71.53 68.48
Baseline 63.35 7042 67.39
LDL-ALSG 65.76  73.96 70.45
10% noise | IPA2LT(LTNet) Failed
Baseline 61.21 70.01 66.24
LDL-ALSG 65.03 7240 69.24
15% noise | IPA2LT(LTNet) Failed
Baseline 60.32 68.73 65.12

Table 2. Average test accuracy (%) of both baseline and LDL-
ALSG methods on original training set and three synthetic datasets
with label noise ratio 5%, 10% and 15%. Clean data refers to the
mixture of training set of AffectNet and RAF datasets. In-the-
Wild refers to the average result on the test set of AffectNet, RAF
and SFEW datasets. Lab-Controlled refers to the average result on
CK+, CFEE, MMI and Oulu-CASIA. Overall refers to the average
results on both in-the-wild and lab-controlled datasets.

Accuracy
Wild Lab All

Training Data Method

Clean Data | baseline | 63.99 73.34 69.33
5% noise(A) | baseline | 63.35 70.43 67.39
10% nosie(B) | baseline | 61.21 70.01 66.24

15% noise(C) | baseline | 60.32 68.73 65.12
mixture of ABC | baseline | 61.92 71.34 67.30
inconsistent annotation | IPA2LT | 64.01 73.56 69.46

mixture of ABC | Ours 65.19 74.21 70.44

Table 3. Test accuracies on datasets with inconsistent labels. Be-
cause the IPA2LT considered the annotation inconsistency explic-
itly, it treated the labels of the three datasets as inconsistently an-
notated labels for the same dataset. While our method treated the
mixture of ABC as a whole dataset, the data they used was actually
the same.

datasets with noisy labels. While the mixture of RAF and
AffectNet datasets were taken to train the models in our
settings, these two methods might not be able to deal with
the annotation bias caused by different annotators, and thus
failed to achieve sound performance.

LDL-ALSG and IPA2LT observed better performance
than AIR and NAL, indicating that considering label in-
consistency contributes to the improvement of performance.
IPA2LT was not designed to cope with label ambiguity and
the relative importance among different labels, so it per-
formed worse than LDL-ALSG.

Experiment Results for Different Settings. We evaluated
three different settings of LDL-ALSG and a baseline model

on several benchmark datasets. LDL-ALSG(AU) used only
the neighbor images from AKNN-graph of action units, and
LDL-ALSG(FP) employed only the neighbor images from
the AKNN-graph of facial points. LDL-ALSG(AU+FP)
refers to the setting that images from both graphs are used.

As Table.(1) shows, the baseline model performs worse
on all datasets than LDL-ALSG methods, which verify the
adverse effect of label inconsistency. The topological in-
formation of label space from auxiliary tasks facilitates the
network to learn the distribution of facial expressions and
solve the problem of annotation inconsistency. The fact that
LDL-ALSG(AU) slightly betters LDL-ALSG(FP) on aver-
age is not surprising because action units are more directly
related to facial expressions rather than facial points.

By leveraging the topological information of the la-

bel space from both auxiliary tasks, LDL-ALSG(AU+FP)
achieved the best average accuracy. Because all the meth-
ods compared here use the same validation set, higher cross-
dataset performance means better generalization and less in-
consistency.
Experiment Results for Label Noise and Annotation In-
consistency. To probe the influence of label noise and vali-
date the robustness of our method, we conducted noise ex-
periments on three synthetic datasets. Specifically, three
training sets with different label noise ratio are generated
by randomly revising 5%, 10%, and 15% of the corrected
labels in the original training set, namely the mixture of
both AffectNet and RAF’s training sets. To generate la-
bel noise, we changed the ground truth label to one of the
remaining six randomly. The average accuracies of in-the-
wild, lab-controlled, and overall datasets are reported in Ta-
ble.(2), from which we can see that the performance of pro-
posed LDL-ALSG attained overwhelming advantages over
the baseline method in all noise settings.

The IPA2LT framework is a three-step framework. In
the first step, IPA2LT starts with the baseline network pre-
trained on the noisy dataset and finetunes the pre-trained
network on RAF and AffectNet to generate 2 coders. In
the second step, auto annotations of each training set are
generated by the two coders. In the last step, noisy labels
and the auto annotated labels are used to finetune the pre-
trained baseline network on the whole training set, which is
the training part of RAF and AffectNet, using the validation
set of AffectNet for validation. When RAF and AffectNet
are considered as two inconsistently annotated datasets, if
the noise ratio is higher than 5%, finetuning the pre-trained
network cannot produce results better than that of the base-
line method. Thus, the IPA2LT framework failed to handle
the label noise.

Experiment Results for Annotation Inconsistency. In or-
der to verify that our method can address the annotation in-
consistency, we consider the three noisy datasets as incon-
sistently annotated datasets and compared our method with
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Accuracy Neighbor Number Accuracy
Backbone Network Method Wild Tab NIl 0 P A Wild Tab NI
Resnet-18 | LPL-ALSG | 6540 73.61  70.08 4 0 0.0001 | 66.36 75.58 71.61
MobilieNet V2 LDL-ALSG | 65.56 7548 71.27 4 0 0.01 66.33 7496 71.27
Baseline 64.71 74.01 70.03 0 4 0.0001 | 66.54 75.78 71.82
Table 4. Average test accuracy (%) for different backbone network. 8 j O(f(?]l gggg ;g?é ;}22

Neighbor Number \ Accuracy

AU FP Wild  Lab All
2 0 0.001 | 66.81 75.86 71.98
4 0 0.001 | 66.94 7582 72.01
8 0 0.001 | 66.69 7544 71.69
0 2 0.001 | 6630 7543 71.52
0 4 0.001 | 66.60 75.82 71.87
0 8 0.001 | 66.59 75.64 71.76

Table 5. Comparison of different neighbor numbers. The A was
fixed to 0.001 and the number of neighbors in action unit space
and facial point space were evaluated seperatly.

the state-of-the-art method. As shown in Table.(3), both
of our method and the IPA2LT outperformed the baseline
method. Our method was directly trained with the mixed
datasets, while the IPA2LT framework followed its three-
step training process. The proposed LDL-ALSG produced
the best results showing that the topological information of
auxiliary task’s label space can help address the annotation
inconsistency.

4.4. Ablation Study

Since hyper-parameters A in Eq.(5) balance the classifi-
cation loss and the guidance losses and the number of near-
est neighbor is vital to the overall performance as well, we
evaluated their influences in different settings.

We set A to 0.001 and evaluated the influence of the num-
ber of nearest neighbors. As shown in Table.(5), different
number of neighbors produced similar results but using 4
neighbors is the best. The reason might be that using too
many neighbors might include neighbors that are far away
from the central image in terms of auxiliary label space dis-
tances, while using too few neighbors cannot learn the rela-
tive importance of each label from limited neighbors. We
also fixed neighbor numbers to 4 and study the influence of
A for guidance loss of action units and facial points. Results
in Table.(6) showed that all of the different settings can out-
perform the baseline result and setting A to 0.001 for both
of the auxiliary tasks produced the better results.

When the nearest neighbors from both graphs were uti-
lized to guide the learning process, the influence of the near-
est neighbor number and the A was evaluated, resulting in

Table 6. Comparison of different A. The number of neignbors was
fixed to 4 and the A of neighbors in action unit space and facial
point space were evaluated seperatly.

Neighbor Number A Accuracy

AU FP Wild  Lab All
4 4 0.0001 | 67.13 75.84 72.11
4 4 0.0005 | 66.64 76.25 72.13
4 4 0.001 | 66.42 75.52 71.62
4 4 0.01 | 6634 75.68 71.68

Table 7. Comparison of different A, when utilizing topological in-
formation from both graphs. The number of neighbors was fixed
to 4.

Table.(7). When guidance loss from both tasks were com-
bined, setting A to 0.0005 produced the best results.

We also performed experiments on two different back-
bone network to show that our method is network indepen-
dent as shown in Table.(4).

5. Conclusion

In this paper, we proposed the LDL-ALSG framework to
tackle annotation inconsistency and label ambiguity in fa-
cial expression recognition datasets. The label space topo-
logical information of auxiliary tasks such as action unit
recognition and facial landmark detection is used to help
in learning the ambiguous and subjective labels. It helps to
address the label inconsistency in facial expression recog-
nition datasets because human annotators are more likely
to annotate facial landmarks and action units with consis-
tent labels. We treated the inconsistent annotations as not
only the noise but also labels that can describe the data for
a certain degree and train the network to predict label dis-
tributions.

The LDL-ALSG framework is an end-to-end label-side
solution that is network-independent with no additional
components needed for inference after the backbone net-
work finishes training. To our knowledge, the LDL-ALSG
framework is the first work that performs label distribu-
tion learning leveraging label space topological informa-
tion. Our method does not need to generate label distribu-
tions in advance. Experiments on several datasets validated
the effectiveness and advantages of the proposed method.
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