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Abstract

Many existing studies reveal that annotation inconsis-

tency widely exists among a variety of facial expression

recognition (FER) datasets. The reason might be the sub-

jectivity of human annotators and the ambiguous nature

of the expression labels. One promising strategy tackling

such a problem is a recently proposed learning paradigm

called Label Distribution Learning (LDL), which allows

multiple labels with different intensity to be linked to one

expression. However, it is often impractical to directly ap-

ply label distribution learning because numerous existing

datasets only contain one-hot labels rather than label dis-

tributions. To solve the problem, we propose a novel ap-

proach named Label Distribution Learning on Auxiliary La-

bel Space Graphs(LDL-ALSG) that leverages the topologi-

cal information of the labels from related but more distinct

tasks, such as action unit recognition and facial landmark

detection. The underlying assumption is that facial images

should have similar expression distributions to their neigh-

bours in the label space of action unit recognition and facial

landmark detection. Our proposed method is evaluated on

a variety of datasets and outperforms those state-of-the-art

methods consistently with a huge margin.

1. Introduction

Facial Expression Recognition (FER) plays a vital role in

driver assistance, health care and many other daily scenes.

In recent years, the datasets of facial expression recognition

∗ X. Geng and Y. Rui are the corresponding authors.

This work was performed while Shikai Chen worked as an intern at

Lenovo AI Lab.

This research was partially supported by the National Key Research &

Development Plan of China (No. 2017YFB1002801), the National Science

Foundation of China (61622203), the Collaborative Innovation Center of

Novel Software Technology and Industrialization, and the Collaborative

Innovation Center of Wireless Communications Technology.

Figure 1. A real-world expressive face can be ambiguous and

mixes multiple basic expressions. The label distribution on the

right side is the output of the network trained in our framework.

Figure 2. Overview of the proposed LDL-ALSG. With our pro-

posed guidance loss, LDL-ALSG uses the facial images and their

nearest neighbors to guide the training of the backbone network.

Their neighbors are from the K-Nearest-Neighbor graphs con-

structed by the labels of training data in auxiliary tasks.

have increased substantially in quantity and size [9, 22, 27,

28], significantly improving the recognition rate of some

Convolutional Neural Networks (CNNs) based approaches,

which incorporated facial images with optical flows [33],

landmarks [40], or prior knowledge [26, 6] to enhance the

performance and interpretability.

Deep learning based methods are mainly affected by

three factors, which are data, model, and label [2]. Re-

searchers have widely studied data and model but paid less

heed to the label. Zeng et al. [39] explored the annotation

subjectivity by suggesting a three-step framework trained

on several inconsistently labeled datasets and abundant un-

labeled data, where they did not consider the label ambi-
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guity and the relative importance of each label. Zhou et

al. [46] introduced an Emotion Distribution Learning(EDL)

method that maps an expression image to an emotion dis-

tribution. However, Label distribution annotations needed

for EDL[46] are not given by most of the facial expres-

sion recognition datasets. Xu et al. [36] brought forward

the Graph Laplacian Label Enhancement(GLLE) to recover

distribution from a logic label, which does not fit for large

scale and in-the-wild datasets because of its high time com-

plexity caused by K-Nearest-Neighbor search as well as

strong assumption on feature space topology.

For real-world expressions, annotation inconsistency

widely exists and can be caused by various reasons. The

subjectivity of the annotation of expression labels creates

bias [39], because people with different background might

perceive differently. Facial expressions also incorporate

a varying degree of ambiguity [46] and often combine

basic expressions, especially for in-the-wild datasets (see

Fig.(1)).

We addressed the annotation inconsistency by perform-

ing label distribution learning with the topological infor-

mation of the auxiliary task’s label space. Label distribu-

tions indicate how much each label can describe an instance,

helping to handle the annotation bias and label ambiguity.

Learning the relative importance of each label requires addi-

tional information covering the gap between logical labels

and label distributions as most datasets do not provide la-

bel distribution annotations, making the learning difficult.

Xu et al. [36] utilized the topological information of feature

space, but their method made a strong assumption on the

feature space topology. We suggested that the topological

information of auxiliary task’s label space guide label dis-

tribution learning and introduce more information besides

current task and datasets. We assumed that facial images

should have similar expression distributions to their neigh-

bors in the label space of action unit recognition and fa-

cial landmark detection as shown in Fig.(3) and Fig.(4).

Therefore, we proposed a novel approach called Label Dis-

tribution Learning on Auxiliary Label Space Graphs(LDL-

ALSG) to solve the annotation inconsistency.

Our contributions are summarized as follows,

• To the best of our knowledge, the proposed LDL-

ALSG is the first label distribution learning framework

leveraging the label space topological information of

auxiliary tasks.

• Proposed LDL-ALSG framework is end-to-end and in-

dependent of the backbone network and put no addi-

tional burden on inference.

• Proposed LDL-ALSG can effectively deal with label

ambiguity and label noise, outperforming the state-of-

the-art approaches with a huge margin.

Figure 3. Visualization of action units with TSNE for CK+ dataset.

Figure 4. Visualization of facial landmarks with TSNE for CK+

dataset.

2. Related Works

2.1. Facial Expression Recognition

Facial expression recognition has remained as an active

research topic during the past decades. The development

of deep learning based methods has mostly centered on

data and model. Traditionally, previous works have used

handcrafted features to study facial expression recognition.

Examples include sparse coding [45], local binary patterns

(LBP) [30], non-negative matrix factorization (NMF) [44],

and Gabor Wavelets [5]. Emerging deep learning-based ap-

proaches adopted to examine Facial Expression Recogni-

tion have progressed remarkably on the recognition rate for

lab-controlled and in-the-wild datasets.

Deep learning-based methods require a sufficient amount

of labeled training data. In the past few years, Facial

Expression Recognition has been studied on numerous

large-scale datasets in addition to several traditional bench-

mark datasets comprising CK+ [27], MMI [34], and Oulu-

CASIA [42]. For instance, BU-4DFE [38] contains 60600

images of lab-controlled faces; EmotionNet [10] collected

nearly one million facial expression images from the In-

ternet; AffectNet [28] gathered up to one million facial

images and manually annotated around 450,000 images;

ExpW [41] downloaded about 100k in-the-wild expression

images from the Internet.

Aiming to improve deep learning models, some schol-

ars assembled network models in feature [4] and decision
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Figure 5. The framework of the proposed LDL-ALSG. Given an input facial image (denoted as the central image), its nearest neighbors

can be found in the prebuilt index-similarity list for action units and facial points. Then, both the central image and its neighbors will be

fed into the backbone network. The output distributions of all input images will be leveraged to minimize the classification loss and the

proposed guidance loss. Because neighbor images and outputs are simply for guidance, only gradients related to the central image will be

used to update the parameters of the network.

level [20] to leverage the diversity and complementarity of

different structures; Some fused facial images with land-

marks [45] and optical flows [33] using two stream network

architectures; Others [21, 37, 6] considered the difference

between the expressive face and its corresponding neutral

face a valid prior knowledge.

Although extensive research has paid attention to data

and model as aforementioned, only a small number of re-

search spotlighting the label is extant.

2.2. Methods for Label Inconsistency

Early efforts primarily come from the crowdsourcing

community [43, 35, 23, 7], which concentrates on estimat-

ing the ground truth out of a set of inconsistent and noisy

annotations in the same dataset. Some methods leverage

a small set of clean data to assess the quality of the labels

during the training process [35, 23, 7]. For example, Azadi

et al. [1] proposed AIR to train the feature extractors and

Sukhbaatar et al. [32] suggested estimating the distribution

of noisy labels. Zeng et al. [39] advocated the Inconsistent

Pseudo Annotations to Latent Truth (IPA2LT), which can

learn a classifier from more than one dataset with different

annotation preferences.

These methods omit the ambiguity of facial expres-

sions. Inconsistent annotations caused by subjectivity do

not equate with incorrect annotations. We treated the in-

consistent annotations as not only the noise but also labels

that can describe the image for a certain degree.

2.3. Methods for Label Ambiguity and Label Noise

As Fig.(1) shows, the facial expression usually blends

with different basic expressions, causing the label ambigu-

ity and label noise that also exists in other computer vision

tasks, such as head pose and facial age estimation. Label

distribution learning and label enhancement have been pro-

posed in recent years to mitigate the adverse impact of la-

bel ambiguity. As for label distribution learning, by utiliz-

ing prior knowledge, [11, 14, 13, 12, 31] transferred logical

labels to discretized bivariate Gaussian label distribution,

which is centered at the ground-truth label. [25, 17] es-

tablished the relationship between instances and labels by

graphs and transferred logical labels into label distribution.

Zhou et al. [46] suggested an emotion distribution learning

(EDL) method to deal with a more common case in which

each expression associates with multiple emotion labels.

Label enhancement (LE) methods address the unavail-

ability of label distributions. For instance, the fussy clus-

tering based label enhancement method minimize the ob-

jective function iteratively by clustering the feature vector

through C-means clustering. The kernel based label en-

hancement method [19] involved the kernel function in cal-

culating the center of each feature space. The computation

of the radius and the distance between samples and centers

leads to membership degrees and label distributions. The la-

bel propagation based label enhancement method [24] seeks

to recover the label distribution by using the iterative label
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propagation technique. The manifold learning based label

enhancement method [17] assumes that each data point can

be reconstructed using its neighbors through a graph that

represents the topological structure of the feature space. Re-

cently, Xu et al. [36] came up with the Graph Laplacian La-

bel Enhancement (GLLE) that mines the hidden importance

from training instances through the topological information

of the feature space. This method based on the smooth-

ness assumption that the points close to each other are more

likely to share a label.

Label enhancement methods depend on the topologi-

cal information of feature space and some of them require

strong assumptions such as local linear assumption and lo-

cal smoothness assumption [36], remaining unfit for where

features originate in deep neural networks and input data are

images. Our method uses the topological information of the

label space from auxiliary tasks, from which we can obtain

additional information to guide the learning on the current

task.

3. Label Distribution Learning on Auxiliary

Label Space Graphs

The auxiliary label space is the label space of an auxil-

iary task that correlates to the current task and with which

shares the same type of inputs, i.e., facial images. For facial

expression recognition, Action Unit Recognition (AUR)

and facial landmark detection (FLD), which describe facial

structures and movements from different angles, are two

auxiliary tasks. Besides, the label space of auxiliary tasks

should be less ambiguous and can be effectively obtained

through well-developed methods.

As illustrated in Fig.(2), overall, LDL-ALSG leverages

the deviation between images and their neighbors’ predic-

tions to guide the training of the backbone network. A guid-

ance loss function is proposed to utilize the label space’s

topological information of auxiliary tasks. Note that LDL-

ALSG does not require datasets to provide distribution la-

bels.

We selected facial landmark detection and action unit

recognition as auxiliary tasks. Facial landmark detec-

tion and action unit recognition focus on facial structures

and movements intimately correlated with facial expression

recognition. Compared with facial expressions, which is

ambiguous in nature, facial landmarks and action units are

more consistent because human annotators are prone to an-

notate them with consistent labels. Thus, facial landmarks

and action units can help to address the label inconsistency.

We assumed that two nearby images in the label space of

auxiliary tasks should have close label distributions with

each other: if action units and facial landmarks of two fa-

cial images are nearest neighbors, their label distributions of

facial expression should be similar. We visualize the CK+

dataset as an example in Fig.(3) and Fig.(4). Despite the

possible unavailability of the action units and facial points,

we can still benefit from many well-developed action unit

recognition and facial landmark detection methods.

The main notations used in this paper are listed as fol-

lows. The instance variable is denoted by x, the particular

i-th instance is represented as xi, the label variable is il-

lustrated by y, the particular j-th label value is designated

as yj , and the logical label vector of xi is indicated by

li = (ly1

xi
, ly2

xi
, ..., lyc

xi
) in which c is the number of possible

labels. The particular j-th label value of task t is denoted as

ytj , and the label vector of xi in auxiliary task t is indicated

by lti = (l
yt
1

xi
, l

yt
2

xi
, ..., l

yt
k

xi
) where k is the dimension of the

label in task t. f(x|θ) denotes the backbone model with a

softmax prediction.

3.1. Problem Formulations

The process of LDL-ALSG is defined as follows: given a

training set S = (xi, li, l
t
i|1 ≤ i ≤ n, 1 ≤ t ≤ T ), where T

is the number of auxiliary tasks, LDL-ALSG is the learning

process of finding a model f(x|θ) that maps input xi to

label distribution using li and lt
i
.

This model can be trained by solving the following prob-

lem

argmin
θ

L(θ) + λ

T
∑

1

Ωt(θ) (1)

Where L is a loss function , Ωt(θ) is the function to mine

hidden label importance utilizing the topological informa-

tion from the label space of related tasks.

Since the logical label can be viewed as a simplifica-

tion of label distribution, we assumed that it should be

close enough to the origin label to indicate the ground truth.

Therefore, the L is the KL-divergence between the ground-

truth label and label distribution output. Hence, we obtained

the following classification loss

L = KL(lyc
xi
,f(x|θ)) =

∑

i,c

lyc
xi
log(

1

f(xi|θ)
), (2)

To obtain the hidden label importance from the training data

using the label space topological information of auxiliary

tasks, we utilize the deviation between the network pre-

diction of i-th central image f(xi|θ) and that of neighbor

images j in auxiliary tasks f(xj |θ) to guide the update of

network parameters. We need to estimate their distances or

similarities to describe the relative importance of the net-

work predictions for neighbor images. Thus, we specified

the local similarity atij similar to GLLE[36], which is de-

fined as

atij =

{

exp(−
||lti−l

t
j ||

2

2σ2 ) if ltj ∈ N t(i)

0 otherwise
(3)
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Figure 6. Approximate K-Nearest-Neighbor Graphs for the training data are built in advance. Each graph contains all the images in the

training set. The indexes of each image and its neighbors will be stored in a list (denoted as the index-similarity list) along with neighbors’

local similarity values. This figure is a simplified example for convenient explanation. In this example, node 0 is the central image. node 1

and node 2 are two images nearest to node 0 in action unit space. Similarly, node 3 and node 4 are two images nearest to node 0 in facial

point space. Best viewed in color.

where N t(i) means the set of xi’s K-nearest neighbors in

the label space of auxiliary task t. Similar to the smoothness

assumption[47], we assume that the images close to each

other in the auxiliary label space are more likely to have

similar expression distributions. That is to say the larger the

atij is, the closer the distances between f(xi|θ) and f(xj |θ)
could be. Hence, we have the following task guidance loss

Ωt(f(x|θ)) =
∑

i,j

atijf(xj |θ)log(
f(xj |θ)

f(xi|θ)
) (4)

3.2. The overall LDL­ALSG framework

Formulating the LDL-ALSG problem into an optimiza-

tion framework over Eq.(2) and Eq.(4) yields the total loss

function

T (θ) =
∑

i

[
∑

c

lyc
xi
log(

1

f(xi|θ)
)

+ λ

T
∑

t=1

∑

j

atijf(xj |θ)log(
f(xj |θ)

f(xi|θ)
)]

(5)

Our proposed LDL-ALSG is a label-side solution to ex-

pression ambiguity and annotation inconsistency so we can

use any deep CNN as the backbone. After the network is

fully trained, only the network parameters are needed for

inference, and the trained network can independently per-

form prediction without any components related to auxiliary

tasks.

Training data preparation: Before the training begins, the

training data is prepared offline. As aforementioned, action

units and facial points can be effectively extracted through

well-developed methods. In our experiments, we used [3]

to extract action units and facial points, which are then ap-

plied to build their own K-Nearest Neighbor (KNN) graphs

separately. With the intention of bypassing the limitation

of high time complexity of the kNN algorithm, we exerted

an approximate KNN [18] to build the approximate kNN

graphs (aKNN-graph). In our experiment, a server with 16

cpu cores can build two graphs of 300K images within 4

minutes.

For each image in the training set, we stored its index

and neighbors from both graphs coupled with the local sim-

ilarity values defined in Eq.(3) in a list. Then, we discarded

the AKNN graphs and used the generated index-similarity

list to train the backbone network, as shown in Fig.(6).

Batch generation: To effectively minimize the target func-

tion with the guidance of auxiliary tasks, each training batch

consists of groups of images. Each group contains a central

image together with its neighbor images and local similarity

values from the generated index-similarity list as shown in

Fig.(5). The local similarity values will be used to calculate

guidance loss. Forward path: All the images in a batch

will be forwarded equally, and the network will predict la-

bel distributions for each of them. With the predicted label

distributions and logical ground truth labels, the task guid-

ance loss and classification loss can be easily calculated.

Backward path: Because we focused solely on predictions

of central images, predictions of neighbor images are used

to guide the update of model parameters only and do not

contribute to the classification loss. Predictions of neighbor

images will be detached, meaning that the total loss is back

propagated only through the central images as the red lines

shown in Fig.(5).

4. Experiments

4.1. Datasets

We mainly used two types of datasets, including in-the-

wild datasets (RAF [22], AffectNet [28] and SFEW [8]) and
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In-the-Wild Lab-Controlled (Posed) Average

AffNet RAF SFEW CK+ CFEE MMI Oulu-CASIA Wild Posed Overall

Baseline [39] 57.97 81.81 52.19 88.99 77.22 67.79 59.35 63.99 73.34 69.33

AIR[1] 54.23 67.37 49.88 43.87 64.47 59.64 47.03 60.80 53.75 56.10

NAL[15] 55.97 84.22 58.13 91.20 75.84 64.71 61.00 66.11 73.19 70.15

IPA2LT (LTNet)*[39] 57.85 83.80 53.15 91.82 78.02 68.22 62.69 64.93 75.19 70.79

LDL-ALSG(AU) 58.32 85.32 56.50 91.35 77.59 70.49 63.85 66.94 75.85 72.01

LDL-ALSG(FL) 59.35 85.53 54.91 91.19 78.28 70.29 63.53 66.60 75.82 71.87

LDL-ALSG(AU+FL) 58.29 85.33 55.87 93.08 77.97 70.03 63.94 66.64 76.25 72.13

Table 1. Test accuracy (%) of different methods on various test sets with both in-the-wild and lab-controlled facial expressions. (Bold: the

best. * means the results are produced by our implementation.

lab-controlled datasets (CK+ [27], CFEE [9], MMI [34] and

Oulu-CASIA [42]). We reported the per-dataset based per-

formance on the above seven datasets and the average per-

formance on lab-controlled, in-the-wild, and all datasets.

In-the-wild datasets incorporate facial expression images

in the real world. Typically, they are constructed by collect-

ing data from the Internet and have larger scales. RAF is

divided into training and test sets with a size of 12,271 and

3,068 respectively. Faces in RAF are labeled with six basic

(anger, disgust, fear, happy, sad and surprise) and neutral

expression. AffectNet contains more than 400k manually

annotated images. We selected approximately 280,000 im-

ages as the training set and 3,500 images as the test set, all

of which are labeled with six basic and neutral expressions.

SFEW [8] has 879 training samples and 406 validation sam-

ples, which are collected from movies.

The lab-controlled datasets combine facial expression

images recorded in the indoor controlled environment. CK+

has 593 sequences and 327 of them are annotated with seven

expressions (six basic expressions and contempt). Each se-

quence starts with a neutral face and ends with a peak ex-

pression. We chose the first frame as the neutral face and

the last frame as the expressive face, resulting in a total of

636 images. CFEE accommodates 230 subjects, each of

which has 22 images. Only images labeled with six basic

and neutral expressions are selected to conduct experiments.

MMI has 213 sequences recorded from 30 subjects. Each

sequence in MMI starts with a neutral face, shifts to a peak

expression, and return to a neutral face in the end. In our

experiments, for each sequence, the first two images are se-

lected as neutral faces while the middle one-third part are

chosen as expressive faces. Oulu-CASIA carries 480 se-

quences captured from 80 objects. We picked the first two

images as neutral faces and the last two fifth part as expres-

sive faces.

4.2. Experiment Settings

To make a fair comparison with other state-of-the-art ap-

proaches that focus on label-side improvement, we adopted

the cross-dataset evaluation protocol to show the effective-

ness of the proposed model by adhering to the settings of

other methods. Specifically, we adopted only the training

part of the AffectNet (AffTr) and RAF (RAFTr) datasets to

train the models and use the validation set of AffectNet for

validation.

Every training batch consists of 32 groups, each of which

has one central image along with 4 nearest neighbors from

action unit aKNN-graph and and 4 nearest neighbors from

facial point aKNN-graph, totaling 9 images for one group

and 288 images for each batch. After the backbone network

is fully trained, we only need the backbone network and

abandon the rest of the components.

Our experiments adopted the 50-layer Residual Net-

work [16] as the backbone network, and reimplment the

IPA2LT[39] method with the same backbone network and

training data. The backbone network was pretrained on the

training set of AffectNet and RAF. Parameters were opti-

mized via the stochastic gradient descent method. The mo-

mentum was 0.9, the weight decay was 0.0004, and the

learning rate was initialized as 0.001. Our baseline method

is a directly trained resnet-50 model with cross-entropy loss

and a 32 batch size. Our model and the state-of-the-art

model were trained for 10 epochs with 1 epoch of linear

learning rate warmup and 9 epochs of cosine learning rate

decay. λ in Eq.(5) were both set to 0.0005. σ in Eq.(3) for

action units and facial points were set to 1 and 68, respec-

tively. The proposed LDL-ALSG was implemented using

PyTorch[29] and trained on two Tesla V100 GPUs.

4.3. Experiment Results

Comparison with State-of-the-Art. We compared the

proposed approach with existing state-of-the-art methods

through extensive experiments under rigorous settings men-

tioned above. Table.(1) illustrates the qualtitative results.

The LDL-ALSG outperforms other related approaches with

a healthy margin in both lab-controlled and in-the-wild

datasets.

AIR and NAL were proposed primarily to address
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Training Data Method
Accuracy

Wild Lab All

Clean data

LDL-ALSG 66.64 76.25 72.13

IPA2LT(LTNet) 64.93 75.19 70.79

Baseline 63.99 73.34 69.33

5% noise

LDL-ALSG 66.06 74.81 71.06

IPA2LT(LTNet) 64.42 71.53 68.48

Baseline 63.35 70.42 67.39

10% noise

LDL-ALSG 65.76 73.96 70.45

IPA2LT(LTNet) Failed

Baseline 61.21 70.01 66.24

15% noise

LDL-ALSG 65.03 72.40 69.24

IPA2LT(LTNet) Failed

Baseline 60.32 68.73 65.12

Table 2. Average test accuracy (%) of both baseline and LDL-

ALSG methods on original training set and three synthetic datasets

with label noise ratio 5%, 10% and 15%. Clean data refers to the

mixture of training set of AffectNet and RAF datasets. In-the-

Wild refers to the average result on the test set of AffectNet, RAF

and SFEW datasets. Lab-Controlled refers to the average result on

CK+, CFEE, MMI and Oulu-CASIA. Overall refers to the average

results on both in-the-wild and lab-controlled datasets.

Training Data Method
Accuracy

Wild Lab All

Clean Data baseline 63.99 73.34 69.33

5% noise(A) baseline 63.35 70.43 67.39

10% nosie(B) baseline 61.21 70.01 66.24

15% noise(C) baseline 60.32 68.73 65.12

mixture of ABC baseline 61.92 71.34 67.30

inconsistent annotation IPA2LT 64.01 73.56 69.46

mixture of ABC Ours 65.19 74.21 70.44

Table 3. Test accuracies on datasets with inconsistent labels. Be-

cause the IPA2LT considered the annotation inconsistency explic-

itly, it treated the labels of the three datasets as inconsistently an-

notated labels for the same dataset. While our method treated the

mixture of ABC as a whole dataset, the data they used was actually

the same.

datasets with noisy labels. While the mixture of RAF and

AffectNet datasets were taken to train the models in our

settings, these two methods might not be able to deal with

the annotation bias caused by different annotators, and thus

failed to achieve sound performance.

LDL-ALSG and IPA2LT observed better performance

than AIR and NAL, indicating that considering label in-

consistency contributes to the improvement of performance.

IPA2LT was not designed to cope with label ambiguity and

the relative importance among different labels, so it per-

formed worse than LDL-ALSG.

Experiment Results for Different Settings. We evaluated

three different settings of LDL-ALSG and a baseline model

on several benchmark datasets. LDL-ALSG(AU) used only

the neighbor images from AKNN-graph of action units, and

LDL-ALSG(FP) employed only the neighbor images from

the AKNN-graph of facial points. LDL-ALSG(AU+FP)

refers to the setting that images from both graphs are used.

As Table.(1) shows, the baseline model performs worse

on all datasets than LDL-ALSG methods, which verify the

adverse effect of label inconsistency. The topological in-

formation of label space from auxiliary tasks facilitates the

network to learn the distribution of facial expressions and

solve the problem of annotation inconsistency. The fact that

LDL-ALSG(AU) slightly betters LDL-ALSG(FP) on aver-

age is not surprising because action units are more directly

related to facial expressions rather than facial points.

By leveraging the topological information of the la-

bel space from both auxiliary tasks, LDL-ALSG(AU+FP)

achieved the best average accuracy. Because all the meth-

ods compared here use the same validation set, higher cross-

dataset performance means better generalization and less in-

consistency.

Experiment Results for Label Noise and Annotation In-

consistency. To probe the influence of label noise and vali-

date the robustness of our method, we conducted noise ex-

periments on three synthetic datasets. Specifically, three

training sets with different label noise ratio are generated

by randomly revising 5%, 10%, and 15% of the corrected

labels in the original training set, namely the mixture of

both AffectNet and RAF’s training sets. To generate la-

bel noise, we changed the ground truth label to one of the

remaining six randomly. The average accuracies of in-the-

wild, lab-controlled, and overall datasets are reported in Ta-

ble.(2), from which we can see that the performance of pro-

posed LDL-ALSG attained overwhelming advantages over

the baseline method in all noise settings.

The IPA2LT framework is a three-step framework. In

the first step, IPA2LT starts with the baseline network pre-

trained on the noisy dataset and finetunes the pre-trained

network on RAF and AffectNet to generate 2 coders. In

the second step, auto annotations of each training set are

generated by the two coders. In the last step, noisy labels

and the auto annotated labels are used to finetune the pre-

trained baseline network on the whole training set, which is

the training part of RAF and AffectNet, using the validation

set of AffectNet for validation. When RAF and AffectNet

are considered as two inconsistently annotated datasets, if

the noise ratio is higher than 5%, finetuning the pre-trained

network cannot produce results better than that of the base-

line method. Thus, the IPA2LT framework failed to handle

the label noise.

Experiment Results for Annotation Inconsistency. In or-

der to verify that our method can address the annotation in-

consistency, we consider the three noisy datasets as incon-

sistently annotated datasets and compared our method with
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Backbone Network Method
Accuracy

Wild Lab All

Resnet-18
LDL-ALSG 65.40 73.61 70.08

Baseline 62.37 72.35 68.07

MobilieNet V2
LDL-ALSG 65.56 75.48 71.27

Baseline 64.71 74.01 70.03

Table 4. Average test accuracy (%) for different backbone network.

Neighbor Number
λ

Accuracy

AU FP Wild Lab All

2 0 0.001 66.81 75.86 71.98

4 0 0.001 66.94 75.82 72.01

8 0 0.001 66.69 75.44 71.69

0 2 0.001 66.30 75.43 71.52

0 4 0.001 66.60 75.82 71.87

0 8 0.001 66.59 75.64 71.76

Table 5. Comparison of different neighbor numbers. The λ was

fixed to 0.001 and the number of neighbors in action unit space

and facial point space were evaluated seperatly.

the state-of-the-art method. As shown in Table.(3), both

of our method and the IPA2LT outperformed the baseline

method. Our method was directly trained with the mixed

datasets, while the IPA2LT framework followed its three-

step training process. The proposed LDL-ALSG produced

the best results showing that the topological information of

auxiliary task’s label space can help address the annotation

inconsistency.

4.4. Ablation Study

Since hyper-parameters λ in Eq.(5) balance the classifi-

cation loss and the guidance losses and the number of near-

est neighbor is vital to the overall performance as well, we

evaluated their influences in different settings.

We set λ to 0.001 and evaluated the influence of the num-

ber of nearest neighbors. As shown in Table.(5), different

number of neighbors produced similar results but using 4

neighbors is the best. The reason might be that using too

many neighbors might include neighbors that are far away

from the central image in terms of auxiliary label space dis-

tances, while using too few neighbors cannot learn the rela-

tive importance of each label from limited neighbors. We

also fixed neighbor numbers to 4 and study the influence of

λ for guidance loss of action units and facial points. Results

in Table.(6) showed that all of the different settings can out-

perform the baseline result and setting λ to 0.001 for both

of the auxiliary tasks produced the better results.

When the nearest neighbors from both graphs were uti-

lized to guide the learning process, the influence of the near-

est neighbor number and the λ was evaluated, resulting in

Neighbor Number
λ

Accuracy

AU FP Wild Lab All

4 0 0.0001 66.36 75.58 71.61

4 0 0.001 66.94 75.82 72.01

4 0 0.01 66.33 74.96 71.27

0 4 0.0001 66.54 75.78 71.82

0 4 0.001 66.60 75.82 71.87

0 4 0.01 65.89 75.45 71.36

Table 6. Comparison of different λ. The number of neignbors was

fixed to 4 and the λ of neighbors in action unit space and facial

point space were evaluated seperatly.

Neighbor Number
λ

Accuracy

AU FP Wild Lab All

4 4 0.0001 67.13 75.84 72.11

4 4 0.0005 66.64 76.25 72.13

4 4 0.001 66.42 75.52 71.62

4 4 0.01 66.34 75.68 71.68

Table 7. Comparison of different λ, when utilizing topological in-

formation from both graphs. The number of neighbors was fixed

to 4.

Table.(7). When guidance loss from both tasks were com-

bined, setting λ to 0.0005 produced the best results.

We also performed experiments on two different back-

bone network to show that our method is network indepen-

dent as shown in Table.(4).

5. Conclusion

In this paper, we proposed the LDL-ALSG framework to

tackle annotation inconsistency and label ambiguity in fa-

cial expression recognition datasets. The label space topo-

logical information of auxiliary tasks such as action unit

recognition and facial landmark detection is used to help

in learning the ambiguous and subjective labels. It helps to

address the label inconsistency in facial expression recog-

nition datasets because human annotators are more likely

to annotate facial landmarks and action units with consis-

tent labels. We treated the inconsistent annotations as not

only the noise but also labels that can describe the data for

a certain degree and train the network to predict label dis-

tributions.

The LDL-ALSG framework is an end-to-end label-side

solution that is network-independent with no additional

components needed for inference after the backbone net-

work finishes training. To our knowledge, the LDL-ALSG

framework is the first work that performs label distribu-

tion learning leveraging label space topological informa-

tion. Our method does not need to generate label distribu-

tions in advance. Experiments on several datasets validated

the effectiveness and advantages of the proposed method.
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