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Abstract

We present a novel approach to category-level 6D object

pose and size estimation. To tackle intra-class shape vari-

ations, we learn canonical shape space (CASS), a unified

representation for a large variety of instances of a cer-

tain object category. In particular, CASS is modeled as

the latent space of a deep generative model of canonical

3D shapes with normalized pose. We train a variational

auto-encoder (VAE) for generating 3D point clouds in the

canonical space from an RGBD image. The VAE is trained

in a cross-category fashion, exploiting the publicly avail-

able large 3D shape repositories. Since the 3D point cloud

is generated in normalized pose (with actual size), the en-

coder of the VAE learns view-factorized RGBD embedding.

It maps an RGBD image in arbitrary view into a pose-

independent 3D shape representation. Object pose is then

estimated via contrasting it with a pose-dependent feature

of the input RGBD extracted with a separate deep neural

networks. We integrate the learning of CASS and pose

and size estimation into an end-to-end trainable network,

achieving the state-of-the-art performance.

1. Introduction

6D object pose estimation based on a single-view RGB(D)

image is an essential building block for several real-world

applications ranging from robotic navigation and manipula-

tion to augmented reality. Most existing works have so far

been addressing instance-level 6D pose estimation where

each target object has a corresponding CAD model with ex-

act shape and size [17]. Thereby, the problem is largely

reduced to finding sparse or dense correspondence between

the target object and the stock 3D model. Pose hypothe-

ses can then be generated and verified based on the cor-

respondences. Although enjoying high pose accuracy, the

requirement of exact CAD models by these techniques hin-

ders their practical use in many application scenarios.

*Joint first authors
†Corresponding author: kevin.kai.xu@gmail.com

Figure 1: We present a method for category-level 6D ob-

ject pose and size estimation (left) via learning canonical

shape space. The input RGBD image is embedded into the

shape space, resulting in a view-factorized RGBD embed-

ding. Object pose is then estimated via contrasting it with a

pose-dependent feature of the input RGBD. A side-product

of our method is the full-shape reconstruction of the input

single-view RGBD, which supports not only size calcula-

tion but also precise robotic grasping. In the figure, the re-

constructed 3D point clouds are placed into the scene point

cloud (unprojected from the input depth map). Two of them

are highlighted in the middle.

Recently, category-level 6D object pose estimation starts to

gain attention [21,29]. In this problem, the target object of a

shape category is unseen before and no CAD model is avail-

able, although some other instances of the same category

may have been seen. Therefore, the major challenge is how

to deal with intra-class variation [20]. In general, house-

hold objects could exhibit significant variations in color,

texture, shape and size even within the same category. With-

out an exactly same CAD model, correspondence-based ap-

proach would find difficulty given the considerable intra-

class shape variation.

To resolve this, a unified representation for a variety of in-

stances of an object category is needed, to which the target

object in observation could be “matched”. The recently pro-

posed Normalized Object Coordinate Space (NOCS) [29] is

a nice example of such unified representation. Based on this

representation, category-level object poses can be estimated

with high accuracy through mapping each pixel of the in-
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put image to a point in NOCS. Finding dense mappings be-

tween NOCS and an unseen object, however, is an ill-posed

problem under significant shape variation. Therefore, a gen-

eralizable mapping function accommodating large amount

of unknown shape variants can be difficult to learn.

In this work, we propose to learn a canonical shape space

(CASS) as our unified representation. CASS is modeled by

the latent space of a deep generative model of canonical 3D

shapes with normalized pose and actual metric size. In par-

ticular, we train a variational auto-encoder (VAE) for gener-

ating 3D point clouds in the canonical space from an RGBD

image. The VAE is trained in a cross-category fashion,

exploiting the publicly available large 3D shape reposito-

ries. Since the 3D point cloud is generated with normalized

pose and metric size, the encoder of the VAE learns view-

factorized RGBD embedding. It maps an RGBD image in

arbitrary view into a pose-independent 3D shape represen-

tation. Object pose can then be estimated via contrasting it

with a pose-dependent feature of the input RGBD extracted

with a separate deep neural networks (Figure 1). This cir-

cumvents the difficulty in estimating dense correspondence

between two representations as in other methods [17, 29].

We integrate the learning of CASS and pose and size esti-

mation into an end-to-end trainable network which involves

several key designs. First, through learning the canoni-

cal shape space with plentiful shape variants, we obtain a

unified representation encompassing adequate shape vari-

ations. Second, to overcome the lack of real-world train-

ing images with 3D point clouds, we enhance the encoder

of the VAE to take both RGBD images and 3D shapes as

input. This allows us to train the VAE through exploiting

off-the-shelf 3D shape repositories. Third, in realizing pose

estimation, we opt for feature contrasting over dense corre-

spondence, leading to better generality to unseen instances.

Meanwhile, to match the distributions of pose-dependent

and pose-independent features so that pose estimation can

be easily trained, we propose a few crucial designs, e.g.,

network weight sharing and training batch mixing. Last,

our VAE model is able to reconstruct a 3D point cloud of

the target object with metric size, which reduces the learn-

ing difficulty by decoupling the estimation of pose and size.

Through evaluating on public category-level datasets, we

show that our method archives the state-of-the-art pose ac-

curacy and comparably high size accuracy. Our work makes

the following contributions:

• We propose a novel correspondence-free approach to

category-level object pose and size estimation based

on learned canonical shape space.

• We design an end-to-end trainable deep neural network

for jointly learning the canonical shape space and esti-

mating object pose and size.

• We devise several key designs to ease the network

training such as distribution matching between pose-

dependent and pose-independent features.

2. Related Work

Instance-level approaches. Many works on instance-level

6D pose estimation adopt template-based methods [11, 15].

In these methods, a set of RGB(D) templates rendered from

CAD models in various poses are matched against the input

image in a sliding-window fashion, based on hand-designed

or learned feature descriptors. The final pose is retrieved

from the best matched template or estimated by 3D model

registration. Another group of works pursue to match the

target object to the corresponding 3D model. Depending on

the input modality, the core task is to find 2D-to-3D [8,12],

2.5D(depth)-to-3D [5, 6] or 3D-to-3D correspondence [1].

Several other works opt to learn a 6D object pose regressor

directly from the feature descriptions [22, 25]. Brachmann

et al. [3] learn to regress an object coordinate representation

which can then be used in pose estimation.

Learning effective feature representation using convolu-

tional neural networks (CNNs) for robust matching has be-

come a main focus of the recent literature [2,14,24,30,33].

Another line of works utilize CNNs to detect feature points

or corner points [19, 26]. PVNet [17] is a unique approach

of feature point detection using CNNs: A vector field is

estimated for the input RGB image based on which the fea-

ture points are voted. Some other works choose to learn an

end-to-end deep model that can directly regress 6D object

pose from the raw RGB(D) input [7, 16, 31]. SSD-6D [13]

combines single-shot object detection in RGB images with

pose hypothesis regression and verification. Similar ap-

proach has also been used for multi-view active pose esti-

mation [23]. Wang et al. [28] propose DenseFusion to learn

pixel-wise feature extraction and pose estimation. The net-

work can also predict a confidence for each pose hypothesis

for final pose selection.

Xiao et al. [32] train a CNN that takes as input both an im-

age and a CAD model, and outputs object pose with respect

to the 3D model. This model can generalize to the target ob-

jects which are unseen during training. However, they still

require the target CAD model during inference. Thus, we

classify it as an instance-level work.

Category-level approaches. There has been a large body

of works on category-level object detection and 2D/3D/4D

pose estimation. However, methods designed for estimat-

ing 6D poses is still scarce [20]. Sahin et al. [21] intro-

duce a part-based random forest approach for this task. In

their method, parts extracted from CAD model instances

of some category are represented with skeletons, which are
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Figure 2: An overview of our network architecture. A pre-processing (left) is devised to produce image crop and point

patch of the object of interest which are fed into the main network (right). The main network is composed of three modules:

1) CASS learning, pose-factorizing embedding and point cloud reconstruction (background shaded in light blue), 2) pose-

dependent feature extraction (light green), and 3) pose estimation (light red). The network branch indicated with red arrows

is used only in training.

fed into a random forest for hypothesizing 6D poses. Due

to the reliance on purely geometric features, this method

mainly deals with depth input. Wang et al. [29] introduce

Normalized Object Coordinate Space (NOCS) as a shared

canonical representation of object instances within a cate-

gory. They train a region-based neural network to directly

infer the pixel-wise correspondence between an RGB image

to NOCS. Together with instance mask and depth map, 6D

object pose is estimated using shape matching. Recently,

Wang et al. [27] realized category-level 6D pose tracking

based on keypoint matching.

CASS vs. NOCS. Although both CASS and NOCS can

be regarded as a unified shape space spanning intra-class

variations, there are several substantial differences. First,

NOCS is explicitly defined through consistently aligning all

object instances of a category in a normalized 3D space.

Our CASS is a shape embedding space implicitly learned

with a generative model. Second, when conducting object

pose estimation, NOCS is used as the target of pixel-wise

correspondence, based on which 6D pose is computed ge-

ometrically. In contrast, CASS is treated as a normalized,

holistic shape representation from which pose is estimated

in an end-to-end and correspondence-free manner. Third,

different from NOCS where the coordinates are regressed

only for visible area, our network learns to reconstruct a

complete 3D shape in CASS which is a global shape under-

standing beneficial to pose estimation.

3. Model

Our model is an end-to-end trainable network integrating

the learning of both shape space and pose estimation. We

first provide an overview of the network architecture and

then elaborate the various network modules. Training de-

tails such as loss functions, parameter setting and training

protocol will then follow.

Architecture overview. Figure 2 shows an overview of our

network architecture. The input to the network is a cali-

brated RGBD image. The one output is the 6DoF pose of

the object of interest, represented by a rigid transformation

[R|t] with R ∈ SO(3) and t ∈ R
3. The other output is

a reconstructed 3D point cloud of the object in normalized

pose but with metric size. To handle multiple objects in

a cluttered scene, we employ an off-the-shelf object detec-

tor to detect and segment the individual object instances.

For each detected object, we crop the RGB image with the

bounding box of the segmentation mask and segment it out

of the point cloud (converted from the depth image) using

the mask, resulting in an image crop and a point patch for

the object, respectively. Both the image crop and the point

patch are sent to the main part of our network.

Our core network is composed of three modules responsi-

ble for 1) Canonical Shape Space learning, view-factorizing

RGBD embedding and point cloud reconstruction, 2) pose-

dependent feature extraction and 3) pose estimation, respec-
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Figure 3: Illustrating the flow of pose information in our

network. Data and features are depicted with rounded boxes

and networks with rectangles. Data/features shaded in light

blue contain pose information; no shading means pose-

normalized. Networks are shaded in light green if they are

pose factorizing and no shading otherwise.

tively. The three components are tightly coupled and jointly

trained using both synthetic and real-world data. Next, we

elaborate the design of the three modules.

3.1. Canonical Shape Space and View Factorization

Our goal is to learn a shape space spanning as many shape

variants of a category as possible, where all shapes are pose-

normalized but with actual metric size. Moreover, to work

with RGBD inputs, we also need a function to map an

RGBG image to the point in that space representing the cor-

responding full shape in normalized pose and metric size.

Such a mapping factorizes the view in the RGBD image so

that the RGBD feature embedding is view-factorized.

Learning Canonical Shape Space. We model the space

of canonical shapes with the latent space of a deep genera-

tive model of pose-normalized shapes. In achieving so, we

leverage the publicly available 3D shape repositories such

as ShapeNet [4]. The 3D models in ShapeNet are consis-

tently oriented and properly scaled within each category.

We sample each model into a point cloud of M = 500
points. The point sampled 3D shapes, X3D, are used to

train a variational auto-encoder (VAE). The encoder em-

ploys the geometric embedding network for 3D point clouds

proposed in [28], which is a variant of PointNet [18]. Based

on the learned feature, the decoder warps a point cloud of

3D ellipsoid to match the shape of the input point cloud.

We turn the auto-encoder into a VAE by adding a sampling

layer between the encoder and decoder. The learned poste-

rior distribution z ∼ p(z|X3D) models the space of canoni-

cal shapes.

Learning view-factorizing RGBD embedding. Having

learned the CASS, our next task is to project an RGBD

image in arbitrary view to the space so that the projector

functions as view factorization. Such cross-modality data

projection task could be finished with the help of data cor-

respondence between the two modalities [9], where metric

loss is used to optimize the projector. Let us refer to this so-

lution as correspondence-based projection. This approach

can be adapted to VAE straightforwardly where a projector

is trained to map data in one modality to the latent space

learned for another modality based on cross-modality data

correspondence. However, we found that this method leads

to suboptimal point cloud reconstruction and pose estima-

tion due to 1) possibly incorrect correspondences and 2) the

compromise between the metric loss and other losses.

To address these issues, we opt for a joint embedding ap-

proach. Specifically, we learn a VAE which has two en-

coders mapping both RGBD images and 3D point clouds to

a shared latent space. Whilst the 3D encoder adopts Point-

Net, the RGBD encoder employs the dense fusion archi-

tecture proposed in [28] (we use the global feature for the

whole image instead of the pixel-wise features). Our crucial

design is that the two encoders, albeit having different net-

work architectures, are trained with mixed training batch

and shared training gradients. The latter means that gra-

dients computed for either modality are back-propagated

to tune both encoders. Through such mixed training, the

learned shared latent space spans the joint feature space of

the both modalities.

Compared to correspondence-based approaches, our joint

embedding has the following advantages: Firstly, our model

can be trained in a correspondence-free or unpaired fashion.

This means the two modalities do not have to share object

instances: It is unnecessary for the object in an RGBD im-

age to have a corresponding 3D model in the training shape

set. Secondly, our model introduces no extra loss function

other than the basic ones of conventional VAEs. Thirdly

and most importantly, the mixed training of the two en-

coders help to match the feature distributions of the two data

modalities (see Figure 4), leading to better model generality

and domain transferability.

In summary, the learning of the CASS and the RGBD fea-

ture embedding (denoted by Fvf) optimizes the following

loss functions:

LCASS = Lrecon(X3D, X
R
3D) + Lrecon(X

R
rgbd, X

∗

3D) + LKL,

(1)

where Lrecon and LKL are the reconstruction loss and KL

divergence loss, respectively. X3D and XR
3D are the input

and reconstructed 3D point clouds, and XR
rgbd and X∗

3D the

3D point cloud reconstructed from the input RGBD and the

corresponding ground-truth, respectively. We use Cham-

fer distance to measure reconstruction loss. During test,

the 3D point cloud encoder (corresponding to the network

branch with red arrows in Figure 2) is discarded and only

the RGBD encoder is used for feature extraction.

The RGBD encoder factorizes image view, resulting in

pose-independent RGBD feature (CASS code). However,
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Figure 4: Comparing the t-SNE plot of view-factorized

RGBD features and the geometric features of canonical

point clouds for with and without batch mixing. Batch mix-

ing helps to match the distributions of the two features.

the 3D encoder does not factorize object pose or size. This

is because both the input and output of the 3D encoder are

pose-normalized and metrically sized. It simply maps a

pose-normalized shape to the canonical shape space, with-

out processing on its pose or size. Figure 3 gives an illustra-

tive summary of the view/pose-factorization ability for all

network modules, and the pose-dependency of all involved

data and features. Figure 5 (top row) shows the t-SNE visu-

alization of the two feature embeddings. In the plot of view-

factorized RGBD features, objects are clustered by category

with different poses mixed together, indicating the factor-

ization of view. The plot of geometric features of canoni-

cal point clouds (no pose) also demonstrates category-based

clustering effect.

3.2. Pose­Dependent Feature Extraction

To facilitate pose estimation from an input RGBD image,

we also extract pose-dependent features for the RGBD im-

age. We devise two networks for extracting photometric and

geometric features separately, based on the RGB and the

depth images, respectively. In our network, these features

are used for pose estimation through comparing against

pose-dependent features, they are expected to encode the

information of pose-color and pose-geometry correlations,

respectively. Figure 5 (bottom row) shows the t-SNE plots

of the two features, which both exhibit pose-induced sub-

space clustering effect.

Photometric feature extraction. Given the image crop

containing the object of interest, we train a fully convolu-

tional network that processes the color information into a

color feature Fpho. Similar to [28], the image embedding

network is an auto-encoder architecture that maps an image

of size H×W ×3 to a pixel-wise feature map H×W ×N .

Each pixel has a N -dimensional vector. We then perform

an average pooling over all pixel-wise features, obtaining a

N -dimensional feature for the full image.

Geometric feature extraction. Given the corresponding

point patch, we utilize point-based CNNs to extract an N -

View-factorized RGBD features Geometric features of canonical point clouds 

Geometric features of point patch Photometric feature of image crop

Figure 5: Comparing t-SNE visualization of the various fea-

tures involved in our network. Different symbols indicate

different object categories while distinct colors correspond

to different poses.

dim geometric feature Fgeo. Here, a key design is that this

point-based feature extractor can share the same network

of the PointNet-based geometric feature encoder trained for

CASS learning. As mentioned above, the geometry encoder

is not pose-factorizing. Consequently, it can be used to ex-

tract pose-dependent geometric features. Consequently, we

have a Siamese network of PointNet-based encoders, one

for pose-independent CASS embedding and the other for

pose-dependent geometric feature extraction (see Figure 2).

Having these two tasks share network weights reduces the

amount of parameters to be learned. Furthermore, it helps

to match the distributions of the CASS codes and the geo-

metric features. This makes them more comparable in fa-

cilitating feature-comparison-based pose estimation.

3.3. Pose and Size Estimation

We concatenate Fvf, Fpho and Fgeo into a feature vector of

3N length and then feed it into a CNN with 1D convo-

lutions. The output contains a rotation represented by a

quaternion q and a 3D translation vector t. The loss func-

tion for pose prediction is defined as the discrepancy be-

tween the object point clouds transformed by the ground-

truth pose and by the predicted one:

Lpose =
1

M

∑

i

‖(Rxi + t)− (R∗xi + t∗)‖, (2)

where xi is the i-th point of the M = 500 sampled points

for the object. [R∗|t∗] and [R|t] are the ground-truth and

predicted poses, respectively. To handle the alignment

ambiguity of symmetric objects, we relax the point-wise
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matching loss to Chamfer distance, similar to [28]. Ob-

ject size is calculated as the dimension of the axis-aligned

bounding box (AABB) of the reconstructed 3D point cloud.

3.4. Training Details

Network settings. The input to our method is a 640× 480
RGBD image. With the RGB image, we perform object

detection and segmentation. Any off-the-shelf method can

be used. For example, we utilize Mask-RCNN [10] for the

CAMERA dataset. The image crops do not need to be re-

size as they are fed into pixel-wise CNNs. All point patches

and 3D models are re-sampled into 500 points for Point-

Net feature encoding. The dimensionality of CASS code

and all other features is N = 1024. The DenseFusion and

FoldingNet modules involved in the various network com-

ponents use the same network configuration as the original

works. The configuration of all other network modules such

as CNNs and MLPs are given in Figure 2 (e.g., “4L” means

four layers and “1D” means 1D convolutional layers). For

each convolutional layer in the various modules, we add a

Batch Normalization layer followed by an ReLU nonlinear-

ity. See more details in the supplemental material.

Training protocol. We adopt a three-stage training. The

first stage trains the VAE for CASS learning and view-

factorizing RGBD embedding (the part shaded in light blue

in Figure 2) for 80K iterations. The size of mixed batch is

8 which randomly mixes the training data of RGBD encod-

ing and 3D encoding. In the second stage, we fix the VAE

and jointly train pose-dependent feature extraction (the light

green part) and pose estimation (the light red part) for 80K

iterations. The third stage then jointly fine-tunes all parts

for 40K iterations. All training batch has the size of 8. We

use an initial learning rate of 0.0001 and the ADAM opti-

mizer (β1 = 0.9 and β2 = 0.999) with a 1 × 10−6 weight

decay. In each stage, we decrease the learning rate by a

factor of 10 for every 40K iterations.

4. Results and evaluations

In this section, we aim to answer the following ques-

tions with both qualitative and quantitative evaluations.

1) Whether are the various network modules and design

choices necessary? 2) How does our method perform in

terms of pose accuracy and when does it outperform the

state-of-the-arts? 3) How capable is our network in terms

of single-view shape reconstruction?

4.1. Datasets

We use the datasets from NOCS [29] which contains six

categories: bottle, bowl, camera, can, laptop, and mug.

Table 1: Quantitative comparison with NOCS [29] (we use

its best-performing variant, i.e., 32-bin NOCS map classifi-

cation).

Method

mAP

IoU25 IoU50

5◦

5cm

10◦

5cm

10◦

10cm

NOCS 84.4 79.3 16.1 43.7 43.1

Ours 84.2 77.7 23.5 58.0 58.3

The dataset has two parts: a real-world dataset with 4.3K

RGBD images from 7 scene videos (3 instances per cat-

egory) and a synthetic dataset with 275K rendered im-

ages generated with 1085 model instances from ShapeNet-

Core [4] under random views. We evaluate our method

on the NOCS-REAL275 dataset, which contains 2.75K real

scene images with 3 unseen instances per category. In learn-

ing the CASS, we also utilized the 3D models from the

ShapeNetCore dataset.

4.2. Evaluation Metrics

We follow the evaluation metrics in NOCS [29] which

jointly measure the object detection and pose estimation:

• IoU25 & IoU50: the average precision of object in-

stances for which the 3D overlap between the two

bounding boxes is larger than 25% or 50% under pre-

dicted and ground truth poses respectively;

• 5◦5cm, 10◦5cm & 10◦10cm: the average precision

of object instances for which the the error is less than

n◦ for rotation and m cm for translation. We choose

5◦5cm, 10◦5cm, 10◦10cm similar to [29].

Additionally, we employ the Chamfer Distance (CD) and

Earth Mover’s Distance (EMD) to evaluate shape recon-

struction from single-view RGBD images.

4.3. Evaluation on NOCS­REAL275 Dataset

Category-level pose and size estimation. In Table 1, we

compare our method against NOCS [29], which is the state-

of-the-art method for category-level 6D object pose and size

estimation. In their method, the network is trained to find a

normalized coordinate for each pixel and then solve for the

pose and size with the help of depth map. On the contrary,

our method directly regresses the 6D pose by comparing

pose-independent and pose-dependent features. We report

the results of NOCS with 32 pose classification bins, which

is its best-performing variant. Like NOCS, our results were

not post-processed, e.g., by ICP refinement, although that
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Figure 6: Result on NOCS REAL275 test dataset, average

precision (AP) vs. different thresholds on 3D IoU, rotation

error, and translation error.

is potentially facilitated by our point cloud reconstruction.

The results show that our method outperforms NOCS in all

metrics except the IoU metrics. The slightly lower IoU val-

ues are caused by our less accurate size calculation based

on point cloud reconstruction. Direct regression of 6D pose

is a hard problem. The success of our method is mainly

attributed to the strong view-factorized (pose-independent)

feature learning with the help of CASS learning and its

RGBD embedding. Figure 6 shows more detailed analysis

with category-wise plots of the various evaluation metrics.

Shape reconstruction. Table 2 reports a quantitative eval-

uation of 3D point cloud reconstruction from RGBD input,

based on the test set of NOCS-REAL275. From the table,

batch mixing leads to much higher reconstruction accuracy

in terms of both Chamfer Distance (CD) and Earth Mover’s

Distance (EMD) metrics. This is because batch mixing en-

sures the distributions matching between the RGBD embed-

ding and canonical point cloud embedding. This leads to a

more accurate RGBD projection (embedding) into the latent

shape space.

4.4. Ablation Studies

To experimentally justify the various design choices of our

method, we make the following ablations (or their combi-

nations) to our model:

• w/o CASS. Train the pose & size estimation network

without the CASS code as an input.

• w/o Distribution Matching (DM). Replace the

Siamese network with two independent modules, with-

out matching the distribution of the CASS codes and

the geometric features.

Table 2: Evaluation of point cloud reconstruction accuracy

with CD (×10−3) and EMD metrics. The results show that

method with batch mixing achieves uniformly higher recon-

struction accuracy.

w/o Batch Mixing w/ Batch Mixing

CD EMD CD EMD

bottle 1.71 0.24 0.75 0.04

bow 0.93 0.07 0.38 0.04

camera 5.26 0.22 0.77 0.05

can 1.79 0.20 0.42 0.04

laptop 1.94 0.10 3.73 0.09

mug 2.40 0.11 0.32 0.03

overall 2.33 0.16 1.06 0.05

Table 3: Ablation study of our model. The results show that

our full method works the best for most criteria.

Method

mAP

IoU25 IoU50

5◦

5cm

10◦

5cm

10◦

10cm

w/o CASS 83.8 76.2 4.2 29.5 30.0

w/o BM 83.6 77.3 4.7 31.8 32.7

w/o DM 84.0 79.0 8.4 39.5 40.2

w/o VAE 83.7 77.0 17.0 42.1 43.6

Full 84.2 77.7 23.5 58.0 58.3

• w/o Batch Mixing (BM). Remove batch mixing and

use L2 distance as an additional loss to train the pro-

jection from an RGBD image in arbitrary view to the

canonical shape space.

• w/o VAE. Replacing the VAE with AE.

From the results reported in Table 3, we can see that CASS

learning is the most important component for our method.

Without CASS learning, the accuracy drops the most espe-

cially on the xx◦yy-cm metrics. Next to CASS learning,

batch mixing is also very important factors. VAE is benefi-

cial to model generalization to unseen objects since it helps

learning a well-spanned CASS space with the normal dis-

tribution prior. However, it does lead to blurred 3D recon-

struction at the same time, which may sacrifices size accu-

racy (see the IoU comparison in Table 1). Nevertheless, all

factors together contributes the high-precision (5◦5cm) es-

timation of pose and size.

4.5. Qualitative results

Visual results of pose and size estimation. Figure 7 shows

some visual comparisons between our method and NOCS.

According to the estimate pose and scale, we draw orien-
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NOCS

CASS

Figure 7: Qualitative comparison with NOCS [29] for pose and size estimation (depicted with reconstructed point clouds).
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Figure 8: 3D Reconstruction from single-view RGBD. The

point clouds in grey color are unprojected from depth maps.

The blue point clouds are reconstructed by our network.

tated bounding box for each detected instance overlaid on

top of the input RGB images. As can be observed, our

method achieves better accuracy especially for size estima-

tion under object occlusion and background distraction.

Visual results of shape reconstruction. Figure 8 shows

visual results of shape reconstruction. Our method is able

to reconstruct full 3D shapes in point cloud from single-

view RGBD images, contrasting them with the point clouds

unprojected from depth maps.

5. Conclusion

We have presented a novel correspondence-free approach

to category-level object pose and size estimation. This

is achieved by learning a shape space of 3D models in

normalized pose and metric size based on deep genera-

tive model. The input RGBD image is embedded into the

shape space, extracting pose-independent features. Pose es-

timation is realized by comparing the pose-independent and

pose-dependent features. Evaluation shows that our method

arrives at the state-of-the-art performance.

Limitations and future work. Our current method has a

few limitations on which we aim to improve as future work.

First, our method cannot handle well very complex shapes

due to the difficulty in reconstructing shapes with compli-

cated geometry (e.g. high genus). In this aspect, our method

can be enhanced by learning a more powerful shape recon-

struction with, e.g., volumetric 3D representation. Second,

our current method does not close the loop in terms of uti-

lizing the reconstructed shape geometry to guide/supervise

the training of pose estimation. This may lead to a unsuper-

vised or self-taught approach which we plan to investigate

in a future work. Third, our method still cannot achieve very

high precision, as reflected by the relatively lower accuracy

for the 5◦5cm metric. This may be an inherent limitation for

a correspondence-free or sparse approach. Note, however,

our method did not use ICP to refine the pose or size. Last,

we plan to extend our current framework to online object

pose tracking similar to [27].
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