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Abstract

Despite the blooming success of architecture search for

vision tasks in resource-constrained environments, the de-

sign of on-device object detection architectures have mostly

been manual. The few automated search efforts are ei-

ther centered around non-mobile-friendly search spaces or

not guided by on-device latency. We propose MnasFPN,

a mobile-friendly search space for the detection head,

and combine it with latency-aware architecture search to

produce efficient object detection models. The learned

MnasFPN head, when paired with MobileNetV2 body, out-

performs MobileNetV3+SSDLite by 1.8 mAP at similar la-

tency on Pixel. It is both 1 mAP more accurate and 10%
faster than NAS-FPNLite. Ablation studies show that the

majority of the performance gain comes from innovations in

the search space. Further explorations reveal an interesting

coupling between the search space design and the search

algorithm, for which the complexity of MnasFPN search

space is opportune1.

1. Introduction

Designing neural network architectures for efficient de-

ployment on mobile devices is not an easy task: one has to

judiciously trade off the amount of computation with accu-

racy, while taking into consideration the set of operations

that are supported and favored by the devices. Neural archi-

tecture search (NAS, [33]) provides the framework to auto-

mate the design process, where a RL controller will learn to

generate fast and accuracy models within a user-specified

search space. While the focus of NAS papers have been

on improving the search algorithm, the search space design

remains a critical performance factor that is less visited.

Despite the significant advances on NAS for image

classification both in the server setting [33, 25] and in

the mobile setting [24, 3, 9, 28, 6], relatively fewer at-

1Implementation is available at Tensorflow Object Detection API

https://github.com/tensorflow/models/tree/master/

research/object_detection

Model Test-dev mAP Latency MAdds Params

MobileNetV3† + SSDLite 22.0 [9] 119∗ 0.51B 3.22M

MobileNetV3 + SSDLite 22.0 [9] 137∗ 0.62B 4.97M

MobileNetV2 + SSDLite 22.1 [22] 163∗ 0.8B 4.3M

MnasNet-A1 + SSDLite 23.0 [24] 174∗ 0.8B 4.9M

MobileNetV2 + NAS-FPNLite 25.1 [7] 202∗ 0.98B 2.02M

MobileNetV2 + MnasFPN ‡ 23.8 121 0.53B 1.29M

MobileNetV3 + MnasFPN 25.5 168 0.77B 3.46M

MobileNetV2 + MnasFPN 26.1 183 0.92B 2.50M

Table 1. MnasFPN variations compared with other mobile detec-

tion models on COCO test-dev. Latency numbers with ‘*‘ are re-

measured in the same configuration (same benchmarker binary and

same device) as MnasFPN models to ensure fairness of compari-

son. Models with † employs the channel-halving trick [9]. Models

with ‡ was obtained with a depth multiplier of 0.7 on both head

and backbone.

tempts [7, 4, 26] focus on object detection. This is in part

because the additional complexity in the search space of the

detection head relative to the backbone. The backbone is

a feature extractor that sequentially extracts features at in-

creasingly finer scales, which behaves the same way as the

feature extractor for image classification. Therefore, cur-

rent NAS approaches either repurpose classification feature

extractors for detection [9, 24, 25], or search the backbone

while fixing the detection head [4]. Since the backbone is

composed of a sequence of layers, its search space is se-

quential. In contrast, a detection head could be highly non-

sequential. It needs to fuse and regenerate features across

multiple scales for better class prediction and localization.

The search space therefore includes what features to fuse,

as well as how often and in what order to fuse them. This is

a challenging task that few NAS frameworks have demon-

strated the ability to handle.

One exception is NAS-FPN [7], which was the first NAS

paper that tackles the non-sequential search space of the de-

tection head. It demonstrates state-of-the-art performance

when optimized for accuracy only, and its manually de-

signed variant called NAS-FPNLite performs competitively

on mobile devices. However, NAS-FPNLite is limited in

three aspects. 1) The search process that produces the ar-

chitecture is not guided by computational complexity or on-
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device latency; 2) The architecture was manually adapted to

work with mobile devices, of which the process may be fur-

ther optimized; 3) The original NAS-FPN search space was

not tailored towards mobile use cases.

Our work addresses the above limitations. We propose

a search space called MnasFPN, which is specifically de-

signed for mobile devices where depthwise convolutions are

reasonably optimized. Our search space re-introduces the

inverted residual block [22], which is proven to be effective

for mobile CPUs, into the detection head. We conduct NAS

on the search space that is guided by on-device latency sig-

nals. The search found an architecture that is remarkably

simple yet highly performant.

Our contributions include: 1) A mobile-specific search

space for the detection head; 2) The first attempt to

conduct latency-aware search for object detection; 3) A

set of detection head architectures that outperform SS-

DLite [22] and NAS-FPNLite [7]; 4) Ablation studies

showing that our search space design is judiciously chosen

for the current NAS controller.

2. Related Work

2.1. Mobile Object Detection Models

The most common detection models on mobile devices

are manually designed by experts. Among them are single-

shot detectors such as YOLO [20], SqueezeDet [29], and

Pelee [27] as well as two-stage detectors, such as Faster

RCNN [21], R-FCN [5], and ThunderNet [19].

SSDLite [22] is the most popular light-weight detection

head architecture. It replaces the expensive 3×3 full convo-

lutions in the SSD head [16] with separable convolutions to

reduce computational burden on mobile devices. This tech-

nique is also employed by NAS-FPNLite [7] to adapt NAS-

FPN to mobile devices. SSDLite and NAS-FPNLite are

paired with efficient backbones such as MobileNetV3 [9] to

produce state-of-the-art mobile detectors. Since we design

mobile-friendly detection heads, both SSDLite and NAS-

FPNLite are crucial baselines to showcase our effectiveness.

2.2. Architecture Search for Mobile Models

Our NAS search is guided by latency signals that come

from on-device measurements. Latency-aware NAS was

first popularized by NetAdapt [31] and AMC [8] to learn

channel sizes for a pre-trained model. A look-up table

(LUT) was used to efficiently estimate the end-to-end la-

tency of a network based on the latency sum of its parts.

This idea was then extended in MnasNet [24] to search

for generic architecture parameters using the NAS frame-

work [33], where a RL controller learns to generate effi-

cient architectures after observing the latency and accuracy

of thousands of architectures. This framework was success-

fully adopted by MobileNetV3 [9] to produce the current

state-of-the-art architectures for mobile CPU.

The MnasNet-style search was not accessible to re-

searchers with limited resources. Therefore a large body of

the NAS literature [3, 28, 2] focus on improving the search

efficiency. These methods capitalize on the idea of hyper-

network and weight-sharing [3, 1, 18] to boost search ef-

ficiency. Despite the success in mobile classification, these

efficient search techniques have not been extended to highly

non-sequential search spaces in resource-constrained cases,

hence have not seen many applications in mobile object de-

tection.

2.3. Architecture Search for Object Detection

Due to the above-mentioned non-sequential nature of

search in object detection, NAS work on object detection

has generally been limited.

NAS-FPN [7] was the pioneering work that tackles de-

tection head search. It proposes an overarching search space

based on feature pyramid networks [14]. The design cov-

ers many popular detection heads. Our work is primarily

inspired by NAS-FPN, but with the goal of innovating a

search space that is more mobile-friendly.

Another pioneering work was Auto-Deeplab [15], which

extended NAS searches to semantic segmentation. Our

work faces the similar challenge of learning the connectiv-

ity pattern across feature resolutions.

DetNAS [4] focuses on improving the efficiency of

searching for the detection body. It deals with the unman-

ageable computation caused by the need for ImageNet pre-

training for every sampled architecture during search. Our

work instead searches for the head only.

More recently, NAS-FCOS [26] extends weight-sharing

to the detection head in order to accelerate the search pro-

cess for object detection. Similar to NAS-FPN, their search

space for the detection head is based on full convolutions

and not targeted for mobile. Our work is complemen-

tary to theirs, in that our latency-aware search based on a

mobile-friendly search space could be accelerated with their

weight-sharing search strategy.

On the mobile side, object detection architectures are

rarely optimized as a primary target. Rather, they are com-

posed of a light-weight backbone designed for classification

and a predefined detection head. A partial list of work that

follows this design strategy is [9, 24, 22, 32]. Our work

takes a first step towards directly optimizing object detec-

tion architectures for mobile deployment.

3. MnasFPN

We overload the term MnasFPN to mean both our pro-

posed search space and the family of architectures found

via NAS, and leave disambiguation to context. Both NAS-

FPN(Lite) and MnasFPN construct a detection network

from a feature extractor backbone and a repeatable cell
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Figure 1. A searchable MnasFPN block. MnasFPN re-introduces the Inverted Residual Block (IRB) into the NAS-FPN head (Sec. 3.1).

Any path connecting an input and a new feature, as highlighted in blue dashed rectangle, resembles an IRB. MnasFPN also employs Size

Dependent Ordering (SDO) shown in black rectangle to re-order the resizing operation and the 1× 1 convolution prior to feature merging

(Sec. 3.2). Search-able components are highlighted in red (Sec. 3.3).

structure that recursively generates new features by merging

pairs of existing features. Each cell consumes a collection

of feature maps at various resolutions, and outputs another

collection at the same set of resolutions, thus enabling the

structure to be applied repeatedly. A cell is comprised of a

collection of blocks. Each block merges two feature maps

at potentially different resolutions into an intermediate fea-

ture, which is processed by a separable convolution and out-

putted by the block. MnasFPN differs from NAS-FPN(Lite)

mainly at the block-level, which we describe below.

3.1. Generalized Inverted Residual Block (IRB)

Inverted Residual Blocks (IRBs) [22] are well known

block architectures that are widely used in NAS search

spaces [24, 3, 9, 28]. The key insight of IRBs is to commu-

nicate features in low-dimensions in order to reduce mem-

ory impact, and expand the feature dimensions for depth-

wise convolutions in order to exploit their light-weight na-

ture in mobile CPUs. It has shown superior performance

gains over the conventional block design based on separable

convolutions. This motivates us to explore the possibility of

adopting IRB-like designs in the NAS-FPN search space,

where the main challenge and innovation reside in impro-

vising with the non-linear structure in NAS-FPN blocks.

Expandable intermediate features: In NAS-FPN, all

feature maps share the same, searchable channel size C by

design. By comparison, MnasFPN gives additional flexibil-

ity to the intermediate feature size F , which is both search-

able and independent from C. By adjusting F and C, the

intermediate feature can serve as either an expansion or a

bottleneck. Such network with unequal input and merged

feature sizes is an instance of asymmetric FPNs, as defined

in [12]. A 1 × 1 convolution is applied as needed on each

input feature to transform their channel count from C to F .

Learn-able block count: In NAS-FPN, the number of

blocks in a cell is predetermined. This comes from the fea-

ture recycling mechanism where if a block is not consumed

by the cell’s outputs, its intermediate feature will be added

to the output feature with the same resolution and size. In

MnasFPN, however, the intermediate features often do not

have the same channel size F as the output C. As a result,

unused blocks are frequently discarded, giving additional

flexibility in navigating the latency-accuracy trade-off.

Cell-wide residuals: As the connectivity gets thinner,

we found that it’s helpful to augment the flow of informa-

tion by adding residuals between every pair of input and

output features at the same resolution. Similar to IRB, we

add ReLU non-linearity for the intermediate features, but

not the output features. This is because the input/output

feature channel size C is intended to be small to lessen the

burden on memory. Adding lossy non-linearities may un-

necessarily throttle the information flow.

Given the design above, one can traverse a connected

path between an input feature and an output feature and see

that it resembles an IRB, as shown in Fig. 1.

We have not experimented with the MobileNetV3-styled

IRB with hard-swish in the search space because their im-

plementations were not optimized at the time of the ex-

periment design for this paper. They are worth re-visiting

once efficient kernels for hard-swish become available. We

have explored Squeeze-Excite (SE) [10], but much to our

surprise, it was not chosen by our NAS controller for top-

performing candidates.

3.2. Size Dependent Ordering (SDO)

Another innovation in MnasFPN is the dynamic re-

ordering of its reshaping and convolution operations based

on the input/output resolutions. We refer to this as Size De-

pendent Ordering (SDO). More specifically, if the input fea-

ture needs to be down-sampled, then down-sampling will

happen prior to the 1 × 1 convolution. On the contrary, if

the input feature requires up-sampling, then 1× 1 convolu-

tion will precede the up-sampling operation.

This design minimizes compute. For notation simplic-

ity we assume the feature maps are square, and use R to

represent both the height and width. When merging feature

13609



maps, we need to apply reshaping and 1 × 1 convolutions

when the resolution R0 and channel count C of the input

feature do not match the resolution R and channel count F
of the intermediate feature.

If R0 > R (needs down-sampling), let R0 = kR where

k ≥ 2, and assume down-sampling is performed with k ×
k convolution with a stride also equals to k, the cost (in

MACs) of down-sample-then-1× 1 is:

Cost1 =R×R× k × k × C +R×R× C × F (1)

whereas the cost of 1× 1-then-down-sample is:

Cost2 =kR× kR× C × F +R×R× k × k × F (2)

Assume reasonably that F ≥ 2, we have k2C(F − 1) ≥
k2CF/2 ≥ CF , therefore:

Cost2 − Cost1 = R2
(

k2C(F − 1) +R2F − CF
)

> 0
(3)

hence proving that the down-sample-then-1×1 is more eco-

nomical. The case for R0 < R (up-sampling) can be proved

similarly.

3.3. MnasFPN Search

The feature generation process of MnasFPN and all the

searchable components are illustrated in Fig. 1. For each

feature generation block, we search for which two input fea-

tures to merge, the target resolution R and channel count F
of the merged feature, the merging operation (addition or

SE), and the kernel sizes for the depthwise convolution post

merging. For the entire network, we mandate that the input,

output and generated features all share the same channel

count C, which is also searched.

We adopt the architecture search framework in Mnas-

Net [24] to incorporate latency measurements into the

search objective. We train an RL controller to propose net-

work architectures to maximize a reward function defined

as follows. An architecture m is trained and evaluated on

a proxy task. The proxy task is a scaled-down version of

the real task, with details in Sec. 4.2. The proxy task per-

formance, measured in mean average precision mAP (m),
as well as the network latency on-device LAT (m) are com-

bined into the following reward function:

Reward(m) = mAP (m)× LAT (m)w (4)

where w < 0 controls the tradeoff point between latency

and accuracy. In theory, w is the slope of the tangent line

that cuts the performance trade-off curve at the desired la-

tency. In practice, we observe that architectures around the

desired latency will also be optimized, and the performance

frontier of our search spaces have similar curvatures, sug-

gesting that w needs to be set only once.

The controller repeatedly proposes candidate archi-

tecture m, and trains itself based on reward feedback

Reward(m) using Proximal Policy Optimization [23]. Af-

ter every search experiment, all the architectures sampled

by the controller trace a performance frontier, as shown in

Fig. 6. We can then deploy promising architectures along

the frontier to the real task.

Connectivity-based LUT: We apply detection-specific

adaptations to the latency look-up table [31, 24] to esti-

mate LAT (m). Existing LUT approaches do not work for

MnasFPN because the number of blocks and the connec-

tivity pattern of the head is dynamic. Instead, we compute

layer connectivity for each model at run-time to determine

the layers to be included in the look-up. The connectivity-

based LUT gives high fidelity with on-device measurements

(R2 > 0.97).

3.4. Connectivity Search

Our design of the MnasFPN search space is deliberately

compact. This is in consideration of the fact that current ar-

chitecture search algorithms are imperfect [13], and larger

search spaces do not always lead to better models. There-

fore, search space design is as much about what to include

as it is about what not to include.

One design we do not include is the search for more gen-

eral connectivity patterns. It overburdens the MNAS con-

troller but remains valuable as search algorithms continue

to improve. Recent work on randomly-wired networks [30]

suggests that search quality may be hampered by design bi-

ases in network connectivity in addition to search efficacy.

We therefore challenge the connection rule in NAS-FPN

where only two features are chosen to be merged each time.

Instead, we design a new search space Conn-Search that

allows merging between 2 to D ≥ 2 distinct feature maps

with addition (D = 4 in our experiments).

4. Experiments

We present experimental results to showcase the effec-

tiveness of the proposed MnasFPN search space. We report

results on COCO object detection. We also added ablation

studies to isolate the effectiveness of every component of

the search space design as well as latency-aware search.

4.1. Search Experiments and Models

We include the following experiments / models. All

search spaces allow 5 internal blocks per cell.

MnasFPN: Our proposed search space with searchable

MnasFPN blocks described in Fig. 1.

NAS-FPNLite [7]: NAS-FPN models that are post-

hoc modified to be light-weight, where modification refers

to replacing full convolutions in the head with separable-

convolutions. These are the only set of models that are not

searched via latency-sensitive NAS (Sec. 3.3).
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Search spaces Kernel sizes Filter sizes C Expansion sizes F SDO Maximum in-degree Cardinality

NAS-FPNLite-S 3 64 - N 2 2× 1022

No-Expand {3, 5, 7} {16, 32, 48, 64, 80, 96} - Y 2 2.4× 1027

MnasFPN {3, 5, 7} {16, 32, 48, 64, 80, 96} {16, 32, 64, 96, 128, 256, 512} Y 2 1031

Conn-Search {3, 5, 7} {16, 32, 48, 64, 80, 96} {16, 32, 64, 96, 128, 256, 512} Y 4 3× 1042

Table 2. Search space comparisons. The common search parameters (e.g. merge operations, feature resolutions etc.) are omitted.

NAS-FPNLite-S: Modified NAS-FPN search space

where full convolutions are replaced with separable-

convolutions. A key distinction from NAS-FPNLite is that

the modification is done on the search space, instead of

post-hoc on the model.

No-Exand: We remove and only remove expansion from

the MnasFPN search space by enforcing F = C for all in-

termediate features. This serves as an ablation of the ex-

pansion in IRB. It differs from NAS-FPNLite-S in that it

still retains all other MnasFPN designs such as SDO and

cell-wide residual, as well as search-able options.

Conn-Search: We enlarges the MnasFPN search space

by allowing between 2 to D ≥ 2 distinct inputs per block.

Merge operation is limited to addition only.

A detailed comparison of all the search spaces in the ab-

lation studies are listed in Table 2. Their performance fron-

tiers are shown in Fig. 6.

4.2. Experimental Setup

To ensure comparability we train all detection models

with the same configuration and hyper-parameters. Abla-

tion study results are reported on the 5k COCO val2017

dataset, whereas the final comparison is reported on the

COCO test-dev dataset.

Training setup: Training setup for COCO val2017:

Each detection model is trained for 150 epochs, or 277k

steps with a batch size of 64 on COCO train2017 dataset.

Training is synchronized with 8 replicas. Learning rate fol-

lows a step-wise procedure: it increases linearly from 0 to

0.04 in the first epoch then holds its value; The learning rate

drops sharply to 0.1 of its value at epoch 120 and 140, re-

spectively. Gradient-norm clipping at 10 was used to sta-

bilize training. In ablation studies, models that use Mo-

bileNetV2 as the backbone are warm-started from an Im-

ageNet pre-trained checkpoint.

Training setup for COCO test-dev: Each model is trained

for 100k steps from scratch with a batch size of 1024 over

32 synchronized replicas with a cosine schedule for the

learning rate [17], which is decayed from 4 to 0. The

schedule also comes with a linear warmup phase at the first

2k steps. Following [22, 11] to ensure comparability, we

merged COCO train2017 and val2017 as training data.

All training and evaluation use 320 × 320 input im-

ages. We do not employ drop-block or auto-augmentation

or hyper-parameter tuning to avoid favoring a particular

class of models in our comparison studies, and for fair com-

parison with some previous results in the literature.

Timing setup: All timing was performed on a Pixel 1

device with single-thread and a batch size of one using Ten-

sorflowLite’s latency benchmarker2. Following the conven-

tion in MobileNetV2[22], each detection model is converted

into TensorflowLite flatbuffer format where the outputs are

the box and class predictors immediately before non-max-

suppression.

Architecture Search Setup: We follow the same con-

troller setup as used in MNASNet [24]. The controller sam-

ples about 10K child models, each taking ∼ 1 hour of a

TPUv2 device. To train a child model, we split COCO

train2017 randomly into a 111k-search-train dataset and a

7k-search-val dataset. We train for 20 epochs with a batch

size of 64 on search-train and evaluate its mAP on search-

val. Learning rate increases linearly from 0 to 0.04 in the

first epoch, the follows a step-wise procedure that decays to

0.1 of its value at epoch 16. We used the same 320×320 res-

olution for proxy task training to ensure that the estimated

latency between the proxy task and the main task are iden-

tical. For the reward objective (Eq. 4), we use w = −0.3,

estimated from a few trial runs, for all search experiments.

After training, for MnasFPN we compute the perfor-

mance frontier over all the sampled models, and fetch the

top models at 166 ms, 173 ms and 180 ms simulated la-

tency. Then we increase the repeats from 3 and 5 to gener-

ate a total of 3×3 = 9 models. Among them we extract the

performance frontier by only keeping models that are not

dominated in both latency and mAP by any other model.

4.3. Discovered Architectures

We inspect a top-performing MnasFPN architecture in

Fig. 2 and a NAS-FPNLite-S architecture in Fig. 3. Both

models have a similar latency as NAS-FPNLite. The com-

parison shows that:

First, MnasFPN is the most compact. Despite both given

5 internal blocks, MnasFPN only uses one block, whereas

NAS-FPNLite-S uses 5, and places all of them at the same

resolution. MnasFPN’s compactness may be a product of 1)

its ability to prune unused blocks and 2) the expansions in

IRB that increases the capacity for each block.

Second, the Squeeze-and-excite (SE) option to merge

2https://www.tensorflow.org/lite/performance/

benchmarks
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F=256, R=20, 
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F=128, R=40, 
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F=96, R=5, 
Op=+, k=3

F=128, R=10, 
Op=+, k=5

Output
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20 x 20 x 4840 x 40 x 48 10 x 10 x 48 5 x 5 x 48

Figure 2. Visualization of a MnasFPN cell architecture found via

latency-aware search. Both the inputs and outputs, represented as

boxes with rounded edges, consist of four feature maps at C3 to

C6, respectively. Each rectangle box represents a MnasFPN block

whose internal structure is outlined in Fig. 1. The box also con-

tains architectural parameters such as channel size F and resolu-

tion R for the intermediate feature, the merging operation Op, and

the kernel size k of the depthwise convolution. Finally, all outputs

receive cell-wide residuals (dashed arrows) from the input with the

corresponding resolution. Note that although the search allows for

a maximum of 5 intermediate blocks, only one was chosen.

R=20, 
Op = +

R=20, 
Op= SE

R=20, 
Op = +

R =20, 
Op= +

R=20, 
Op= +

R=40, 
Op= +

R=10, 
Op = SE

R=20, 
Op= +

R=5, Op= +

Intermediate 
Blocks

20 x 20 x 6440 x 40 x 64 10 x 10 x 64 5 x 5 x 64

Output
blocks

Figure 3. Visualization of a NAS-FPNLite-S cell architecture

found via latency-aware search on the NAS-FPNLite search space.

Each rectangle describes the resolution R and merge operation

(sum or SE) for the feature generation process. The channel sizes

and kernel sizes are fixed to 64 and 3, respectively, according to

NAS-FPNLite [7].

features is never used. This is an interesting discovery as

SE was quite popular in the classification backbone.

Third, both MnasFPN and NAS-FPNLite-S favor the

20×20 resolution for the intermediate features. This choice

was also persistent among multiple search runs and multiple

variations of search spaces.

Fig. 4 shows a Conn-search architecture with D = 4.

F=64, R=40 
k=3

F=128, R=20 
k=3

F=256, R=10 
k=3

F=32, R=20
 k=5

F=64, R=20
 k=7

20 x 20 x 4840 x 40 x 48 10 x 10 x 48 5 x 5 x 48

F=128, R=5 
k=3

F=64, R=20
 k=3

Output
blocks

Intermediate 
blocks

Figure 4. Visualization of a Conn-Search cell architecture with

maximum in-degree D = 4. Each rectangle describes the ex-

pansion size F , resolution R, and kernel size k for the feature

generation process. The merge operation is fixed to be summa-

tion. Blue arrows indicate the additional connections compared to

MnasFPN in Fig. 2 where all intermediate blocks are treated as

one agglomerate block.

Figure 5. Latency breakdown of MnasFPN (left) and NAS-

FPNLite (right). Both models have around 200ms latency, out

of which 40% is reserved for the detection head as well as the

box and class predictors, which we optimize in this paper. The

MnasFPN model is 1.1 mAP higher than the NAS-FPNLite model.

First, similar to MnasFPN, the resolutions of the intermedi-

ate features all concentrate around 20× 20. Second, almost

in all cases only 2 or 3 features are merged. Therefore, ei-

ther allowing 4 input connections was already excessive, or

the current search space is at the limit of what the search

algorithm can handle.

4.4. Latency Breakdowns

We divide a MnasFPN architecture into the feature ex-

tractor backbone, the detection head, and the “predictor”,

which is a set of full convolutions followed by class predic-

tors and box decoders. These full convolutions are C × C
in size, where C is the same parameter that describes the

channel size of MnasFPN ’s outputs. Therefore, our search

affects both the head and the predictor part of the network.

To put the improvement on the MnasFPN detection head

into perspective, we plot the latency breakdown of two 200-

ms models, namely MnasFPN with 5 repeats (25.5 mAP)
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and NAS-FPNLite with 6 repeats (24.4 mAP).

As shown in Fig. 5, our search affects around 80 ms

or 40% of the total running time. MnasFPN (C = 48)

learns to allocate nearly 2× more computational resources

towards the head than the predictor, whereas NAS-FPNLite

(C = 64) allocates less resources towards the head than to

the predictor. This suggests that more significance should

be associated with early feature fusion in the detection head

than with predictor capacity.

The analysis above also indicates that as the detection

head becomes more efficient with MnasFPN , the backbone,

totaling around 60% of run time, now becomes the perfor-

mance bottleneck. Since joint search of backbone and head

is outside the scope of this paper, it is reasonable to assess

all improvements in the paper relative to the latency budget

excluding the backbone.

4.5. Ablation on IRB

To evaluate our primary contribution of re-introducing

IRB into the detection head, we compare in Fig. 7

MnasFPN with NAS-FPNLite-S and No-Expand.

MnasFPN and NAS-FPNLite-S share the use of latency-

aware search and differ in the search space. We see that a

MnasFPN at 187 ms is more accurate than a NAS-FPNLite-

S model at 201 ms, suggesting that the overall design of

the MnasFPN search space contributes to almost all the im-

provements over NAS-FPNLite.

MnasFPN and No-Expand differ only in the use of ex-

pansions in the MnasFPN block. No-Expand’s performance

is significantly below that of MnasFPN. A closer inspection

of the learned architectures shows that the model reduces

the channel size C to 16 while increasing the number of in-

termediate nodes. This is a sub-optimal design strategy, on

which the NAS controllers got stuck repeatedly. As a re-

sult, the entire performance frontier (during search) seems

sub-optimal compared to those of other searches (Fig. 6).

4.6. Ablation on Latency­aware Search

Our work is the first to introduce latency-aware training

in architecture search for object detection. To investigate

the gain of the latency signal, we compare MnasFPN with

NAS-FPNLite and NAS-FPNLite-S.

According to Fig. 7, MnasFPN shows a superior

latency-accuracy tradeoff than NAS-FPNLite. At 187 ms,

MnasFPN achieves 24.9 mAP that is unmatched even by

the NAS-FPNLite model at 205 ms. While the latency dif-

ferential constitutes a mere 9% in terms of end-to-end la-

tency, it amounts to around 22% improvement considering

the latency portion excluding the backbone.

NAS-FPNLite-S also performs better than NAS-

FPNLite, but only by a moderate amount. This indicates

that the MNASNet-styled latency-aware search is an effec-

tive strategy overall, but the primary factor of MnasFPN’s

Figure 6. Proxy task performance vs. simulated latency frontiers

of various search spaces. This figure represents the NAS con-

troller’s view on the problem, where latency is simulated using

LUT and quality is computed on the proxy task, which correlates

with but is not directly comparable to mAPs of the real task.

Figure 7. Performance comparisons between MnasFPN and vari-

ous ablation designs. Latency is measured on Pixel 1 and mAP is

computed on COCO val2017.

success is instead the search space design.

4.7. Connectivity Search

To assess whether the MnasFPN search space was suf-

ficiently large, we compare with Conn-Search (Sec. 3.4)

where each block can take a maximum of D = 4 inputs.

As shown in Fig. 7, despite having a larger search space

that subsumes MnasFPN, Conn-Search has a suboptimal

latency-accuracy tradeoff. In Fig. 6 we see that its per-

formance frontier on the proxy task is slightly worse than

that of MnasFPN, suggesting that the controller is unable

to sufficiently explore the search space. Table 2 shows that

the cardinality of Conn-Search is roughly 1042, greatly sur-

passes the cardinalities of the two known successful appli-

cations of the MnasNet framework: MnasNet (1013) and
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Model Repeats mAP Latency (ms) MAdds (B) Params (M)

MnasFPN 4 24.9 187 0.90 2.5
5 25.5 196 0.94 2.6

No SDO 4 24.9 195 0.94 2.5
5 25.5 207 1.0 2.6

Table 3. Ablation study of SDO. SDO does not affects parameters

that much but reduces both MAdds and latency.

NAS-FPN (1022).

This result reiterates the significance of the co-adaptation

of search spaces and search algorithms. While it is tempting

to believe that NAS eliminates the need for manual tuning,

and that one only needs to innovate a sufficiently power-

ful search space that subsumes all search spaces, the reality

is that the search algorithm is not yet powerful enough to

address arbitrarily large search spaces. Therefore, iterative

shrinking and co-adaptation of search spaces, as practiced

in the original NAS paper [33], are still relevant.

4.8. Ablation on SDO

To understand the impact of SDO, we disable SDO of the

MnasFPN architectures with 4 and 5 repeats, respectively.

Models with no SDO will perform 1×1 convolution before

resizing, which will be less economical for down-sampling

operations, and the discovered MnasFPN architecture as it

is dominated by down-sampling operations (Fig. 2).

Unsurprisingly, we see from Table 3 that disabling SDO

does not affect the mAP, but would lead to a 8 to 11ms (4−
6%) latency regression. Similarly if we consider the portion

of the network without the backbone, this amounts to 12%
to 14% of the latency that is “optimizable“. Given this strict

dominance we conclude that the effectiveness of SDO is

sufficiently evident and do not conduct search experiments

without SDO for the ablation study.

4.9. Performance Comparison on COCO Test­dev

We compare MnasFPN under different backbones and

with other state-of-the-art on-device detection heads. 3

As shown in Table 1, with the same MobileNetV2 back-

bone, MnasFPN achieves 1.0 mAP improvement over

NAS-FPNLite. Furthermore, MnasFPN is 10% faster in

end-to-end latency, or 25% faster in terms of latency in-

curred outside the backbone.

Since SSDLite is generally much faster than MnasFPN ,

we compare the two either by applying width-multipler

or changing the backbone. With a 0.7 width-multiplier

on both head and backbone, MnasFPN with MobileNetV2

achieves 1.8 higher mAP compared with SSDLite with

MobileNetV3 at around 120 ms. Here the MobileNetV3 re-

sults use the channel-halving trick, which tends to reduce

3The COCO test-dev mAPs are produced from a more time-consuming

setup (Sec. 4.2) than the COCO val2017 mAPs for internal comparisons,

hence the performances differ slightly as well.

latency with no mAP degradation, while our results do not.

Removing this trick for both shows a further 20 ms latency

advantage for MnasFPN.

When paired with MobileNetV3 backbone, MnasFPN is

3.4 mAP higher than SSDLite with MobileNetV2 at around

165 ms. It is both faster and 2.5 mAP higher than SSDLite

with MnasNet-A1 backbone.

Therefore, we conclude that MnasFPN compares favor-

ably to both SSDLite and NAS-FPNLite head in its ability

to trade off latency with accuracy.

5. Conclusion

In this paper, we show the benefits of treating object de-

tection as a first-class citizen in NAS. Unlike previous work

that transfers learned backbone from classification, our

work directly searches for object detection architectures.

Additionally, we design the search process and, more im-

portantly, the search space to incorporate knowledge about

the targeted platform. Our proposed MnasFPN search space

has two innovations. First, MnasFPN incorporates inverted

residual blocks into the detection head, which is proven to

be favored on mobile CPUs. Second, MnasFPN restruc-

tured the reshaping and convolution operations in the head

to facilitate efficient merging of information across scales.

Through detailed ablation studies, we’ve discovered that

both innovations in the search space are necessary for the

performance boost. On the other hand, further expanding

the search space in feature map connectivity seems to over-

whelm the NAS framework. As a result, we conclude that

the proposed MnasFPN search space may be close to the

capacity of this controller. As the controller becomes more

powerful, the MnasFPN with connectivity search could be-

come viable again.

On COCO test-dev MnasFPN leads to a 25% improve-

ment in non-backbone latency over NAS-FPNLite. The im-

provements are so substantial that the rest of the network

becomes the bottleneck for performance improvements. For

example, the backbone, which currently occupies over 60%
of the total latency, could be searched either conditioning on

or jointly with the MnasFPN head. This seems promising

with our anecdotal evidence in Table 1 that MnasFPN pairs

well with MobileNetV3 and depth-multiplied MobileNetV2

backbones. While the cardinality of a joint-search of back-

bone and the head is challenging for our current controller,

recent one-shot NAS methods are opening avenues for more

ambitious search spaces, of which MnasFPN could be an

ideal component.
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