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Abstract

Monocular 3D object detection is an essential compo-

nent in autonomous driving while challenging to solve, es-

pecially for those occluded samples which are only par-

tially visible. Most detectors consider each 3D object as an

independent training target, inevitably resulting in a lack

of useful information for occluded samples. To this end,

we propose a novel method to improve the monocular 3D

object detection by considering the relationship of paired

samples. This allows us to encode spatial constraints for

partially-occluded objects from their adjacent neighbors.

Specifically, the proposed detector computes uncertainty-

aware predictions for object locations and 3D distances for

the adjacent object pairs, which are subsequently jointly

optimized by nonlinear least squares. Finally, the one-

stage uncertainty-aware prediction structure and the post-

optimization module are dedicatedly integrated for ensur-

ing the run-time efficiency. Experiments demonstrate that

our method yields the best performance on KITTI 3D de-

tection benchmark, by outperforming state-of-the-art com-

petitors by wide margins, especially for the hard samples.

1. Introduction

3D object detection plays an essential role in various

computer vision applications such as autonomous driving,

unmanned aircrafts, robotic manipulation, and augmented

reality. In this paper, we tackle this problem by using a

monocular camera, primarily for autonomous driving use

cases. Most existing methods on 3D object detection re-

quire accurate depth information, which can be obtained

from either 3D LiDARs [8, 30, 34, 35, 23, 45] or multi-

camera systems [6, 7, 20, 29, 32, 41]. Due to the lack

of directly computable depth information, 3D object de-

tection using a monocular camera is generally considered

a much more challenging problem than using LiDARs or

multi-camera systems. Despite the difficulties in computer

vision algorithm design, solutions relying on a monocular

camera can potentially allow for low-cost, low-power, and

deployment-flexible systems in real applications. There-

fore, there is a growing trend on performing monocular

3D object detection in research community in recent years

[3, 5, 26, 27, 31, 36].

Existing monocular 3D object detection methods have

achieved considerable high accuracy for normal objects in

autonomous driving. However, in real scenarios, there are

a large number of objects that are under heavy occlusions,

which pose significant algorithmic challenges. Unlike ob-

jects in the foreground which are fully visible, useful infor-

mation for occluded objects is naturally limited. Straight-

forward methods on solving this problem are to design net-

works to exploit useful information as much as possible,

which however only lead to limited improvement. Inspired

by image captioning methods which seek to use scene graph

and object relationships [10, 22, 42] , we propose to fully

leverage the spatial relationship between close-by objects

instead of individually focusing on information-constrained

occluded objects. This is well aligned with human’s intu-

ition that human beings can naturally infer positions of the

occluded cars from their neighbors on busy streets.

Mathematically, our key idea is to optimize the predicted

3D locations of objects guided by their uncertainty-aware

spatial constraints. Specifically, we propose a novel de-

tector to jointly compute object locations and spatial con-

straints between matched object pairs. The pairwise spa-

tial constraint is modeled as a keypoint located in the geo-

metric center between two neighboring objects, which ef-

fectively encodes all necessary geometric information. By

doing that, it enables the network to capture the geomet-

ric context among objects explicitly. During the predic-

tion, we impose aleatoric uncertainty into the baseline 3D

object detector to model the noise of the output. The un-

certainty is learned in an unsupervised manner, which is

able to enhance the network robustness properties signif-

icantly. Finally, we formulate the predicted 3D locations

as well as their pairwise spatial constraints into a nonlin-

ear least squares problem to optimize the locations with a

graph optimization framework. The computed uncertain-

ties are used to weight each term in the cost function. Ex-

periments on challenging KITTI 3D datasets demonstrate
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that our method outperforms the state-of-the-art competing

approaches by wide margins. We also note that for hard

samples with heavier occlusions, our method demonstrates

massive improvement. In summary, the key contributions

of this paper are as follows:

• We design a novel 3D object detector using a monoc-

ular camera by capturing spatial relationships between

paired objects, allowing largely improved accuracy on

occluded objects.

• We propose an uncertainty-aware prediction module

in 3D object detection, which is jointly optimized to-

gether with object-to-object distances.

• Experiments demonstrate that our method yields the

best performance on KITTI 3D detection benchmark,

by outperforming state-of-the-art competitors by wide

margins.

2. Related Work

In this section, we first review methods on monocular

3D object detection for autonomous driving. Related algo-

rithms on object relationship and uncertainty estimation are

also briefly discussed.

Monocular 3D Object Detection. Monocular image is

naturally of limited 3D information compared with multi-

beam LiDAR or stereo vision. Prior knowledge or auxil-

iary information are widely used for 3D object detection.

Mono3D [5] focuses on the fact that 3D objects are on the

ground plane. Prior 3D shapes of vehicles are also lever-

aged to reconstruct the bounding box for autonomous driv-

ing [28]. Deep MANTA [4] predicts 3D object information

utilizing key points and 3D CAD models. SubCNN [40]

learns viewpoint-dependent subcategories from 3D CAD

models to capture both shape, viewpoint and occlusion pat-

terns. In [1], the network learns to estimate correspon-

dences between detected 2D keypoints and 3D counterparts.

3D-RCNN [19] introduces an inverse-graphics framework

for all object instances from an image. A differentiable

Render-and-Compare loss allows 3D results to be learned

through 2D information. In [17], a sparse LiDAR scan is

used in the training stage to generate training data, which

removes the necessity of using inconvenient CAD dataset.

An alternative family of methods is to predict a stand-alone

depth or disparity information of the monocular image at

the first stage [25, 26, 38, 41]. Although they only require

the monocular image at testing time, ground-truth depth in-

formation is still necessary for the model training.

Compared with the aforementioned works in monocular

3D detection, some algorithms consist of only the RGB im-

age as input rather than relying on external data, network

structures or pre-trained models. Deep3DBox [27] infers

3D information from a 2D bounding box considering the ge-

ometrical constraints of projection. OFTNet [33] presents a

orthographic feature transform to map image-based features

into an orthographic 3D space. ROI-10D [26] proposes a

novel loss to properly measure the metric misalignment of

boxes. MonoGRNet [31] predicts 3D object locations from

a monocular RGB image considering geometric reasoning

in 2D projection and the unobserved depth dimension. Cur-

rent state-of-the-art results for monocular 3D object detec-

tion are from MonoDIS [36] and M3D-RPN [3]. Among

them, MonoDIS [36] leverages a novel disentangling trans-

formation for 2D and 3D detection losses, which simpli-

fies the training dynamics. M3D-RPN [3] reformulates the

monocular 3D detection problem as a standalone 3D region

proposal network. Very recently, several concurrent works

[24, 21] also adopt a keypoint detection strategy similar

to our work. However, all the object detectors mentioned

above focus on predicting each individual object from the

image. The spatial relationship among objects is not con-

sidered. Our work is originally inspired by CenterNet [44],

in which each object is identified by points. Specifically, we

model the geometric relationship between objects by using

a single point similar to CenterNet, which is effectively the

geometric center between them.

Visual Relationship Detection. Relationship plays an es-

sential role for image understanding. To date, it is widely

applied in image captioning. Dai et al. [10] proposes a re-

lational network to exploit the statistical dependencies be-

tween objects and their relationships. MSDB [22] presents

a multi-level scene description network to learn features

of different semantic levels. Yao et al. [42] proposes

an attention-based encoder-decoder framework. through

graph convolutional networks and long short-term memory

(LSTM) for scene generation. However, these methods are

mainly for tackling the effects of visual relationships in rep-

resenting and describing an image. They usually extract

object proposals directly or show full trust for the predicted

bounding boxes. By contrast, our method focuses 3D object

detection, which is to refine the detection results based on

spatial relationships. This is un-explored in existing work.

Uncertainty Estimation in object detection. The com-

puted object locations and pairwise 3D distances of our

method are all predicted with uncertainties. This is in-

spired by the aleatoric uncertainty of deep neural networks

[13, 15]. Instead of fully trusting the results of deep neu-

ral networks, we can extract how uncertain the predictions.

This is crucial for various perception and decision mak-

ing tasks, especially for autonomous driving, where hu-

man lives may be endangered due to inappropriate choices.

This concept has been applied in 3D Lidar object detec-

tion [12] and pedestrian localization [2], where they mainly

consider uncertainties as additional information for refer-

ence. In [39], uncertainty is used to approximate object
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Figure 1: Overview of our architecture. A monocular RGB image is taken as the input to the backbone network and trained

with supervision. Eleven different prediction branches, with feature map as W × H × m, are divided into three parts: 2D

detection, 3D detection and pair constraint prediction. The width and height of the output feature (W,H) are as the same as

the backbone output. Dash lines represent forward flows of the neural network. The heatmap and offset of 2D detection are

also utilized to locate the 3D object center and the pairwise constraint keypoint.

hulls with bounded collision probability for subsequent tra-

jectory planning tasks. Gaussian-YOLO [9] significantly

improves the detection results by predicting the localization

uncertainty. These approaches only use uncertainty to im-

prove the training quality or to provide an additional ref-

erence. By contrast, we use uncertainty to weight the cost

function for post-optimization, integrating the detection es-

timates and predicted uncertainties in global context opti-

mization.

3. Approach

3.1. Overview

We adopt a one-stage architecture, which shares a simi-

lar structure with state-of-the-art anchor-free 2D object de-

tectors [37, 44]. As shown in Figure 1, it is composed of

a backbone network and several task-specific dense predic-

tion branches. The backbone takes a monocular image I
with a size of (Ws×Hs) as input, and outputs the feature

map with a size of (W×H×64), where s is our backbone’s

down-sampling factor. There are eleven output branches

with a size of W × H × m, where m means the channel

of each output branch, as shown in Figure 1. Eleven output

branches are divided into three parts: three for 2D object

detection, six for 3D object detection, and two for pairwise

constraint prediction. We introduce each module in details

as follows.

3.2. 2D Detection

Our 2D detection module is derived from the CenterNet

[44] with three output branches. The heatmap with a size

of (W ×H × c) is used for keypoint localization and clas-

sification. Keypoint types include c = 3 in KITTI3D ob-

ject detection. Details about extracting the object location

cg = (ug, vg) from the output heatmap can be referred in

(a) 3D world space

(b) feature map coordinate (c) top view

image 

plane

Figure 2: Visualization of notations for (a) 3D bounding

box in world space, (b) locations of an object in the output

feature map, and (c) orientation of the object from the top

view. 3D dimensions are in meters, and all values in (b) are

in the feature coordinate. The vertical distance y is invisible

and skipped in (c).

[44]. The other two branches, with two channels for each,

output the size of the bounding box (wb, hb) and the offset

vector (δu, δv) from the located keypoint cg to the bounding

box center cb = (ub, vb) respectively. As shown in Figure

2, those values are in units of the feature map coordinate.

3.3. 3D Detection

The object center in world space is represented as cw =
(x, y, z). Its projection in the feature map is co = (u, v)
as shown in Figure 2. Similar to [26, 36], we predict its

offset (∆u,∆v) to the keypoint location cg and the depth z
in two separate branches. With the camera intrinsic matrix
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(a) camera coordinate

image 

plane

(b) local coordinate

Figure 3: Pairwise spatial constraint definition. cwi and cwj
are centers of two 3D bounding boxes where pw

ij is their

middle point. 3D distance in camera coordinate kw
ij and

local coordinate kv
ij are shown in (a) and (b) respectively.

The distance along y axis is skipped.

K, the derivation from predictions to the 3D center cw is as

follows:

K =





fx 0 ax
0 fy ay
0 0 1



 . (1)

cw = (
ug +∆u − ax

fx
z,

vg +∆v − ay
fy

z, z) (2)

Given the difficulty to regress depth directly, depth predic-

tion branch outputs inverse depth ẑ similar to [11], trans-

forming the absolute depth by inverse sigmoid transforma-

tion z = 1/σ(ẑ) − 1. The dimension branch regresses the

size (w, h, l) of the object in meters directly. The branches

for depth, offset and dimensions in both 2D and 3D detec-

tion are trained with the L1 loss following [44].

As presented in Figure 2, we estimate the object’s local

orientation α following [27] and [44]. Compared to global

orientation β in the camera coordinate system, the local ori-

entation accounts for the relative rotation of the object to

the camera viewing angle γ = arctan(x/z). Therefore, us-

ing the local orientation is more meaningful when dealing

with image features. Similar to [27, 44], we represent the

orientation using eight scalars, where the orientation branch

is trained by MultiBin loss.

3.4. Pairwise Spatial Constraint

In addition to the regular 2D and 3D detection pipelines,

we propose a novel regression target, which is to estimate

the pairwise geometric constraint among adjacent objects

via a keypoint on the feature map. Pair matching strategy

for training and inference is shown in Figure 4a. For arbi-

trary sample pair, we define a range circle by setting the dis-

tance of their 2D bounding box centers as the diameter. This

pair is neglected if it contains other object centers. Figure

4b shows an example image with all effective sample pairs.

(a)

(b)

Figure 4: Pair matching strategy for training and inference.

(a) camera coordinate (b) local coordinate

Figure 5: The same pairwise spatial constraint in camera

and local coordinates from various viewing angles. The

spatial constraint in camera coordinate is invariant among

different view angles. Considering the different projected

form of the car, we use the 3D absolute distance in local

coordinate as the regression target of spatial constraint.

Given a selected pair of objects, their 3D centers in

world space are cwi = (xi, yi, zi) and cwj = (xj , yj , zj)
and their 2D bounding box centers on the feature map are

cbi = (ub
i , v

b
i ) and cbj = (ub

j , v
b
j) . The pairwise constraint

keypoint locates on the feature map as pb
ij = (cbi + cbj)/2.

The regression target for the related keypoint is the 3D dis-

tance of these two objects. We first locate the middle point

pw
ij = (cwi + cwj )/2 = (pwx , p

w
y , p

w
z )ij in 3D space. Then,

the 3D absolute distance kv
ij = (kvx, k

v
y , k

v
z )ij along the

view point direction, as shown in Figure 3b, are taken as

the regression target which is the distance branch of the pair

constraint output in Figure 1. Notice that pb is not the pro-

jected point of pw on the feature map, like cw and cb in

Figure 2.

For training, kv
ij can be easily collected through the

groundtruth 3D object centers from the training data as:

kv
ij =

−−−−−−−→∣

∣R(γij)k
w
ij

∣

∣, (3)

12096



(a) pair constraint prediction (b) object location prediction (c) variables of optimization (d) optimized results

Figure 6: Visualization of optimization for an example pair including. In (a), The predicted pairwise constraint k̃v
ij and its

uncertainty σ̃k
ij is located by predicted 2D bounding box centers (ũb

i , ṽ
b
i ) and (ũb

j , ṽ
b
j) on the feature map. The 3D prediction

results (green points) are shown in (b). All uncertainties are represented as arrows to show a confidence range. We show

variables in (c) for this optimization function as red points. The final optimized results are presented in (d). Our method

is mainly supposed to work for occluded samples. The relatively long distance among the paired cars is for simplicity in

visualization. Properties along v direction is skipped.

where
−−→| · | means extract absolute value of each entry in the

vector. kw
ij = cwi − cwj is the 3D distance in camera coor-

dinate, γij = arctan(pwx /p
w
z ) is the view direction of their

middle point pw
ij , and R(γij) is its rotation matrix along the

Y axis as

R(γij) =





cos(γij) 0 − sin(γij)
0 1 0

sin(γij) 0 cos(γij)



 . (4)

The 3D distance kw in camera coordinate is not con-

sidered because it is invariant from different view angles,

as shown in Figure 5a. As in estimation of the orienta-

tion γ, 3D absolute distance kv in the local coordinate of

pw is more meaningful considering the appearance change

through viewing angles.

In inference, we first estimate objects’ 2D locations and

extract pairwise constraint keypoint located in the middle

of predicted 2D bounding box centers. The predicted k̃v is

extracted in the dense feature map of the distance branch

based on the keypoint location. We do not consider offsets

for this constraint keypoint both in training and reference,

and round the middle point pb
ij of paired objects’ 2D centers

to the nearest grid point on the feature map directly.

3.5. Uncertainty

Following the heteroscedastic aleatoric uncertainty setup

in [15, 16], we represent a regression task with L1 loss as

[ỹ, σ̃] = fθ(x), (5)

L(θ) =

√
2

σ̃
‖y − ỹ‖+ log σ̃. (6)

Here, x is the input data, y and ỹ are the groundtruth re-

gression target and the predicted result. σ̃ is another output

of the model and can represent the observation noise of the

data x. θ is the weight of the regression model.

As mentioned in [15], aleatoric uncertainty σ̃(x) makes

the loss more robust to noisy input in a regression task. In

this paper, we add three uncertainty branches as shown as

σ blocks in Figure 1 for the depth prediction σz , 3D cen-

ter offset σuv and pairwise distance σk respectively. They

are mainly used to weight the error terms as presented in

Section 3.6.

3.6. Spatial Constraint Optimization

As the main contribution of this paper, we propose a

post-optimization process from a graph perspective. Sup-

pose that in one image, the network outputs N effective ob-

jects, and there are M pair constraints among them based

on the strategy in Section 3.4. Those paired objects are

regarded as vertices {ξi}N
G

i=1 with size of NG and the M
paired constraints are regarded as edges of the graph. Each

vertex may connect multiple neighbors. Predicted objects

not connected by other vertices are not updated anymore in

the post-optimization. The proposed spatial constraint opti-

mization is formulated as a nonlinear least square problem

as

argmin
(ui,vi,zi)N

G

i=1

eTWe, (7)

where e is the error vector and W is the weight matrix for

different errors. W is a diagonal matrix with dimension

3NG + 3M . For each vertex ξi, there are three variables

(ui, vi, zi), which are the projected center (ui, vi) of the 3D

bounding box on the feature map and the depth zi as shown
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in Figure 2. We introduce each minimization term in the

following.

Pairwise Constraint Error For each pairwise con-

straint connecting ξi and ξj , there are three error terms

(exij , e
y
ij , e

z
ij) measuring the inconsistency between net-

work estimated 3D distance k̃v
ij and the distance kv

ij ob-

tained by 3D locations cwi and cwj of the two associated ob-

jects. cwi and cwj can be represented by variables (ui, vi, zi),
(uj , vj , zj) and the known intrinsic matrix through Equa-

tion 2. Thus, error terms (exij , e
y
ij , e

z
ij) are the absolute dif-

ference between k̃v
ij and kv

ij along three axis as following.

kv
ij =

−−−−−−−−−−−−−→∣

∣R(γij)(c
w
i − cwj )

∣

∣ (8)

(exij , e
y
ij , e

z
ij)

T =
−−−−−−−→∣

∣

∣
k̃v
ij − kv

ij

∣

∣

∣
(9)

Object Location Error For each vertex ξi, there are three

error terms (eui , e
v
i , e

z
i ) to regularize the optimization vari-

ables with the predicted values from the network. We use

this term to constraint the deviation between network esti-

mated object location and the optimized location as follows.

eui =
∣

∣

∣
ũg
i + ∆̃u

i − ui

∣

∣

∣
(10)

evi =
∣

∣

∣
ṽgi + ∆̃v

i − vi

∣

∣

∣
(11)

ezi = |z̃i − zi| (12)

Weight Matrix The weight matrix W is constructed by

the uncertainty output σ̃ of the network. The weight of the

error is higher when the uncertainty is lower, which means

we have more confidence in the predicted output. Thus, we

use 1/σ̃ as the element of W. For pairwise inconsistency,

the weights for the three error terms (exij , e
y
ij , e

z
ij) are the

same as the predicted 1/σ̃ij as shown in Figure 6a. For ob-

ject location error, the weight is 1/σ̃z
i for depth error ezi and

1/σ̃uv
i for both eui and evi as shown in Figure 6b. We visu-

alize an example pair for the spatial constraint optimization

in Figure 6. Uncertainties give us confidence ranges to tune

variables so that both the pairwise constraint error and the

object location error can be jointly minimized. We use g2o

[18] to conduct this graph optimization structure during im-

plementation.

4. Implementation

We conduct experiments on the challenge KITTI 3D ob-

ject detection dataset [14]. It is split to 3712 training sam-

ples and 3769 validation samples as [6]. Samples are la-

beled from Easy, Moderate, to Hard according to its con-

dition of truncation, occlusions and bounding box height.

Table 1 shows counts of groundtruth pairwise constraints

through the proposed pair matching strategy from all the

training samples.

Count object pair paired object

Car 14357 11110 13620

Pedestrian 2207 1187 1614

Cyclist 734 219 371

Table 1: Count of objects, pairs and paired objects of each

category in the KITTI training set.

4.1. Training

We adopt the modified DLA-34 [43] as our backbone.

The resolution of the input image is set to 380 × 1280.

The feature map of the backbone output is with a size of

96×320×64. Each of the eleven output branches connects

the backbone feature with two additional convolution layers

with sizes of 3 × 3 × 256 and 1 × 1 × m, where m is the

feature channel of the related output branch. Convolution

layers connecting output branches maintain the same fea-

ture width and height. Thus, the feature size of each output

branch is 96× 320×m.

We train the whole network in an end-to-end manner for

70 epochs with a batch-size of 32 on four GPUs simultane-

ously. The initial learning rate is 1.25e-4, dropped by multi-

plying 0.1 both at 45 and 60 epochs. It is trained with Adam

optimizer with weight decay as 1e-5. We conduct differ-

ent data augmentation strategies during training, as random

cropping and scaling for 2D detection, and random horizon-

tal flipping for both 3D detection and pairwise constraints

prediction.

4.2. Evaluation

Following [36], we use 40-point interpolated average

precision metric AP40 that averaging precision results on 40

recall positions except the one where recall is 0. The previ-

ous metric AP11 of KITTI3D average precision on 11 recall

positions, which may trigger bias to some extent. The pre-

cision is evaluated at both the bird-eye view 2D box APbv

and the 3D bounding box AP3D in world space. We report

average precision with intersection over union (IoU) using

both 0.5 and 0.7 as thresholds.

For the evaluation and ablation study, we show experi-

mental results from three different setups. Baseline is de-

rived from CenterNet [44] with an additional output branch

to represent the offset of the 3D projected center to the lo-

cated keypoint. +σz +σuv adds two uncertainty prediction

branches on Baseline which consists of all the three 2D de-

tection branches and six 3D detection branches as shown in

Figure 1. MonoPair is the final proposed method integrat-

ing the eleven prediction branches and the pairwise spatial

constraint optimization.
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Methods
APbv IoU≥0.5 AP3D IoU≥0.5 APbv IoU≥0.7 AP3D IoU≥0.7 RT

E M H E M H E M H E M H (ms)

CenterNet[44]* 34.36 27.91 24.65 20.00 17.50 15.57 3.46 3.31 3.21 0.60 0.66 0.77 45

MonoDIS[36] - - - - - - 18.45 12.58 10.66 11.06 7.60 6.37 -

MonoGRNet[31]* 52.13 35.99 28.72 47.59 32.28 25.50 19.72 12.81 10.15 11.90 7.56 5.76 60

M3D-RPN[3]* 53.35 39.60 31.76 48.53 35.94 28.59 20.85 15.62 11.88 14.53 11.07 8.65 161

Baseline 53.06 38.51 32.56 47.63 33.19 28.68 19.83 12.84 10.42 13.06 7.81 6.49 47

+σz + σuv 59.22 46.90 41.38 53.44 41.46 36.28 21.71 17.39 15.10 14.75 11.42 9.76 50

MonoPair 61.06 47.63 41.92 55.38 42.39 37.99 24.12 18.17 15.76 16.28 12.30 10.42 57

Table 2: AP40 scores on KITTI3D validation set for car. * indicates that the value is extracted by ourselves from the public

pretrained model or results provided by related paper author. E, M and H represent Easy, Moderate and Hard samples.

Methods
AP2D AOS APbv AP3D

E M H E M H E M H E M H

MonoGRNet[31] 88.65 77.94 63.31 - - - 18.19 11.17 8.73 9.61 5.74 4.25

MonoDIS[36] 94.61 89.15 78.37 - - - 17.23 13.19 11.12 10.37 7.94 6.40

M3D-RPN[3] 89.04 85.08 69.26 88.38 82.81 67.08 21.02 13.67 10.23 14.76 9.71 7.42

MonoPair 96.61 93.55 83.55 91.65 86.11 76.45 19.28 14.83 12.89 13.04 9.99 8.65

Table 3: AP40 scores on KITTI3D test set for car referred from the KITTI benchmark website.

Cat Method
APbv AP3D

E M H E M H

Ped
M3D-RPN[3] 5.65 4.05 3.29 4.92 3.48 2.94

MonoPair 10.99 7.04 6.29 10.02 6.68 5.53

Cyc
M3D-RPN[3] 1.25 0.81 0.78 0.94 0.65 0.47

MonoPair 4.76 2.87 2.42 3.79 2.12 1.83

Table 4: AP40 scores on pedestrian and cyclist samples

from the KITTI3D test set at 0.7 IoU threshold. It can be

referred from the KITTI benchmark website.

5. Experimental Results

5.1. Quantitative and Qualitative Results

We first show the performance of our proposed

MonoPair on KITTI3D validation set for car, compared

with other state-of-the-art (SOTA) monocular 3D detectors

including MonoDIS [36], MonoGRNet [31] and M3D-RPN

[3] in Table 2. Since MonoGRNet and M3D-RPN have

not published their results through AP40, we evaluate the

related values through their published detection results or

models.

As shown in Table 2, although our baseline is only com-

parable or a little worse than SOTA detector M3D-RPN,

MonoPair outperforms all the other detectors mostly by a

large margin, especially for hard samples with augmen-

tations from the uncertainty and the pairwise spatial con-

straint. Table 3 shows results of our MonoPair on the

KITTI3D test set for car. From the KITTI 3D object de-

tection benchmark1, we achieve the highest score for Mod-

erate samples and rank at the first place among those 3D

monocular object detectors without using additional infor-

mation. AP2D and AOS are metrics for 2D object detection

and orientation estimations following the benchmark. Apart

from the Easy result of APbv and AP3D, our method out-

performs M3D-RPN for a large margin, especially for Hard

samples. It proves the effects of the proposed pairwise con-

straint optimization targeting for highly occluded samples.

We show the pedestrian and cyclist detection results on

the KITTI test set in Table 4. Because MonoDIS [36] and

MonoGRNet [31] do not report their performance on pedes-

trian and cyclist categories, we only compare our method

with M3D-RPN [3]. It presents a significant improvement

from our MonoPair. Even though the relatively few train-

ing samples of pedestrian and cyclist, the proposed pairwise

spatial constraint goes much deeper by utilizing object rela-

tionships compared with target-independent detectors.

Besides, compared with those methods relying on time-

consuming region proposal network [3, 36], our one-stage

anchor-free detector is more than two times faster on an

Nvidia GTX 1080 Ti. It can perform inference in real-time

as 57 ms per image, as shown in Table 2.

5.2. Ablation Study

We conduct two ablation studies for different uncer-

tain terms and the count of pairwise constraints both on

KITTI3D validation set through AP40. We only show re-

sults from Moderate samples here.

1http://www.cvlibs.net/datasets/kitti/eval object.php?obj benchmark=3d
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Figure 7: Qualitative results in KITTI validation set. Cyan, yellow and grey mean predictions of car, pedestrian and cyclist.

Uncertainty
IoU≥0.5 IoU≥0.7

APbv AP3D APbv AP3D

Baseline 38.51 33.19 12.84 7.81

+σuv 42.79 38.75 14.38 8.96

+σz 45.09 40.46 15.79 10.15

+σz + σuv 46.90 41.46 17.39 11.42

Table 5: Ablation study for different uncertainty terms.

pairs images
APbv AP3D

Uncert. MonoPair Uncert. MonoPair

0-1 1404 10.40 10.44 5.41 6.02

2-4 1176 13.25 14.00 8.46 8.97

5-8 887 20.45 22.32 14.63 15.54

9- 302 25.49 25.87 17.98 18.94

Table 6: Ablation study for improvements among different

pair counts through 0.7 IoU.

For uncertainty study, except the Baseline and +σz +
σuv setups mentioned above, we add σz and σuv meth-

ods by only predict the depth or projected offset uncertainty

based on the Baseline. From Table 5, uncertainties predic-

tion from both depth and offset show considerable devel-

opment above the baseline, where the improvement from

depth is larger. The results match the fact that depth predic-

tion is a much more challenging task and it can benefit more

from the uncertainty term. It proves the necessity of impos-

ing uncertainties for 3D object prediction, which is rarely

considered by previous detectors.

In terms of the pairwise constraint, we divide the valida-

tion set to different parts based on the count of groundtruth

pairwise constraints. The Uncert. in Table 6 represents

+σz + σuv for simplicity. By checking both the APbv and

AP3D in Table 6, the third group with 5 to 8 pairs shows

higher average precision improvement. A possible explana-

tion is that fewer pairs may not provide enough constraints,

and more pairs may increase the complexity of the opti-

mization.

Also, to prove the utilization of using uncertainties to

weigh related errors, we tried various strategies for weight

matrix designing, for example, giving more confidence for

objects closed to the camera or setting the weight matrix

as identity. However, none of those strategies showed im-

provements in the detection performance. On the other

hand, the baseline is easily dropped to be worse because of

coarse post-optimization. It shows that setting the weight

matrix of the proposed spatial constraint optimization is

nontrivial. And uncertainties, besides its original func-

tion to enhance network training, is naturally a meaningful

choice for weights of different error terms.

6. Conclusions

We proposed a novel post-optimization method for 3D

object detection with uncertainty-aware training from a

monocular camera. By imposing aleatoric uncertainties into

the network and considering spatial relationships for ob-

jects, our method has achieved the state-of-the-art perfor-

mance on KITTI 3D object detection benchmark using a

monocular camera without additional information. By ex-

ploring the spatial constraints of object pairs, we observed

the enormous potential of geometric relationships in object

detection, which was rarely considered before. For future

work, finding spatial relationships across object categories

and innovating pair matching strategies would be exciting

next steps.
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