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Figure 1. We introduce Open Annotations of Single-Image Surfaces (OASIS), a large-scale dataset of human annotations of 3D surfaces

for 140,000 images in the wild. More examples in the supplementary material.

Abstract

Single-view 3D is the task of recovering 3D properties

such as depth and surface normals from a single image.

We hypothesize that a major obstacle to single-image 3D

is data. We address this issue by presenting Open An-

notations of Single Image Surfaces (OASIS), a dataset for

single-image 3D in the wild consisting of annotations of de-

tailed 3D geometry for 140,000 images. We train and eval-

uate leading models on a variety of single-image 3D tasks.

We expect OASIS to be a useful resource for 3D vision re-

search. Project site: https://pvl.cs.princeton.

edu/OASIS.

1. Introduction

Single-view 3D is the task of recovering 3D properties

such as depth and surface normals from a single RGB im-

age. It is a core computer vision problem of critical im-

portance. 3D scene interpretation is a foundation for under-

standing events and planning actions. 3D shape representa-

tion is crucial for making object recognition robust against

changes in viewpoint, pose, and illumination. 3D from a

single image is especially important due to the ubiquity of

monocular images and videos. Even with a stereo camera

with which 3D can be reconstructed by triangulating match-

ing pixels from different views, monocular 3D cues are still

necessary in textureless or specular regions where it is dif-

ficult to reliably match pixel values.

Single-image 3D is challenging. Unlike multiview 3D,

it is ill-posed and resists tractable analytical formulation

except in the most simplistic settings. As a result, data-

driven approaches have shown greater promise, as evi-

denced by a plethora of works that train deep networks to

map an RGB image to depth, surface normals, or 3D mod-

els [11, 17, 36, 14, 43, 24]. However, despite substantial

progress, the best systems today still struggle with handling

scenes “in the wild”— arbitrary scenes that a camera may

encounter in the real world. As prior work has shown [5],

state-of-art systems often give erroneous results when pre-

sented with unfamiliar scenes with novel shapes or layouts.

We hypothesize that a major obstacle of single-image

3D is data. Unlike object recognition, whose progress has

been propelled by datasets like ImageNet [10] covering

diverse object categories with high-quality labels, single-

image 3D has lacked an ImageNet equivalent that covers

diverse scenes with high-quality 3D ground truth. Ex-

isting datasets are restricted to either a narrow range of

scenes [31, 9] or simplistic annotations such as sparse rela-

tive depth pairs or surface normals [5, 7].

In this paper we introduce Open Annotations of Single-

Image Surfaces (OASIS), a large-scale dataset for single-

image 3D in the wild. It consists of human annotations that
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enable pixel-wise reconstruction of 3D surfaces for 140,000

randomly sampled Internet images. Fig. 1 shows the human

annotations of example images along with the reconstructed

surfaces.

A key feature of OASIS is its rich annotations of human

3D perception. Six types of 3D properties are annotated for

each image: occlusion boundary (depth discontinuity), fold

boundary (normal discontinuity), surface normal, relative

depth, relative normal (orthogonal, parallel, or neither), and

planarity (planar or not). These annotations together enable

a reconstruction of pixelwise depth.

To construct OASIS, we created a UI for interactive 3D

annotation. The UI allows a crowd worker to annotate the

aforementioned 3D properties. It also provides a live, rotat-

able rendering of the resulting 3D surface reconstruction to

help the crowd worker fine-tune their annotations.

It is worth noting that 140,000 images may not seem very

large compared to millions of images in datasets like Ima-

geNet. But the number of images can be a misleading met-

ric. For OASIS, annotating one image takes 305 seconds

on average. In contrast, verifying a single image-level label

takes no more than a few seconds. Thus in terms of the to-

tal amount of human time, OASIS is already comparable to

millions of image-level labels.

OASIS opens up new research opportunities on a wide

range of single-image 3D tasks—depth estimation, sur-

face normal estimation, boundary detection, and instance

segmentation of planes—by providing in-the-wild ground

truths either for the first time, or at a much larger scale than

prior work. For depth estimation and surface normals, pix-

elwise ground truth is available for images in the wild for

the first time—prior data in the wild provide only sparse an-

notations [5, 6]. For the detection of occlusion boundaries

and folds, OASIS provides annotations at a scale 700 times

larger than prior work—existing datasets [33, 15] have an-

notations for only about 200 images. For instance segmen-

tation of planes, ground truth annotation is available for im-

ages in the wild for the first time.

To facilitate future research, we provide extensive statis-

tics of the annotations in OASIS, and train and evaluate

leading deep learning models on a variety of single-image

tasks. Experiments show that there is a large room for per-

formance improvement, pointing to ample research oppor-

tunities for designing new learning algorithms for single-

image 3D. We expect OASIS to serve as a useful resource

for 3D vision research.

2. Related Work

3D Ground Truth from Depth-Sensors and Computer

Graphics Major 3D datatsets are either collected by sen-

sors [31, 12, 29, 30, 9] or synthesized with Computer

Graphics [4, 23, 32, 22, 26]. But due to the limitations

of depth sensors and the lack of varied 3D assets for render-

ing, the diversity of scenes is quite limited. For example,

sensor-based ground truth is mostly for indoor or driving

scenes [31, 9, 23, 32, 12].

3D Ground Truth from Multiview Reconstruction

Single-image 3D training data can also be obtained by ap-

plying classical Structure-from-Motion (SfM) algorithms

on Internet images or videos [18, 38, 6]. However, classical

SfM algorithms have many well known failure modes in-

cluding scenes with moving objects and scenes with specu-

lar or textureless surfaces. In contrast, humans can annotate

all types of scenes.

3D Ground Truth from Human Annotations Our work

is connected to many previous works that crowdsource 3D

annotations of Internet images. For example, prior work has

crowdsourced annotations of relative depth [5] and surface

normals [7] at sparse locations of an image (a single pair of

relative depth and a single normal per image). Prior work

has also aligned pre-existing 3D models to images [39, 34].

However, this approach has a drawback that not every shape

can be perfectly aligned with available 3D models, whereas

our approach can handle arbitrary geometry.

Our work is related to that of Karsch et al. [15], who

reconstruct pixelwise depth from human annotations of

boundaries, with the aid of a shape-from-shading algo-

rithm [2]. Our approach is different in that we annotate not

only boundaries but also surface normals, planarity, and rel-

ative normals, and our reconstruction method does not rely

on automatic shape from shading, which is still unsolved

and has many failure modes.

One of our inspirations is LabelMe3D [28], which anno-

tated 3D planes attached to a common ground plane. An-

other is OpenSurfaces [3], which also annotated 3D planes.

We differ from LabelMe3D and OpenSurfaces in that our

annotations recover not only planes but also curved sur-

faces. Our dataset is also much larger, being 600× the

size of LabelMe3D and 5× of OpenSurfaces in terms of

the number of images annotated. It is also more diverse,

because LabelMe3D and OpenSurface include only city or

indoor scenes.

3. Crowdsourcing Human Annotations

We use random keywords to query and download Cre-

ative Commons Flickr images with a known focal length

(extracted from the EXIF data). Each image is presented

to a crowd worker for annotation through a custom UI as

shown in Fig. 2 (a). The worker is asked to mask out

a region that she wishes to work on with a polygon of

her choice, with the requirement that the polygon covers

a pair of randomly pre-selected locations. She then works

on the annotations and iteratively monitors the generated

mesh (detailed in Sec 4) from an interactive preview win-

dow (Fig. 2 (a)).
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Figure 2. (a) Our UI allows a user to annotate rich 3D properties and includes a preview window for interactive 3D visualization. (b) An

illustration of the depth scaling procedure in our backend.

Occlusion Boundary and Fold An occlusion boundary de-

notes locations of depth discontinuity, where the surface

on one side is physically disconnected from the surface on

the other side. When it is drawn, the worker also speci-

fies which side of the occlusion is closer to the viewer, i.e.

depth order of the surfaces on both sides of the occlusion.

Workers need to distinguish between two kinds of occlu-

sion boundaries. Smooth occlusion (green in Fig 2 (a)) is

where the the closer surface smoothly curves away from the

viewer, and the surface normals should be orthogonal to the

occlusion line and parallel to the image plane, and pointing

toward the further side. Sharp occlusion (red in Fig 2 (a))

has none of these constraints. On the other hand, fold de-

notes locations of surface normal discontinuity, where the

surface geometry changes abruptly, but the surfaces on the

two sides of the fold are still physically attached to each

other (orange in Fig 2 (a)).

Occlusion boundaries segment a region into subregions,

each of which is a continuous surface whose geometry can

change abruptly but remains physically connected in 3D.

Folds further segment a continuous surface into smooth sur-

faces where the geometry vary smoothly without disconti-

nuity of surface normals.

Surface Normal The worker first specifies if a smooth sur-

face is planar or curved. She annotates one normal at each

planar surface which indicates the orientation of the plane.

For each curved surface, she annotates normals at as many

locations as she sees fit. A normal is visualized as a blue

arrow originating from a green grid (see supplementary ma-

terial), rendered in perspective projection according to the

known focal length. Such visualization helps workers per-

ceive the normal in 3D [7]. To rotate and adjust the normal,

the worker only needs to drag the mouse.

Relative Normal Finally, to annotate normals with higher

accuracy, the worker specifies the relative normal between

each pair of planar surfaces. She chooses between Neither,

Parallel and Orthogonal. Surfaces pairs that are parallel or

orthogonal to each other then have their normals adjusted

automatically to reflect the relation.

Interactive Previewing While annotating, the worker can

click a button to see a visualization of the 3D shape con-

structed from the current annotations (detailed later in

Sec. 4). Workers can rotate or zoom to inspect the shape

from different angles in a preview window (Fig 2 (a)). She

keeps working on it until she is satisfied with the shape.

Quality Control Completing our 3D annotation task re-

quires knowledge of relevant concepts. To ensure good

quality of the dataset, we require each worker to complete

a training course to learn concepts such as occlusions, folds

and normals, and usage of the UI. She then needs to pass a

qualification quiz before being allowed to work on our an-

notation task. Besides explicitly selecting qualified work-

ers, we also set up a separate quality verification task on

each collected mesh. In this task, a worker inspects the

mesh to judge if it reflects the image well. Only meshes

deemed high quality are accepted.

To improve our annotation throughput, we collected an-

notations from two sources: Amazon Mechanical Turk,

which accounts for 31% of all annotations, and a data an-

notation company that employs full-time annotators, who

supplied the rest of the annotations.

4. From Human Annotations to Dense Depth

Because humans do not directly annotate the depth value

of each pixel, we need to convert the human annotations to

pixelwise depth in order to visualize the 3D surface.

Generating Dense Surface Normals We first describe how

we generate dense surface normals from annotations. We

assume the normals to be smoothly varying in the spatial

domain, except across folds or occlusion boundaries where

the normals change abruptly. Therefore, our system propa-

gates the known normals to the unknown ones by requiring

the final normals to be smooth overall, but stops the propa-
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Figure 3. Statistics of OASIS. (a) The distribution of focal length (unit: relative length to the image width). (b) The distribution of surface

normals. (c) Boundary: the ratio of regions containing only occlusion, only fold, and both. Curvature: the distribution of regions containing

only planes, only curved surfaces, and both. (d) The frequency distribution of each surface type in a region.

gation at fold and occlusion lines.

More concretely, let Np denote the normal at pixel p

on a normal map N , and F , O denotes the pixels belong

to the folds and occlusion boundaries. We have a set of

known normals Ñ at locations Pknown from (1) surface nor-

mal annotations by workers, and (2) the pre-computed nor-

mals along the smooth occlusion boundaries as mentioned

in Sec 3. Each pixel p has four neighbors Φ(p). If p is on an

occlusion boundary, its neighbors on the closer side of this

boundary are ΓO(p). If p is on a fold line, only its neighbors

ΓF (p) on one fixed random side of this line are considered.

We solve for the optimal normal N∗ using LU factorization

and then normalize it into unit norm:

N∗ = argmin
N

∑

p 6∈F∪O

∑

q∈Φ(p)
q 6∈F∪O

|Np −Nq|
2+

∑

p∈O

∑

q∈ΓO(p)

|Np −Nq|
2 +

∑

p∈F

∑

q∈ΓF (p)

|Np −Nq|
2

(1)

s.t. Np = Ñp, ∀p ∈ Pknown (2)

Generating Dense Depth Our depth generation pipeline

consists of two stages: First, from surface normals and fo-

cal length, we recover the depth of each continuous sur-

face through integration [25]. Next, we adjust the depth or-

der among these surfaces by performing surface-wise depth

scaling (Fig. 2 (b)), i.e. each surface has its own scale factor.

Our design is motivated by this fact: in single-view depth

recovery, depth within continuous surface can be recovered

only up to an ambiguous scale; thus different surfaces may

end up with different scales, leading to incorrect depth or-

dering between surfaces. But workers already decide which

side of an occlusion boundary is closer to the viewer. Based

on such knowledge, we correct depth order by scaling the

depth of each surface.

We now describe the details. Let S denotes the set of all

continuous surface. From integration, we obtain the depth

ZS of each S ∈ S. We then solve for a scaling factor XS for

each S, which is used in scaling depth ZS . Let O denote the

set of occlusion boundaries. Along O, we densely sample

a set of point pairs B. Each pair (p, q) ∈ B has p lying on

the closer side of one of the occlusion boundaries Oi ∈ O

and q the further side. The continuous surface a pixel p lies

on is S(p), and its depth is Zp. The set of optimal scaling

factors X∗ is solved for as follows:

X
∗ = argmin

X

∑

S∈S

XS (3)

s.t. XS(p)Zp + ǫ ≤ XS(q)Zq, ∀(p, q) ∈ B (4)

XS ≥ η, ∀S ∈ S (5)

where ǫ > 0 is a minimum separation between surfaces, and

η > 0 is a minimum scale factor. Eq.(4) requires the sur-

faces to meet the depth order constraints specified by point

pairs (p, q) ∈ B after scaling. Meanwhile, Eq.(3) constrains

the value of X so that they do not increase indefinitely. Af-

ter correcting the depth order, the final depth for surface S

is X∗
SZS . We normalize and reproject the final depth to 3D

as point clouds, and generate 3D meshes for visualization.

5. Dataset Statistics

Statistics of Surfaces Fig. 3 plots various statistics of the

3D surfaces. Fig. 3 (a) plots the distribution of focal length.

We see that focal lengths in OASIS vary greatly: they range

from wide angle to telezoom, and are mostly 1× to 10× of

the width of the image. Fig. 3 (b) visualizes the distribu-

tion of surface normals. We see that a substantial propor-

tion of normals point directly towards the camera, suggest-

ing that parallel-frontal surfaces frequently occur in natural

scenes. Fig. 3 (c) presents region-wise statistics. We see

that most regions (90%+) contain occlusion boundaries and

close to half have both occlusion boundaries and folds (top).

We also see that most regions (70%+) contain at least one

curve surface (bottom). Fig. 3 (d) shows the histogram of
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NYU Depth [31] (depth mean: 2.471 m, depth std: 0.754 m) Tanks & Temples [16] (depth mean: 4.309m, depth std: 3.059m)

Human-Human Human-Sensor CNN-Sensor Human-Human Human-Sensor CNN-Sensor

Depth (EDist) 0.078m 0.095m 0.097m [17] 0.194m 0.213m 0.402m [17]

Normals (MAE) 13.13◦ 17.82◦ 14.19◦ [44] 14.33◦ 20.29◦ 29.11◦ [44]

Post-Rotation Depth (EDist) 0.037m 0.048m - 0.082m 0.080m -

Depth Order (WKDR) 5.68% 8.67% 11.90% 9.28% 10.80% 32.13%

Table 1. Depth and normal difference between different humans (Human-Human), between human and depth sensor (Human-Sensor), and

between ConvNet and depth sensor (CNN-Sensor). The results are averaged over all human pairs.

Figure 4. Humans estimate shape correctly but the absolute orientation can be slightly off, causing large depth error after perspective

back-projection into 3D. Depth error drops significantly (from 0.07m to 0.01m) after a global rotation of normals.

the number of different kinds of surfaces in an annotated

region. We see that most regions consist of multiple dis-

connected pieces and have non-trivial geometry in terms of

continuity and smoothness.

Annotation Quality We study how accurate and consis-

tent the annotations are. To this end, we randomly sam-

ple 50 images from NYU Depth [31] and 70 images from

Tanks and Temples [16], and have 20 workers annotate each

image. Tab. 1 reports the depth and normal difference be-

tween human annotations, between human annotations and

sensor ground truth, and between predictions from state-of-

the-art ConvNets and sensor ground truth. Depth difference

is measured by the mean Euclidean distance (EDist) be-

tween corresponding points in two point clouds, after align-

ing one to the other through a global translation and scaling

(surface-wise scaling for human annotations and CNN pre-

dictions). Normal difference is measured in Mean Angular

Error (MAE). We see in Tab. 1 that human annotations are

highly consistent with each other and with sensor ground

truth, and are better than ConvNet predictions, especially

when the ConvNet is not trained and tested on the same

dataset.

We observe that humans often estimate the shape cor-

rectly, but the overall orientation can be slightly off, caus-

ing a large depth error against sensor ground truth (Fig. 4).

This error can be particularly pronounced for planes close

to orthogonal to the image plane. Thus we also compute

the error after a rotational alignment with the sensor ground

truth—we globally rotate the human annotated normals (up

to 30 degrees) before generating the shape. After account-

ing for this global rotation of normals, human-sensor depth

difference is further reduced by 47.96% (relative) for NYU

and 62.44% (relative) for Tanks and Temples; a significant

drop of normal error is also observed in human-human dif-

ference.

We also measure the qualitative aspect of human annota-

tions by evaluating the WKDR metric [5], i.e. the percent-

age of point pairs with inconsistent depth ordering between

query and reference depth. Depth pairs are sampled in the

same way as [5]. Tab. 1 again shows that human annota-

tions are qualitatively accurate and highly consistent with

each other.

It is worth noting that metric 3D accuracy is not re-

quired for many tasks such as navigation, object manipu-

lation, and semantic scene understanding—humans do well

without perfect metric accuracy. Therefore human percep-

tion of depth alone can be the gold standard for training and

evaluating vision systems, regardless of its metric accuracy.

As a result, our dataset would still be valuable even if it

were less metrically accurate than it is currently.

6. Experiments

To facilitate future research, we use OASIS to train and

evaluate leading deep learning models on a suite of single-

image 3D tasks including depth estimation, normal estima-

tion, boundary detection, plane segmentation. Qualitative

results are shown in Fig. 5. A train-val-test split of 110K,

10K, 20K is used for all tasks.

For each task we estimate human performance to pro-

vide an upperbound accounting for the variance of human

annotations. We randomly sample 100 images from the test

set, and have each image re-annotated by 8 crowd workers.

That is, each image now has “predictions” from 8 different

humans. We evaluate each prediction and report the mean

as the performance expected of an average human.

683



Image Depth Normal Occlusion Fold Planar Inst Image Depth Normal Occlusion Fold Planar Inst

Figure 5. Qualitative outputs of the four tasks from representative models. More details and examples are in the supplementary material.

6.1. Depth Estimation

We first study single-view depth estimation. OASIS pro-

vides pixelwise metric depth in the wild. But as discussed in

Sec 4, due to inherent single-image ambiguity, depth in OA-

SIS is independently recovered within each continuous sur-

face, after which the depth undergoes a surface-wise scal-

ing to correct the depth order. The recovered depth is only

accurate up to scaling within each continuous surface and

ordering between continuous surfaces.

Given this, in OASIS we provide metric depth ground

truths that is surface-wise accurate up to a scaling factor.

This new form of depth necessitates new evaluation metrics

and training losses.

Depth Metric The images in OASIS have varied focal

lengths. This means that to evaluate depth estimation, we

cannot simply use pixelwise difference between a predicted

depth map and the ground truth map. This is because the

predicted 3D shape depends greatly on the focal length—

given the same depth values, decreasing the focal length

will flatten the shape along the depth dimension. In practice,

the focal length is often unknown for a test image. Thus, we

require a depth estimator to predict a focal length along with

depth. Because the predicted focal length may differ from

the ground truth focal length, pixelwise depth difference is

a poor indicator of how close the predicted 3D shape is to

the ground truth.

A more reasonable metric is the Euclidean distance

between the predicted and ground-truth 3D point cloud.

Concretely, we backproject the predicted depth Z to a

3D point cloud P = {(Xp, Yp, Zp)} using f (the pre-

dicted focal length), and ground truth depth Z∗ to P
∗ =

{(X∗
p , Y

∗
p , Z

∗
p )} using f∗ (the ground truth focal length).

We then calculate the distance between P and P
∗.

The metric also needs to be invariant to surface-wise

depth scaling and translation. Therefore we introduce a

surface-wise scaling factor λSi
∈ Λ, and a surface-wise

translation δSi
∈ ∆, to align each predicted surface Si ∈ S

in P to the ground truth point cloud P
∗ in a least square

manner. The final metric, which we call Locally Scale-

Invariant RMSE (LSIV RMSE), is defined as:

LSIV RMSE(Z,Z∗) = min
Λ,∆

∑

p

(
(X∗

p , Y
∗
p , Z

∗
p )

σ(X∗)

− λS(p)(Xp, Yp, Zp)− (0, 0, δS(p)))
2,

(6)

where S(p) denotes the surface a pixel p is on. The ground

truth point cloud P
∗ is normalized to a canonical scale by

the standard deviation of its X coordinates σ(X∗). Under

this metric, as long as P is accurate up to scaling and trans-

lation, it will align perfectly with P
∗, and get 0 error.

Note that LSIV RMSE ignore the ordering between two

separate surfaces; it allows objects floating in the air to be

arbitrarily scaled. This is typically not an issue because in

most scenes there are not many objects floating in the air.

But we nonetheless also measure the correctness of depth

ordering. We report WKDR [5], which is the percentage of

point pairs that have incorrect depth order in the predicted

depth. We evaluate on depth pairs sampled in the same way

as [5], i.e. half are random pairs, half are from the same

random horizontal lines.

Models We train and evaluate two leading depth esti-

mation networks on OASIS: the Hourglass network [5],

and ResNetD [38], a dense prediction network based on

ResNet50. Each network predicts a metric depth map and a

focal length, which are together used to backproject pixels

to 3D points, which are compared against the ground truth

to compute the LSIV RMSE metric, which we optimize as

the loss function during training. Note that we do not super-

vise on the predicted focal length.

We also evaluate leading pre-trained models that esti-

mate single-image depth on OASIS, including FCRN [17]

trained on ILSVRC [27] and NYU Depth [31], Hour-

glass [18] trained on MegaDepth [18], ResNetD [38] trained

on a combination of datasets including ILSVRC [27], Depth

in the Wild [5], ReDWeb [38] and YouTube3D [6]. For net-

works that do not produce a focal length, we use the valida-

tion set to find the best focal length that leads to the smallest

LSIV RMSE, and use this focal length for each test image.

In addition, we also evaluate plane, a naive baseline that

predicts a uniform depth map.

Tab. 2 reports the results. In terms of metric depth,

we see that networks trained on OASIS perform the best.

This is expected because they are trained to predict a focal

length and to directly optimize the LSIV RMSE metric. It is

noteworthy that ImageNet pretraining provides a significant

benefit even for this purely geometrical task. Off-the-shelf

models do not perform better than the naive baseline, proba-

bly because they were not trained on diverse enough scenes

or were not trained to optimize metric depth error. In terms

of relative depth, it is interesting to see that ResNetD trained
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Method Training Data LSIV RMSE WKDR

FCRN [17] ImageNet [27] + NYU [31] 0.67 39.94%

Hourglass [5, 18] MegaDepth [18] 0.67 38.37%

ResNetD [38, 6]
ImageNet [27] + YouTube3D [6]+

0.66 34.03%
ReDWeb [38] + DIW [5]

ResNetD [38] ImageNet [27] + OASIS 0.37 32.04%

ResNetD [38] OASIS 0.47 38.79%

Hourglass [5] OASIS 0.47 39.64%

Plane - 0.67 100.00%

Human (Approx) - 0.24 19.33%

Table 2. Depth estimation performance of different networks on

OASIS (lower is better). For networks that do not produce a focal

length, we use the best focal length leading to the smallest error.

on ImageNet and OASIS performs the best, even though the

training loss does not enforce depth ordering. We also see

that there is still a significant gap between human perfor-

mance and machine performance. At the same time, the

gap is not hopelessly large, indicating the effectiveness of a

large training set.

OASIS

Method Training Data Angle Distance % Within t◦ Relative Normal

Mean Median 11.25◦ 22.5◦ 30◦ AUCo AUCp

Hourglass [7] OASIS 23.34 18.08 31.44 59.79 72.25 0.5508 0.5439

Hourglass [7] SNOW [7] 30.74 26.65 14.33 40.84 56.73 0.5329 0.4714

Hourglass [7] NYU [31] 34.69 28.76 14.65 38.49 52.06 0.5415 0.5061

PBRS [44] NYU [31] 38.09 33.00 11.94 32.58 45.29 0.5729 0.5227

Front Facing - 31.20 24.76 27.36 46.62 56.94 0.5000 0.5000

Human (Approx) - 17.43 13.08 43.89 75.94 84.72 0.8870 0.6439

Table 3. Surface normal estimation on OASIS.

DIODE [35] ETH3D [30]

Method Training Data Angle Distance % Within t◦ Angle Distance % Within t◦

Mean 11.25◦ 22.5◦ 30◦ Mean 11.25◦ 22.5◦ 30◦

Hourglass [7] OASIS 34.57 13.71 35.69 49.65 34.51 23.52 52.04 62.73

Hourglass [7] SNOW [7] 40.10 8.29 27.20 40.67 45.71 10.69 31.16 43.16

Hourglass [7] NYU [31] 42.23 10.97 29.76 41.35 41.84 21.94 44.05 53.81

PBRS [44] NYU [31] 42.59 9.96 29.08 40.72 39.91 18.68 44.76 56.08

Front Facing - 47.76 5.62 18.70 28.05 58.97 11.84 23.75 30.19

Table 4. Cross-dataset generalization.

6.2. Surface Normal Estimation

We now turn to single-view surface normal estimation.

We evaluate on absolute normal, i.e. the pixel-wise pre-

dicted normal values, and relative normal, i.e. the parallel

and orthogonal relation predicted between planar surfaces.

Absolute Normal Evaluation We use standard metrics pro-

posed in prior work [37]: the mean and median of angu-

lar error measured in degrees, and the percentage of pixels

whose angular error is within γ degrees.

We evaluate on OASIS four state-of-the-art networks

that are trained to directly predict normals: (1) Hour-

glass [7] trained on OASIS, (2) Hourglass trained on the

Surface Normal in the Wild (SNOW) dataset [7], (3) Hour-

glass trained on NYU Depth [31], and (4) PBRS, a normal

estimation network by Zhang et al. [44] trained on NYU

Depth [31]. We also include Front Facing, a naive baseline

predicting all normals to be orthogonal to the image plane.

Tab. 3 reports the results. As expected, the Hourglass

network trained on OASIS performs the best. Although

SNOW is also an in-the-wild dataset, the same network

trained on it does not perform as well, but is still better

Figure 6. Limitations of standard metrics: a deep network gets low

mean angle error but important details are wrong.

than training on NYU. Notably, the human-machine gap ap-

pears fairly small numerically (17.43 versus 23.34 in mean

angle error). However, we observe that the naive baseline

can achieve 31.20; thus the dynamic range of this metric is

small to start with, due to the natural distribution of normals

in the wild. In addition, a close examination of the results

suggests that these standard metrics of surface normals do

not align well with perceptual quality. In natural images

there can be large areas that dominate the metric but have

uninteresting geometry, such as a blank wall in the back-

ground. For example, in Fig. 6, a neural network gets the

background correct, but largely misses the important details

in the foreground. This opens up an interesting research

question about developing new evaluation metrics.

Relative Normal Evaluation We also evaluate the pre-

dicted normals in terms of relative relations, specifically or-

thogonality and parallelism. Getting these relations correct

is important because it can help find vanishing lines and

perform self-calibration.

We first define a metric to evaluate relative normal. From

the human annotations, we first sample an equal number

of point pairs from surface pairs that are parallel, orthogo-

nal, and neither. Given a predicted normal map, we look

at the two normals at each point pair and measure the

angle θ between them. We consider them orthogonal if

|cos(θ − 90◦)| < cos(Θo), and parallel if |cos(θ)| >

cos(Θp), where Θo, Θp are thresholds. We then plot the

Precision-and-Recall curve for orthogonal by varying Θo,

and measure its Area Under Curve AUCo, using neither

and parallel pairs as negative examples. Varying Θp and

using neither and orthogonal as negative examples, we ob-

tain AUCp for parallel.

Tab. 3 reports results of relative normal evaluation. No-

tably, all methods perform similarly, and all perform very

poorly compared to humans. This suggests that existing ap-

proaches to normal estimation have limitations in capturing

orthogonality and parallelism, indicating the need for fur-

ther research.

Cross-Dataset Generalization Next we study how net-

works trained on OASIS generalize to other datasets. Sur-

face normal estimation is ideal for such evaluation because

unlike depth, which is tricky to evaluate on a new dataset

due to scale ambiguity and varying focal length, a nor-

mal estimation network can be directly evaluated on a new

dataset without modification.
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We train the same Hourglass network on OASIS, and

NYU, and report their performance on two benchmarks not

seen in training: DIODE [35] and ETH3D [30]. From

Tab. 4 we see that training on NYU underperforms on

all benchmarks, showing that networks trained on scene-

specific datasets have difficulties generalizing to diverse

scenes. Training on OASIS outperforms on all benchmarks,

demonstrating the effectiveness of diverse annotations.

6.3. Fold and Occlusion Boundary Detection

Occlusion and fold are both important 3D cues, as they

tell us about physical connectivity and curvature: Occlusion

delineates the boundary at which surfaces are physically

disconnected to each other, while Fold is where geometry

changes abruptly but the surfaces remain connected.

Task We investigate joint boundary detection and

occlusion-versus-fold classification: deciding whether a

pixel is a boundary (fold or occlusion) and if so, which

kind it is. Prior work has explored similar topics: Hoiem et

al. [13] and Stein et al. [33] handcraft edge or motion fea-

tures to perform occlusion detection, but our task involves

folds, not just occlusion lines.

Metric

Model
Edge: All Fold Edge: All Occ HED [40] Hourglass [5] Human (Approx)

ODS 0.123 0.539 0.533 0.585 0.810

OIS 0.129 0.576 0.584 0.639 0.815

AP 0.020 0.440 0.466 0.547 0.642

Table 5. Boundary detection performance on OASIS.

Evaluation Metric We adopt metrics similar to standard

ones used in edge detection [1, 40]: F-score by optimal

threshold per image (OIS), by fixed threshold (ODS) and

average precision (AP). For a boundary to be considered

correct, it has to be labeled correctly as either occlusion or

fold. More details on the metrics can be found in the sup-

plementary material.

To perform joint detection of fold and occlusion, we

adapt and train two networks on OASIS: Hourglass [5], and

a state-of-the-art edge detection network HED [40]. The

networks take in an image, and output two probabilities per

pixel: pe is the probability of being an boundary pixel (oc-

clusion or fold), and pf is the probability of being a fold

pixel. Given a threshold τ , pixels whose pe < τ are nei-

ther fold nor occlusion. Pixels whose pe > τ are fold if

pF > 0.5 and otherwise occlusion.

As baselines, we also investigate how a generic edge de-

tector would perform on this task. We use HED network

trained on BSDS dataset [1] to detect image edges, and clas-

sify the resulting edges to be either all occlusion (Edge: All

Occ) or all fold (Edge: All Fold).

All results are reported on Tab 5. Hourglass outperforms

HED when trained on OASIS, and significantly outperforms

both the All-Fold and All-Occlusion baselines, but still un-

derperforms humans by a large margin, suggesting that fold

and occlusion boundary detection remains challenging in

the wild.

6.4. Instance Segmentation of Planes

Our last task focuses on instance segmentation of planes

in the wild. This task is important because planes often have

special functional roles in a scene (e.g. supporting surfaces,

walls). Prior work has explored instance segmentation of

planes, but is limited to indoor or driving environments [21,

42, 20, 41]. Thanks to OASIS, we are able to present the

first-ever evaluation of this task in the wild.

We follow the way prior work [21, 20, 42] performs this

task: a network takes in an image, and produces instance

masks of planes, along with an estimate of planar parame-

ters that define each 3D plane. To measure performance, we

report metrics used in instance segmentation literature [19]:

the average precision (AP) computed and averaged across

a range of overlap thresholds (ranges from 50% to 95% as

in [19, 8]). A ground truth plane is considered correctly

detected if it overlaps with one of the detected planes by

more than the overlap threshold, and we penalize multiple

detection as in [8]. We also report the AP at 50% overlap

(AP50%) and 75% overlap (AP75%).

PlanarReconstruction by Yu et al. [42] is a state-of-the-

art method for planar instance segmentation. We train Pla-

narReconstruction on three combinations of data: (1) Scan-

Net [9] only as done in [42], (2) OASIS only, and (3) Scan-

Net + OASIS. Tab. 6 compares their performance.

As expected, training on ScanNet alone performs the

worse, because ScanNet only has indoor images. Train-

ing on OASIS leads to better performance. Leveraging

both ScanNet and OASIS is the best overall. But even the

best network significantly underperforms humans, suggest-

ing ample space for improvement.

Method Training Data AP AP50% AP75%

ScanNet [9] 0.076 0.161 0.065

PlanarReconstruction [42] OASIS 0.127 0.250 0.112

ScanNet [9] + OASIS 0.139 0.264 0.130

Human (Approx) - 0.461 0.542 0.476

Table 6. Planar instance segmentation performance on OASIS.

7. Conclusion

We have presented OASIS, a dataset of rich human 3D

annotations. We trained and evaluated leading models on

a variety of single-image tasks. We expect OASIS to be a

useful resource for 3D vision research.
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