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Abstract

Almost all adversarial attacks in computer vision are

aimed at pre-known object categories, which could be off-

line trained for generating perturbations. But as for visual

object tracking, the tracked target categories are normally

unknown in advance. However, the tracking algorithms also

have potential risks of being attacked, which could be mali-

ciously used to fool the surveillance systems. Meanwhile, it

is still a challenging task that adversarial attacks on track-

ing since it has the free-model tracked target. Therefore,

to help draw more attention to the potential risks, we study

adversarial attacks on tracking algorithms. In this paper,

we propose a novel one-shot adversarial attack method to

generate adversarial examples for free-model single ob-

ject tracking, where merely adding slight perturbations on

the target patch in the initial frame causes state-of-the-art

trackers to lose the target in subsequent frames. Specifi-

cally, the optimization objective of the proposed attack con-

sists of two components and leverages the dual attention

mechanisms. The first component adopts a targeted attack

strategy by optimizing the batch confidence loss with confi-

dence attention while the second one applies a general per-

turbation strategy by optimizing the feature loss with chan-

nel attention. Experimental results show that our approach

can significantly lower the accuracy of the most advanced

Siamese network-based trackers on three benchmarks.

1. Introduction

Visual Object Tracking (VOT) plays a significant role

in practical security applications such as intelligent surveil-

lance systems. Recent years have witnessed many break-

throughs in visual object tracking algorithms [2, 25, 5, 17,

*Equal contributions. This work is done when Xuesong Chen and Xiyu

Yan visited to Feng Zheng Lab in SUSTech.
†Corresponding author.
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Figure 1. We only perturb slightly the target patch in the initial

frame of a video, resulting in tracking failure in subsequent frames.

First line: the original video frames are successfully tracked. Sec-

ond line: attacking the target only in the initial frame could para-

lyze the tracker. The green boxes represent the ground truth, and

the red boxes represent the tracking result of the tracker.

28, 16] brought by the progress of deep learning. For exam-

ple, the SiamRPN++ tracker [16] based on Siamese network

has reached 91% precision on the OTB100 benchmark [30].

However, whether the deep learning-based object tracking

algorithms are as powerful as they seem is a question to

worth pondering.

Adversarial attacks on deep learning models in computer

vision have attracted increasing interest in the past years [1].

There are many adversarial attacks against deep networks

successfully fooling image classifiers and object detectors.

For example, Szegedy et al. demonstrated that putting small

perturbations in images that remain (almost) imperceptible

to the human visual system could fool deep learning mod-

els into misclassification [24]. Most recently, [26] created a

small adversarial patch that is used as a cloaking device to

hide persons from a person detector. Commonly, almost all

these attacks are not aimed at free-models (i.e. arbitrary tar-

get) but the pre-known categories. Actually, adding adver-

sarial perturbations on the free-model target patch in a cer-
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tain frame may cause state-of-the-art trackers to lose the tar-

get in subsequent frames, which could be maliciously used

to fool surveillance systems. Thus, it is necessary to study

adversarial attacks on visual object tracking algorithms to

help improve their prevention against these potential risks.

However, attacking a tracker to lose the object in contin-

uous video frames is a challenging task. First, online visual

tracking is unable to pre-know the category of tracked and

to learn beforehand because of the free-model tacked target

and the continuous video frames. Secondly, it is difficult

to set an optimization objective to generate adversarial ex-

amples since a successful attack on the tracking task is sig-

nificantly different from that on the multi-classification task

which could merely maximize the probability of the class

with the second-highest confidence. Specifically, the track-

ing task in each frame is the same as that of classifying all

candidate boxes into one positive sample and the others into

negative samples. Such a special binary classification prob-

lem makes it difficult to perform a successful attack if only

one candidate box is selected to increase its confidence.

To address these challenges, in this paper, we study the

adversarial attacks against visual object tracking. Our at-

tack target is a series of excellent trackers based on Siamese

networks, in which the tracking accuracy and efficiency

are well-balanced due to the unique advantages of off-line

learning and the abandonment of similarity updating. For

these trackers, we propose a one-shot attack framework—

only slightly perturbing the pixel values of the object patch

in the initial frame of a video, which achieves the goal of

attacking the tracker in subsequent frames, i.e. failure to the

tracking of SiamRPN (see Fig. 1).

Specifically, a novel attack method with dual losses and

dual attention mechanisms is explored to generate adversar-

ial perturbation on the target patch at the initial frame. Our

optimization objective of the proposed attack method con-

sists of two components, and each loss is combined with

its corresponding well-designed attention weight to further

improve attack abilities. On the one hand, we formulate

such Siamese network-based tracking problems as a specific

classification task—the candidates of tracking are treated

as the labels of classification, for a successful matching of

the target template and the candidate box with the maxi-

mum confidence. Thus, we can pertinently perturb with

a tracker to make it match “the best box”. Here, we op-

timize the batch confidence loss by suppressing the confi-

dence of excellent candidates and stimulate that of moder-

ate candidates. To further distinguish the high-quality can-

didate boxes, the distance-oriented attention mechanism is

adopted to widen the distance between excellent candidates.

On the other hand, we apply a general perturbation strat-

egy by optimizing the feature loss that maximizes the dis-

tance between the clean image and its adversarial example

in the feature space for a powerful attack. To further ensure

the generalization ability of the one-shot attack, the feature

channel-wise activation-oriented attention of feature maps

is taken into account under limited perturbation conditions.

Eventually, we evaluate our attacks on three track-

ing benchmarks, including OTB100 [30], LaSOT [4], and

GOT10K [11]. The experimental results show that our ap-

proaches can significantly lower the accuracy of the most

advanced Siamese network-based trackers.

In summary, the key contributions of this paper are as

follows.

• To the best of our knowledge, we are the first to

study one-shot adversarial attacks against VOT. The

proposed one-shot attack method against the trackers

based on Siamese networks can make them fail to track

in a video by only disturbing the initial frame.

• We present a new optimization objective function with

dual attention mechanisms to generate adversarial per-

turbations for ensuring the efficiency of the one-shot

attack.

• Experimental results on three popular benchmarks

show that our method is able to significantly lower the

accuracy of the state-of-the-art Siamese network-based

trackers.

2. Background and Related Work

In this section, we first briefly describe the background

of adversarial attack problems. Next, the development of

adversarial attack methods in computer vision (CV) tasks is

reviewed. Lastly, we discuss the trackers based on Siamese

networks that are adopted as our attack targets in this work.

2.1. Background of Adversarial Attacks

It is necessary to introduce some common technical

terms related to the adversarial attacks on deep learning

models in computer vision and the remaining paper also fol-

lows the same definitions of the terms.

Adversarial example. It is a concept related to a natural

clean example and is obtained by a specific algorithm pro-

cessing to make the incorrect decision of models. It can be

generated by global pixel perturbations of clean samples, or

by adding adversarial patches to clean samples. The global

pixel perturbation is applied to our work.

Adversarial attacks. According to the degree of the at-

tacker’s understanding of the model, it can be classified into

white-box attacks and black-box attacks. Also, through the

target attacked by the attacker, it can be divided into tar-

geted attacks and non-targeted attacks.

White-box attacks. It means that when the attackers know

all the knowledge of the model, including the structure, the

parameters and the values of the trainable weights of the
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neural network model, they can generate adversarial exam-

ples to mislead the model.

Black-box attacks. It means that, when the attackers only

have limited or no information about the model, they con-

struct adversarial examples that can fool most machine

learning models.

Targeted attacks. It is usually used to attack classifiers. In

this case, the attacker wants to change the prediction result

to some specified target category.

Non-targeted attacks. On the contrary, in this case, the goal

of attackers is simply to make the classifier give false pre-

dictions, regardless of which category the error classifica-

tion becomes. Our attack is in the middle of these two cases.

Our work focuses on white-box, test-time attacks on vi-

sual object tracking algorithms, and other families of attacks

not directly relevant to our setting are not discussed here.

2.2. Adversarial Attacks in CV Tasks

Szegedy et al. [24] first propose to generate adversar-

ial examples for classification models that successfully mis-

leading the classifier. Following that, Goodfellow et al. [7]

extend this line and create a Fast Gradient Sign Method

(FGSM) to generate adversarial attacks on images. Be-

sides, attack methods based on the gradient include BIM

[15], JSMA [22], DFool [20], Carlini and Wagner Attacks

(C&W) [3], etc. Most of these attacks are directed at image

classification that is the most basic visual task.

Recently, there are several explorations of the adversarial

attacks on some high-level tasks, such as semantic segmen-

tation and object detection. For example, [31] first trans-

forms an attack task into a generation task and proposes

a Dense Adversary Generation (DAG) method to optimize

the loss function for the generation of adversarial examples,

and then uses the generated adversarial example to attack

the segmentation and detection models based on the deep

network. This transformation makes the attacks no longer

limited to the traditional gradient-based algorithms but also

introduces more generation models, such as GAN. Then,

[26] presents an approach to generate adversarial patches to

targets with lots of intra-class variety and successfully hide

a person from a person detector.

Most recently, PAT [29] and SPARK [9] generate adver-

sarial samples against VOT through iterative optimization

on video frames. However, the attack strategy with online

iterative restricts their application scenarios. First, to gen-

erate adversarial sequences, they always need to access to

the weights of the models during the attack. Second, the

forward-backward propagation iteration is difficult to meet

the real-time requirements of the tracking task.

2.3. Siamese Network­based Tracking

Visual Object Tracking (VOT) aims to predict the posi-

tion and size of an object in a video sequence after the tar-

get has been specified in the first frame [18]. Recently, the

Siamese network-based trackers [25, 2, 8, 32, 27, 10] have

drawn significant attention due to their simplicity and ef-

fectiveness. Bertinetto et al. [2] first proposed a network

structure based on Siamese fully convolutional networks

for object tracking (SiamFC). Since then, many state-of-

the-art algorithms of tracking have been proposed by re-

searchers [32, 10, 17, 16, 28]. For example, the representa-

tive tracker—SiamRPN [17] introduces a regional recom-

mendation network after the Siamese network and com-

bines classification and regression for tracking.

These Siamese trackers formulate the VOT problem as

a cross-correlation problem and learn a tracking similarity

map from deep models with a Siamese network structure,

one branch for learning the feature presentation of the tar-

get, and the other one for the search area. To ensure tracking

efficiency, the offline learned siamese similarity function is

often fixed during the running time. Meanwhile, the target

template is acquired in the initial frame and remains un-

changed in the subsequent video frames.

In the tracking phase of each frame, the target template

and the search region including several candidate boxes are

fed into the Siamese network to generate a confidence map

that represents the confidences of the candidate boxes. It

is worth noting that the Gaussian windows are widely ap-

plied to refine the confidences of the candidate boxes on

the inference phase in tracking tasks. Different from the

Non-Maximum Suppression (NMS) algorithm [21] used in

detection tasks [23, 6] for suppressing the candidates with

low confidences, the role of Gaussian windows in tracking

is to weaken the confidence of the candidate boxes far from

the center location of the predicted target in the last frame.

The explanation for which the Gaussian window can be ef-

fectively used is based on the prior knowledge of the con-

tinuity of video frames in tracking tasks, that is, the target

could not move too far in the two adjacent frames.

3. Methodology

In this section, we first introduce the problem defini-

tion of the proposed adversarial attack method for track-

ing algorithms. Then a one-shot attack framework setting

against Siamese network-based trackers is detailed. Lastly,

we elaborate on the proposed dual attention attack method.

3.1. Problem Definition

Our attack targets the most popular VOT pipeline—

Siamese network-based trackers described above, which

formulate the VOT as learning a general similarity map

by cross-correlation between the feature representations

learned for the target template and the search region (see

Fig. 2). In these trackers, the offline learned siamese sim-

ilarity function and the target template given in the first

frame are fixed during the running time. Such a tracking
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Figure 2. The framework of the one-shot attack against Siamese trackers by dual attention mechanisms.

process without model updates and template updates makes

it possible to encounter attacks. Note that other trackers

with updating, such as CREST, MDNet and ATOM, are

more easily to be attacked because the adversarial informa-

tion will lead the feature of the model to draft to the wrong

space. Then they almost cannot work after attacks due to

the wrong update. They are thus not discussed in this paper.

Although there are many existing attack methods for

other high-level CV tasks such as detection and classifica-

tion, it is quite a challenge to attack tracking tasks because

tracking tasks are very different from these tasks. Specif-

ically, we analyze the characteristics of Siamese trackers

compared with detection and classification.

First, online visual tracking is unable to pre-know the

category of the tracked objects because the target position

is only given in the first frame of a video for the model

training. Therefore it cannot off-line learn a mechanism

to perturb the pixel values in advance while it is impossi-

ble to generate general class-level adversarial perturbations,

which are just commonly used in attack algorithms against

classification and detection.

Second, the concept of failure tracking, which is differ-

ent from misclassification, that maximizing the probability

of the category with the second-highest confidence to ex-

ceed the probability of the correct category for the targeted

attack. As was explained above, the Siamese trackers output

confidence maps that metric the similarity of the target and

the candidates in the search region. The candidate with the

highest confidence in the rankings is selected for the predic-

tion of the object. Only simple maximizing the box with the

second-highest confidence does not lead to failed tracking.

For example, all anchors (candidate boxes) in SiamRPN are

employed for regression to the location of the target which

enables a considerable number of anchors to accurately re-

turn to the target location.

Last but not least, different from the NMS algorithm

used in the detection, the Gaussian windows are widely

applied to refine the box confidences in the tracking task,

which induces difficulties to balance the strength and the

success of the attack. For example, when only consider-

ing the power of the attack, the box farthest from the object

is the best perturbation target. However, the confidences

of distant boxes are more suppressed by Gaussian windows

and selecting these boxes as the target may result in a failed

attack.

In response to these challenges, we propose several cri-

teria to generate the adversarial perturbations.

Firstly, it is necessary to generate matching adversarial

perturbations for arbitrary targets of tracking because of the

unknown category. Therefore, we propose to only add an

adversarial perturbation in the initial frame of each video,

namely one-shot attack.

Secondly, our adversarial attack must be able to perturb

a certain number of boxes, which can increase the success

rate of the attack. Specifically, adding the perturbations

can reduce the confidence of several high-quality boxes and

raise the confidence of many low-quality boxes, resulting

in that tracker outputs wrong prediction boxes with large

deviations. Thus, we propose to learn attack perturbations

by optimizing a batch confidence loss. Besides, we need

to consider general attack by designing a feature loss func-

tion to ensure the attack power. Therefore, two optimiza-

tion strategies are introduced by us. One is the batch confi-

dence loss while the other is attacking generally all candi-

dates from the feature space of CNNs.

Lastly, to further improve the attack power, we add both

attention mechanisms to these two loss functions. On the

batch confidence loss, we distinctively suppress different

candidates using confidence attention. On the feature loss,

we add attention to the channels of the feature map to dis-

tinguish the importance of different channels by feature at-

tention, which is inspired by [12].

Considering these criteria, we propose the one-shot at-

tack based on the dual attention, which is detailed in the

next two subsections.

3.2. One­shot Attack with Dual Loss

Given the initial frame and the ground-truth bounding

box of the tracking target, we could obtain the target patch

z. The goal of our one-shot attack is to generate an adver-

10179



sarial target image z∗ (z∗ = z+∆z) with slight pixel value

perturbation ∆z only in the initial frame, which could make

the tracking results away from the ground-truth (i.e. failure

tracking). We define the adversarial example attacking the

tracker as follows:

z
∗ = argmin

|zk−z∗
k
|≤ε

L(z, z∗) (1)

where zk denotes the per pixel of clean image z while z∗k
refers to which of the adversary z

∗, and ε stands for the

maximum perturbation range of the per-pixel value in the

image. In our experiments, ε is set to 16, for which the

global perturbations with such intensity are considered to be

an imperceptible change in the human visual system. The

batch confidence loss function L1 and feature loss function

L2 are detailed below.

Batch Confidence Loss. Our one-shot attack only occurs in

the initial frame of each video, so we simulate the tracking

process in the initial frame (given the tracking template) to

generate the adversarial example. Note that the test has not

yet started in this phase for the general tracking task.

Follow the Siamese trackers, we assume that the search

region X is around the target and twice the size of it, in-

cludes n candidates {x1, ..., xn}. Let f(z,xi) denotes the

tracking model which takes z ∈ Rm and xi ∈ Rm as inputs

and the confidence of each candidate as the output. The out-

put confidences f(z,xi) of the n candidates have a ranking

R1:n. Thus the batch confidence loss function can be de-

fined as follows:

L1 =
∑

R1:p

f(z∗

,xi)−
∑

Rq:r

f(z∗

,xi),

s.t. |zk − z
∗
k| ≤ ε.

(2)

where R1:p denotes the sort in the first p, Rq:r denotes the

sort from q to r in the confidence ranking. The purpose

of this approach based on batch confidence is to suppress

the candidates with high confidence and stimulate the can-

didates with moderate confidence.

Feature Loss. Considering the challenges come from the

Gaussian window and to balance the strength and success of

the attack power, we apply another strategy that is generally

attacking all candidates from the feature space of CNNs.

Let φ(·) represents the feature map of CNNs, then the

Euclidean distance of the feature maps of z and z
∗ are max-

imized. Thus the loss function is defined as follows:

L2 =−
∑

j=1:C

||φj(z
∗)− φj(z)||2,

s.t. |zk − z
∗
k| ≤ ε.

(3)

where C denotes the channel of the feature maps.

3.3. Dual Attention Attacks

Furthermore, we add attention mechanisms to both two

loss functions to further improve the attack power.

Confidence Attention. By applying the confidence atten-

tion mechanism to the loss function, we can distinguish the

degree of suppression and stimulation for the candidates

with different confidences. The Eq. (2) is rewritten as

L∗

1 =
∑

R1:p

{wi · f(z
∗

,xi)} −
∑

Rq:r

{f(z∗

,xi)}

s.t. |zk − z
∗
k| ≤ ε.

(4)

with wi defined as

wi =
1

a+ b · tanh(c · (d(xi)− d(x1)))
, (5)

where d(xi) denotes the coordinates distance between the

any i-th candidate xi and first x1 in the sorted confidence

list. Eq. (5) is inspired by the Shrinkage loss [19], in which

a, b, and c are controlling hyper-parameters. Specially, c

stands for the shrinkage rate, and both a and b limit the the

weight wi to the range of ( 1

a+b
, 1

a
).

Feature Attention. Because of the limited perturbation

conditions, we further consider the channel-wise activation-

guided attention of feature maps to distinguish the impor-

tance of different channels, which will guarantee the gen-

eralization ability of the one-shot attack. Similarly, the Eq.

(3) is rewritten as:

L∗

2 =−
∑

j=1:C

||w′
j · {(φj(z

∗)− φj(z)}||2,

s.t. |zk − z
∗
k| ≤ ε.

(6)

and wj is defined as

wj =
1

a′ + b′ · tanh(c′ · (m(φj(z))−m(φj(z))min))
, (7)

where m(·) and m(·)min stand for the mean of each chan-

nel φj(z) and the minimum mean value, a′, b′ and c′ are

controlling hyper-parameters.

Dual Attention Loss. We combine the advantages of L∗

1

with accurate attacks and L∗

2 with general attacks, and even-

tually obtain the dual attention loss:

L = αL∗

1 + βL∗

2 , (8)

where the factors α and β will be determined empirically.

The goal of our optimizer is to minimize the total loss L.

In the implementation, we use Adam optimizer [13] to min-

imize the loss by iteratively perturbing the pixels along the

gradient directions within the patch area, and the generation

process stops when the number of iterations reaches 100 or

the first candidate of the ranking Rτ [1] behinds p in the ini-

tial ranking R0. The whole attack process is presented in

Algorithm 1.
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Algorithm 1: One-shot White-box Attack for VOT

Input: The target crop z in the first frame image of a

video; The tracker with Siamese network f(·, ·)
Output: An adversarial example z

∗.

1 Initialize the adversary z
∗ = z;

2 Initialize the iterative variable τ = 0;

3 Feed clean z and search area X containing n candidates

xi into the network to get confidence map f(z,xi);
4 Sort f(z,xi) and obtain the initial Rank R0[1 : n];
5 Save the candidate indexes in original Rank R0[1 : n];
6 while Number of iterations τ ++ < 100 do

7 Sort f(z∗,xi) and get the new Rank Rτ [1 : n];
8 if the sort of the candidate in Rτ [1] > p in R0 then

9 break;

10 else

11 dual attention attack ;

12 z
∗ := z

∗
τ ;

13 end

14 end

4. Attack Evaluation

In this section, we describe our experimental settings

and analyze the attack results of the proposed dual attention

attack algorithm against different trackers on 3 challenge

tracking datasets, including OTB100 [30], LaSOT [4], and

GOT10K [11]. Then we evaluate the effectiveness of the

proposed method by ablation studies on various contrast ex-

periments.

4.1. Experimental Setting

Attacked Targets. We show our adversarial attack re-

sults on four representative Siamese network based track-

ers, including SiamFC [2], SiamRPN [17], SiamRPN++

[16], and SiamMask [28]. Besides, our experiments

employ SiamRPN++ with two different backbones, in-

cluding ResNet-50 and MobileNet-v2, which are called

SiamPRN++(R) and SiamPRN++(M) respectively below.

Evaluation Metrics. For fair evaluation, the standard eval-

uation methods are applied to measure our attack effect. In

the OTB100 and LaSOT datasets, we applied the one-pass

evaluation (OPE) with the precision plot and success plot

metrics. The precision plot reflects the center location error

between tracking results and ground-truth. The threshold

distance is set to 20 pixels. Meanwhile, the success rate

measures the overlap ratio between the detected box and

ground-truth which could reflect the accuracy of tracking

in scales. In the GOT10K dataset, we applied Average of

Overlap rates (AO) between tracking results and ground-

truths over all frames and Success Rate (SR) with a thresh-

old of 0.50. We view successful attacks and failed trackings

as consistent. Specifically, the lower the accuracy of the

tracking is, the higher the success rate of the attack is.

Table 1. Comparison of results with original, Random noise, and

our attack of different Siamese trackers on the OTB100 dataset in

terms of precision and success rate.

Trackers
Precision (%) Success Rate(%)

Org Noise Ours Org Noise Ours

SiamFC 76.5 73.4 27.1 57.8 56.0 32.3

SiamRPN 87.6 83.1 27.8 66.6 63.3 20.4

SiamRPN++(R) 91.4 85.0 33.7 69.6 64.9 25.2

SiamRPN++(M) 86.4 80.7 35.3 65.8 58.0 26.1

SiamMask 83.7 83.6 65.0 64.6 62.6 48.1

Implementation Details. Our algorithm is implemented

by Pytorch and runs on the NVIDIA Tesla V100 GPU. For

each attacked video, we use Adam optimizer [13] to opti-

mize the generated adversarial perturbation, with 100 iter-

ations and a learning rate of 0.01. Based on the different

purposes of the attention modules, we use different hyper-

parameter settings. Specifically, for the confidence attention

module, we set a = 0.5, b = 1.5 and c = 0.2. Meanwhile,

for the feature attention module, we set a′ = 2, b′ = −1,

and c′ = 20, respectively. To balance the weight parameters

α and β, we set β = 1 while α is a model-sensitive parame-

ter in the range of 0.2 to 0.8 in our experiments. In Eq. (2),

the hyper-parameters of p, q, r are set to 45 (9 · 5 anchors),

90, and 135, respectively. In addition, all the results pre-

sented below are the averaged value of repeated five times

experiments under these settings.

4.2. Overall Attack Results

Results on OTB100. Table 1 compares the overall results

of theses trackers in OTB100 dataset. We compare random

noises with our adversarial examples on the target patch

in the initial frame and observe that they impact very lit-

tle on tracking results, but our adversarial attack can cause

almost devastating results to the tracking methods. Specif-

ically, the precision of adding random noises to SiamFC,

SiamRPN, SiamRPN++(R), SiamRPN++(M) are reduced

by 3.1%, 4.5%, 6.4%, and 5.7% respectively. While the pre-

cision of adding adversarial perturbations to corresponding

trackers are greatly reduced by 49.4%, 59.8%, 57.7%, and

51.1%, respectively.

Fig. 3 shows the success and precision plots on OTB100

dataset with the comparison of the results by original track-

ers and the results after our corresponding attacks. We

can see that the precision results and success rates of the

five trackers are significantly reduced after being attacked.

In precision plots, we observe that the proposed attack

method has the best and second attack effects on SiamRPN

and SiamRPN++(R), which reduces the precision by 59.8%

and 57.7%, respectively. Similarly, our attack method re-

duces the success rate on SiamRPN and SiamRPN++(R) by

46.2% and 44.4% respectively.

Results on LaSOT. We compare our attack against these
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Figure 3. Evaluation results of trackers with or without adversarial

attacks on OTB100 dataset.

Table 2. Comparison of results with original, Random noise, and

our attack of different Siamese trackers on the LaSOT dataset in

terms of precision and success rate.

Trackers
Precision (%) Success Rate(%)

Org Noise Ours Org Noise Ours

SiamFC 34.4 33.7 12.0 35.2 34.7 16.7

SiamRPN 42.4 42.2 10.8 43.3 43.1 14.7

SiamRPN++(R) 50.2 49.3 12.2 49.6 48.5 14.9

SiamRPN++(M) 45.5 45.5 11.4 45.2 44.9 14.7

SiamMask 46.3 46.0 34.3 46.5 46.3 37.1

Table 3. Comparison of results with original, Random noise, and

our attack of different Siamese trackers on the GOT10k dataset in

terms of AO and SR0.50.

Trackers
AO (%) SR0.50 (%)

Org Noise Ours Org Noise Ours

SiamFC 53.8 50.2 34.6 57.8 54.3 28.4

SiamRPN 60.8 56.1 31.2 71.4 65.2 26.5

SiamRPN++(R) 65.1 65.0 31.2 76.7 75.7 26.5

SiamRPN++(M) 64.1 61.0 39.4 75.0 70.2 34.7

SiamMask 64.4 64.1 55.6 76.5 75.9 64.1

trackers on the LaSOT dataset [4]. Table 2 shows the over-

all results of these trackers after attacks perform poorly.

Through the results, we can see that precision of these five

trackers has a significant decline, accounting for 34.9%,

25.5%, 24.3%, 25.1%, and 74.1% of the original results in

SiamFC, SiamRPN, SiamRPN++(R), SiamRPN++(M), and

SiamMask respectively.

Results on GOT10K. We also implement our attack against

these five trackers on the large tracking dataset GOT10K

[14]. Table 3 shows that there are significant declines in

overall results on these trackers after attacks. Through the

results, we can see that AO these five trackers decreased by

64.3%, 51.3%, 61.5%, 47.9%, and 86.3% respectively.

Analysis. From the attack results on these trackers in vari-

ous datasets, we found an interesting phenomenon that the

simplest SiamFC shows good robustness on both OTB100

and LaSOT, which we believe is due to the under-fitting of

the algorithm. More specifically, to some extent, SiamFC

can be considered as a SiamRPN with only one anchor.

Table 4. Ablation comparison studies of dual attention attacks.

SiamRPN++ (ResNet-50) Precision (%) Success Rate (%)

Original 91.4 69.6

Random Noise 85.0 64.9

Attack by L1 38.8 29.1

Attack by L∗

1 37.1 27.6

Attack by L2 38.7 27.7

Attack by L∗

2 34.3 25.6

Attack by L1 + L2 37.5 26.9

Attack by L∗

1 + L∗

2 33.7 25.2

Generally, too few anchors make SiamFC unable to accu-

rately estimate the target. Meanwhile, it reduces the risk

of being attacked by adversarial samples. Moreover, we

can see that our attack method has the best attack effect

on SiamRPN, which reduces the precision on OTB100 by

59.8% and the success rate by 46.2%, respectively. Thus

can be attributed to the excessive head parameters that make

SiamRPN difficult to get fully trained. To a certain extent,

this problem has been solved in siamRPN++ with the help

of multi-stage learning and more efficient cross-correlation.

As we can see, siamRPN++ has better robustness and more

difficult to be attacked. Besides, our attacking method has

the lowest degree of attack on SiamMask compared with

other trackers. For example, the attack on SiamMask re-

duces the precision and success rate by 18.7% and 16.5% on

OTB100 respectively, which can be attributed to the multi-

task learning of SiamMask. Compared with SiamRPN

and SiamRPN++, SiamMask adds a semantic segmentation

branch and focuses on the tracked object with pixel-level,

which makes the learned features more robust.

4.3. Ablation Study of Dual Attention Attack

We implement a series of experiments to analyze and

evaluate the contribution of each component of our dual

attention attacks. We choose the current state-of-the-art

tracker SiamRPN++(R) as the representative and the track-

ing results on OTB100 are shown in Table 4.

Intuitively, we observe that random noises impact very

little on tracking results, but our adversarial attacks cause a

significant drop in tracking accuracy. Moreover, separately

using the loss L1 and loss L2 in our experiments greatly re-

duce the accuracy of tracking and their damage to tracking

is similar to each other in terms of the data. It thanks to

our selection strategy for candidates of L1 and the global

feature perturbation mechanism of L2. Second, we test the

effectiveness of the distance-oriented confidence attention

mechanism in L1 component, namely L∗

1 . Specifically, the

L∗

1 method further reduces the tracking accuracy by 1.7%

and 1.5% for both precision and success rate metrics based

on L1. At the same time, we validate the contribution of the

activation-oriented feature attention mechanism in L2 com-

ponent, namely L∗

2 , and reduce the tracking performance

by 4.4% and 2.1% for success and precision, respectively.
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Figure 4. Qualitative evaluation of one-shot adversarial attack in various trackers on video examples Human7 and Human2 from the

OTB100 dataset. For each of the two subfigures, the first column represents the adversarial examples generated in the initial frame, except

the clean example in the first row. The green, blue, and red rectangles represent the bounding boxes of ground-truth, tracking results before

and after being attacked.

Moreover, through the experimental analysis, we can see

that the feature attention mechanism brings more gain than

the confidence attention mechanism. The potential reason is

that the attention mechanism of L∗

1 has narrowed the candi-

dates to a more appropriate range, and all of these selected

boxes will contribute to the attack. In addition, the feature

attention mechanism can force the algorithm to mine chan-

nels that contribute more to the attack in the huge feature

space, which effectively reduces the concerned scope be-

longing to L2 attack. Besides, the attacking strategy using

two basic components L∗

1 and L∗

2 simultaneously achieves

gain on each basis. Finally, the dual attention attack method

obtains the best attack result by simultaneously employing

two attention mechanisms.

4.4. Qualitative Evaluation

Fig. 4 shows examples of adversarial attacks against var-

ious trackers. We can see that the initial frame perturbation

of the five trackers is so subtle that it is difficult to be ob-

served by the human eye. Generally, adding adversarial at-

tacks results in a large deviation of tracking results. Among

them, the attacks on SiamFC and SiamRPN are stronger

when the target scale changes greatly. In contrast, the im-

pact on the results of SiamRPN++ is not obvious, which

is partly attributed to the robust feature extraction using

deeper models.

5. Conclusion

In this work, we highlight the adversarial perturbations

against VOT to circumvent potential risks of the surveil-

lance system. We focus on the adversarial attacks for free-

model single object tracking and our attack target is a se-

ries of excellent trackers based on Siamese networks. We

present a one-shot attack method that only perturbs slightly

the pixel values of the initial frame image of a video, result-

ing in tracking failure in subsequent frames. Experimental

results prove that our approaches can successfully attack the

advanced Siamese network-based trackers. We hope that

more researchers can pay attention to the adversarial attack

and defense of the tracking algorithms in the future.
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