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Abstract

Based on the framework of multiple instance learning

(MIL), tremendous works have promoted the advances of

weakly supervised object detection (WSOD). However, most

MIL-based methods tend to localize instances to their dis-

criminative parts instead of the whole content. In this paper,

we propose a spatial likelihood voting (SLV) module to con-

verge the proposal localizing process without any bound-

ing box annotations. Specifically, all region proposals in a

given image play the role of voters every iteration during

training, voting for the likelihood of each category in spa-

tial dimensions. After dilating alignment on the area with

large likelihood values, the voting results are regularized as

bounding boxes, being used for the final classification and

localization. Based on SLV, we further propose an end-to-

end training framework for multi-task learning. The clas-

sification and localization tasks promote each other, which

further improves the detection performance. Extensive ex-

periments on the PASCAL VOC 2007 and 2012 datasets

demonstrate the superior performance of SLV.

1. Introduction

Object detection is an important problem in computer

vision, which aims at localizing tight bounding boxes of

all instances in a given image and classifying them re-

spectively. With the development of convolutional neu-

ral network (CNN) [10, 13, 14] and large-scale annotated

datasets [6, 18, 23], there have been great improvements in

object detection [8, 9, 17, 19, 21] in recent years. However,

it is time-consuming and labor-intensive to annotate accu-

∗This work was done when the author was visiting Alibaba as a re-

search intern.
†Corresponding authors.

Figure 1. Detection results without/with SLV module. (a) Com-

mon MIL-based methods are easy to localize instances to their

discriminative parts instead of the whole content. (b) SLV mod-

ule shifts object proposals and detects accurate bounding boxes of

objects.

rate object bounding boxes for a large-scale dataset. There-

fore, weakly supervised object detection (WSOD), which

only use image-level annotations for training, is considered

to be a promising solution in reality and has attracted the

attention of academic community in recent years.

Most WSOD methods [3, 4, 22, 25, 26, 32] follow the
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multiple instance learning (MIL) paradigm. Regarding the

WSOD as an instance classification problem, they train an

instance classifier under MIL constraints to approach the

purpose of object detection. However, the existing MIL-

based methods only focus on feature representations for in-

stance classification without considering localization accu-

racy of the proposal regions. As a consequence, they tend

to localize instances to their discriminative parts instead of

the whole content, as illustrated in Fig 1(a).

Due to lack of bounding box annotations, the absence

of localization task is always a serious problem in WSOD.

As a remedy, the subsequent works [15, 25, 26, 30] choose

to re-train a Fast-RCNN [8] detector fully-supervised with

pseudo ground-truths, which are generated by MIL-based

weakly-supervised object detectors. The fully-supervised

Fast-RCNN alleviates the above-mentioned problem by

means of multi-task training [8].But it is still far from the

optimal solution.

In this paper, we propose a spatial likelihood voting

(SLV) module to converge the proposal localizing process

without any bounding box annotations. The spatial likeli-

hood voting operation consists of instances selection, spa-

tial probability accumulation, and high likelihood region

voting. Unlike the previous methods which always keep the

position of their region proposals unchanged, all region pro-

posals in SLV play the role of voters every iteration during

training, voting for the likelihood of each category in spatial

dimensions. Then the voting results, which will be used for

the re-classification and re-localization shown in Fig 1(b),

are regularized as bounding boxes by dilating alignment

on the area with large likelihood values. Through gener-

ating the voted results, the proposed SLV evolves the in-

stance classification problem into multi-tasking field. SLV

opens the door for WSOD methods to learn classification

and localization simultaneously. Furthermore, we propose

an end-to-end training framework based on SLV module.

The classification and localization tasks promote each other,

which finally educe better localization and classification re-

sults and shorten the gap between weakly-supervised and

fully-supervised object detection.

In addition, we conduct extensive experiments on chal-

lenging PASCAL VOC datasets [6] to confirm the effec-

tiveness of our method. The proposed framework achieves

53.5% and 49.2% mAP on VOC 2007 and VOC 2012 re-

spectively, which, to the best of our knowledge, is the best

single model performance to date.

The contributions of this paper are summarized as fol-

lows:

1) We propose a spatial likelihood voting (SLV) module

to converge the proposal localizing process with only

image-level annotations.The proposed SLV evolves the

instance classification problem into multi-tasking field.

2) We introduce an end-to-end training strategy for the pro-

posed framework, which boosts the detection perfor-

mance by feature representation sharing.

3) Extensive experiments are conducted on different

datasets. The superior performance suggests that a so-

phisticated localization fine-tuning should be a promis-

ing exploration in addition to the independent Fast-

RCNN re-training.

2. Related Work

MIL is a classical weakly supervised learning problem

and now is a major approach to tackle WSOD. MIL treats

each training image as a “bag” and candidate proposals as

“instances”. The objective of MIL is to train an instance

classifier to select positive instances from this “bag”. With

the development of the Convolution Neural Network, many

works [3, 5, 11, 27] combine CNN and MIL to deal with the

WSOD problem. For example, Bilen and Vedaldi [3] pro-

pose a representative two-stream weakly supervised deep

detection network (WSDDN), which can be trained with

image-level annotations in an end-to-end manner. Based on

the architecture in [3], [11] proposes to exploit the contex-

tual information from regions around the object as a super-

visory guidance for WSOD.

In practice, MIL solutions are found easy to converge to

discriminative parts of objects. This is caused by the loss

function of MIL is non-convex and thus MIL solutions usu-

ally stuck into local minima. To address this problem, Tang

et al. [26] combine WSDDN with multi-stage classifier re-

finement and propose an OICR algorithm to help their net-

work see larger parts of objects during training. Moreover,

building on [26], Tang et al. [25] subsequently introduce the

proposal cluster learning and use the proposal clusters as su-

pervision which indicates the rough locations where objects

most likely appear. In [31], Wan et al. try to reduce the

randomness of localization during learning. In [34], Zhang

et al. add curriculum learning using the MIL framework.

From the perspective of optimization, Wan et al. [30] in-

troduce the continuation method and attempt to smooth the

loss function of MIL with the purpose of alleviating the non-

convexity problem. In [7], Gao et al. make use of the in-

stability of MIL-based detectors and design a multi-branch

network with orthogonal initialization.

Besides, there are many attempts [1, 12, 16, 33, 35] to

improve the localization accuracy of the weakly supervised

detectors from other perspectives. Arun et al. [1] obtain

much better performance by employing a probabilistic ob-

jective to model the uncertainty in the location of objects.

In [16], Li et al. propose a segmentation-detection collab-

orative network which utilizes the segmentation maps as

prior information to supervise the learning of object detec-

tion. In [12], Kosugi et al. focus on instance labeling prob-
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Figure 2. The network architecture of our method. A VGG16 base net with RoI pooling is used to extract the feature of each proposal.

Then the proposal features pass through two fully connected layers and the generated feature vectors are branched into Basic MIL module

and SLV module (re-classification branch). In Basic MIL Module, there are one WSDDN branch and three refinement branches. The

average classification scores of three refinement branches are fed into SLV module to generate supervisions. Another fully connected layer

in SLV module is used to obtain regression offsets (re-localization branch). softmax1 is softmax operation over classes and softmax2

is softmax operation over proposals.

lem and design two different labeling methods to find tight

boxes rather than discriminative ones. In [35], Zhang et al.

propose to mine accurate pseudo ground-truths from a well-

trained MIL-based network to train a fully supervised object

detector. In contrast, the work of Yang et al. [33] integrates

WSOD and Fast-RCNN re-training into a single network

that can jointly optimize the regression and classification.

3. Method

The overall architecture of the proposed framework is

shown in Fig 2. We adopt a MIL-based network as a ba-

sic part and integrate the proposed SLV module into the

final architecture. During the forward process of training,

the proposal features are fed into the basic MIL module to

produce proposal score matrices. Subsequently, these pro-

posal score matrices are used to generate supervisions for

the training of the proposed SLV module.

3.1. Basic MIL Module

With image-level annotations, many existing works [2, 3,

4, 11] detect objects based on a MIL network. In this work,

we follow the method in [3] which proposes a two-stream

weakly supervised deep detection network (WSDDN) to

train the instance classifier. For a training image and its

region proposals, the proposal features are extracted by a

CNN backbone and then branched into two streams, which

correspond to a classification branch and a detection branch

respectively. For classification branch, the score matrix

Xcls ∈ R
C×R is produced by passing the proposal features

through a fully connected (fc) layer, where C denotes the

number of image classes and R denotes the number of pro-

posals. Then a softmax operation over classes is performed

to produce σcls(X
cls), [σcls(X

cls)]cr = ex
cls
cr

∑
C

k=1
e
xcls
kr

. Sim-

ilarly, the score matrix Xdet ∈ R
C×R is produced by an-

other fc layer for detection branch, but σdet(X
det) is gen-

erated through a softmax operation over proposals rather

than classes: [σdet(X
det)]cr = ex

det
cr

∑
R

k=1
e
xdet
ck

. The score

of each proposal is generated by element-wise product:

ϕ0 = σcls(X
cls)⊙σdet(X

det). At last, the image classifi-

cation score on class c is computed through the summation

over all proposals: φc =
∑R

r=1 ϕ
0
cr. We denote the label

of a training image y = [y1, y2, ..., yC ]
T

, where yc = 1 or

0 indicates the image with or without class c. To train the

instance classifier, the loss function is shown in Eq. (1).

Lw = −

C
∑

c=1

{yc log φc + (1− yc) log(1− φc)} (1)

Moreover, proposal cluster learning (PCL) [25] is

adopted, which embeds 3 instance classifier refinement

branches additionally, to get better instance classifiers. The

output of the k-th refinement branch is ϕk ∈ R
(C+1)×R,

where (C + 1) denotes the number of C different classes

and background.
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Specifically, based on the output score ϕk and proposal

spatial information, proposal cluster centers are built. All

proposals are then divided into those clusters according to

the IoU between them, one for background and the others

for different instances. Proposals in the same cluster (ex-

cept for the cluster for background) are spatially adjacent

and associated with the same object. With the supervision

Hk =
{

ykn
}Nk+1

n=1
(ykn is the label of the n-th cluster), the re-

finement branch treats each cluster as a small bag. Each bag

in the k-th refinement branch is optimized by a weighted

cross-entropy loss.

Lk = −
1

R
(

Nk

∑

n=1

sknM
k
n log

∑

r∈Ck
n

ϕk
yk
n
r

Mk
n

+
∑

r∈Ck

Nk+1

λk
r logϕ

k
(C+1)r)

(2)

where skn and Mk
n are the confidence score of n-th clus-

ter and the number of proposals in the n-th cluster, ϕk
cr is

the predicted score of the r-th proposal. r ∈ Ck
n indicates

that the r-th proposal belongs to the n-th proposal cluster,

Ck
Nk+1 is the cluster for background, λk

r is the loss weight

that is the same as the confidence of the r-th proposal.

3.2. Spatial Likelihood Voting

It is hard for weakly supervised object detectors to pick

out the most appropriate bounding boxes from all proposals

for an object. The proposal that obtains the highest classifi-

cation score often covers a discriminative part of an object

while many other proposals covering the larger parts tend

to have lower scores. Therefore, it is unstable to choose the

proposal with the highest score as the detection result un-

der the MIL constraints. But from the overall distribution,

those high-scoring proposals always cover at least parts of

objects. To this end, we propose to make use of the spa-

tial likelihood of all proposals which implies the boundaries

and categories of objects in an image. In this subsection,

we introduce a spatial likelihood voting (SLV) module to

perform classification and localization refinement simulta-

neously rather than the instance classifier only.

The SLV module is convenient to be plugged into any

proposal-based detector and can be optimized with the fun-

damental detector jointly. The spirit of SLV is to establish

a bridge between classification task and localization task

through coupling the spatial information and category infor-

mation of all proposals together. During training, the SLV

module takes into the classification scores of all proposals

and then calculates the spatial likelihood of them for gener-

ating supervision Hslv (ϕ̄,y), where ϕ̄ =
(

∑3
k=1 ϕ

k
)

/3.

Formally, for an image I with label y, there are three

steps to generate Hslv
c when yc = 1. To save training time,

Algorithm 1 Generating supervision Hslv

Input:

Proposal boxes B = {b1, ..., bR}; proposal average

scores ϕ̄; image label vector y = [y1, ..., yC ]
T

; image

size {H,W}.

Output:

Supervision Hslv .

1: Initialize Hslv = ∅.

2: for c = 1 to C do

3: if yc = 1 then

4: Initialize Bc = ∅.

Initialize M c with zero.

5: for r = 1 to R do

6: if ϕ̄cr > Tscore then

7: Bc.append(br).

8: end if

9: end for

10: Construct M c by Eq. (3), see Section 3.2.

11: Scale the range of elements in M c to [0, 1].
12: Transform M c into the binary version M c

b.

13: Find minimum bounding rectangles Gc in M c
b.

14: Hslv
c = {Gc, c}.

15: Hslv .append(Hslv
c ).

16: end if

17: end for

18: return Hslv .

the low-scoring proposals are filtered out first as they have

little significance for spatial likelihood voting. The retained

proposals are considered to surround the instances of cate-

gory c and are placed into Bc, Bc = {br | ϕ̄cr > Tscore}.

For the second step, we implement a spatial probabil-

ity accumulation according to the predicted classification

scores and locations of proposals in Bc. In detail, we con-

struct a score matrix M c ∈ R
H×W , where H and W are

the height and width of the training image I. All elements

in M c are initialized with zero. Then, for each proposal

br ∈ Bc, we accumulate the predicted score of br to M c

spatially.

mc
ij =

∑

r s.t. br∈Bc,
(i,j)∈br

ϕ̄cr (3)

where (i, j) ∈ br means the pixel (i, j) inside the proposal

br. For proposals in Bc, we calculate their likelihood in spa-

tial dimensions and the final value of elements in M c indi-

cates the possibility that the instance of category c appears

in that position.

Finally, the range of elements in M c is scaled to [0, 1]
and a threshold T c

b is set to transform M c into a binary ver-

sion M c
b. M c

b is regarded as a binary image and the min-

imum bounding rectangles Gc = {gm}
Nc

m=1 of connected

regions in M c
b (gm is the m-th rectangle and Nc is the num-
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Algorithm 2 The overall training procedure

Input:

A training image and its proposal boxes B; image la-

bel vector y = [y1, ..., yC ]
T

; refinement times K = 3;

training iteration index i.
Output:

An updated network.

1: Feed the image and proposal boxes B into basic MIL

module to produce score matrices ϕk, k ∈ {0, 1, 2, 3}
2: Compute loss Lw and Lk

r , k ∈ {1, 2, 3} by Eq. (2)/(1),

see Section 3.1.

3: Compute average score matrix ϕ̄ =
(

∑3
k=1 ϕ

k
)

/3.

4: for c = 1 to C do

5: if yc = 1 then

6: Generate Hslv
c based on ϕ̄ and proposal boxes B,

see Section 3.2.

7: end if

8: end for

9: Generate Hslv , see Algorithm 1.

10: Compute loss Ls, see Section 3.2.

11: Compute loss weight ws by training iteration index i.
12: Optimize (Lw +

∑3
k=1 L

k
r + wsLs).

ber of connected regions in M c
b) is used to generate Hslv

c

shown in Eq. (4).

Hslv
c = {Gc, c} (4)

The overall procedures of generating Hslv are summa-

rized in Algorithm 1 and a visualization example of SLV

is shown in Fig 3. Supervision Hslv is instance-level

annotation and we use a multi-task loss Ls on each la-

beled proposal to perform classification and localization

refinement simultaneously. The output of re-classification

branch is ϕs ∈ R
(C+1)×R and output of re-localization

branch is ts ∈ R
4×R. The loss of SLV module is Ls =

Lcls(ϕ
s,Hslv)+Lloc(t

s,Hslv), where Lcls is the cross en-

tropy loss and Lloc is the smooth L1 loss.

3.3. The overall training framework

To refine the weakly supervised object detector, the ba-

sic MIL module and SLV module are intergrated into one.

Combining the loss function of both, the final loss of the

whole network is in Eq. (5).

L = Lw +
∑3

k=1
Lk
r + Ls (5)

However, the output classification scores of basic MIL

module are noisy in early stage of training, which causes

that the voted supervisions Hslv are not precise enough to

train the object detector. There is an alternative training

strategy to avoid this problem: 1) fixing the SLV module

Figure 3. A visualization example of SLV. The label of image is

{person, horse}, then two different M c and Hslv are generated.

and training the basic MIL module completely; 2) fixing the

basic MIL module and using the output classification scores

of it to train the SLV module. This strategy makes sense but

training different parts of the network separately may harm

the performance. So, we propose a training framework that

integrates the two training steps into one. We change the

loss in Eq. (5) to a weighted version, as in Eq. (6).

L = Lw +
∑3

k=1
Lk
r + wsLs (6)

The loss weight ws is initialized with zero and will increase

iteratively. At the beginning of training, although the basic

MIL module is unstable and we cannot obtain good supervi-

sions Hslv , ws is small and the loss wsLs is also small. As a

consequence, the performance of the basic MIL module will

not be affected a lot. During the training process, the basic

MIL module will classify the proposals well, and thus we

can obtain stable classification scores to generate more pre-

cise supervisions Hslv . The proposed training framework is

easy to implement and the network could benefit from the

shared proposal features. The overall training procedure of

our network is shown in Algorithm 2.

During testing, the proposal scores of three refined in-

stance classifiers and SLV re-classification branch are used

as the final detection scores. And the bounding box regres-

sion offsets computed by the SLV re-localization branch are

used to shift all proposals.

4. Experiment

4.1. Datasets and Evaluation Metrics

SLV was evaluated on two challenging datasets: PAS-

CAL VOC 2007 and 2012 datasets [6] which have 9,962

and 22,531 images respectively for 20 object classes. For

each dataset, we use the trainval set for training and test
set for testing. Only image-level annotations are used to

train our network.

For evaluation, two metrics are used to evaluate our

model. First, we evaluate detection performance using

mean Average Precision (mAP) on the PASCAL VOC 2007
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re-cls re-loc end-to-end fast-rcnn mAP

50.1

X 51.0

X 51.6

X X 52.5

X X X 53.5

X X X X 53.9

Table 1. Detection performance for different ablation experiments

on PASCAL VOC 2007 test set. “re-cls” and “re-loc” means

re-classification and re-localization branch respectively. “end-to-

end” is the proposed training framework and “fast-rcnn” means

re-training a Fast-RCNN detector.

and 2012 test set. Second, we evaluate the localization ac-

curacy using Correct Localization (CorLoc) on PASCAL

VOC 2007 and 2012 trainval set. Based on the PASCAL

criterion, a predicted box is considered positive if it has an

IoU > 0.5 with a ground-truth bounding box.

4.2. Implementation Details

The proposed framework is implemented based on

VGG16 [24] CNN model, which is pre-trained on ImageNet

dataset [23]. We use Selective Search [29] to generate about

2,000 proposals per-image. In basic MIL module, we fol-

low the implementation in [25] to refine instance classifier

three times. For SLV module, we use the average proposal

scores of three refined instance classifiers to generate super-

visions and the setting of hyper-parameters is intuitive. The

threshold Tscore is set to 0.001 for saving time and T c
b is set

to 0.2 for person category and 0.5 for other categories.

During training, the mini-batch size for training is set

to 2. The momentum and weight decay are set to 0.9 and

5× 10−4 respectively. The initial learning rate is 5× 10−4

and the learning rate decay step is 9-th, 12-th and 15-th

epoch. For data augmentation, we use five image scales

{480, 576, 688, 864, 1200} with horizontal flips for both

training and testing. We randomly choose a scale to resize

the image and then the image is horizontal flipped. During

testing, the average score of 10 augmented images is used

as the final classification score. Similarly, the output regres-

sion offsets of 10 augmented images are also averaged.

Our experiments are implemented based on PyTorch[20]

deep learning framework. And all of our experiments are

running on NVIDIA GTX 1080Ti GPU.

4.3. Ablation Studies

We perform ablations on PASCAL VOC 2007 to analyse

the proposed SLV module. The baseline model(mAP 50.1%

on PASCAL VOC 2007 test set) is the basic PCL detec-

tor described in Section 3.1, which is trained on PASCAL

VOC 2007 trainval set. Details about ablation studies are

discussed in the following.

Figure 4. Results on VOC 2007 for baseline and different training

epochs of SLV module.

Figure 5. Examples of 3 different labeling schemes. (a) Conven-

tional scheme. (b) Clustering scheme. (c) SLV. The value on the

top of every labeled box is the IoU with its corresponding ground-

truth bounding box.

SLV vs. No SLV. To confirm the effectiveness of the

proposed SLV module, we conduct different ablation ex-

periments for re-classification and re-localization branch in

SLV. As shown in Table 1 (row 2 and row 3), the sim-

plified versions of SLV module which only contain a re-

classification or re-localization branch both outperform the

baseline model. It indicates the supervision generated by

spatial likelihood voting method, which is formulated in

Section 3.2, is precise enough not only for classification but

also for localization.

Moreover, a normal version of SLV module improves

the detection performance further due to multi-task learn-

ing. As shown in Fig 4, the SLV module trained based on

a well-trained baseline model boosts the performance sig-

nificantly (mAP from 50.1% to 52.5%), indicating the ne-

cessity of converging the proposal localizing process into

WSOD solutions as we discussed above.

End-to-end vs. Alternative. In the previous subsection,

the ablation experiments are conducted by the way that fixes
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Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

OICR(VGG) [26] 58.0 62.4 31.1 19.4 13.0 65.1 62.2 28.4 24.8 44.7 30.6 25.3 37.8 65.5 15.7 24.1 41.7 46.9 64.3 62.6 41.2

PCL(VGG) [25] 54.4 69.0 39.3 19.2 15.7 62.9 64.4 30.0 25.1 52.5 44.4 19.6 39.3 67.7 17.8 22.9 46.6 57.5 58.6 63.0 43.5

WS-RPN(VGG) [28] 57.9 70.5 37.8 5.7 21.0 66.1 69.2 59.4 3.4 57.1 57.3 35.2 64.2 68.6 32.8 28.6 50.8 49.5 41.1 30.0 45.3

C-MIL [30] 62.5 58.4 49.5 32.1 19.8 70.5 66.1 63.4 20.0 60.5 52.9 53.5 57.4 68.9 8.4 24.6 51.8 58.7 66.7 63.5 50.5

UI [7] 63.4 70.5 45.1 28.3 18.4 69.8 65.8 69.6 27.2 62.6 44.0 59.6 56.2 71.4 11.9 26.2 56.6 59.6 69.2 65.4 52.0

Pred Net(VGG) [1] 66.7 69.5 52.8 31.4 24.7 74.5 74.1 67.3 14.6 53.0 46.1 52.9 69.9 70.8 18.5 28.4 54.6 60.7 67.1 60.4 52.9

SLV(VGG) 65.6 71.4 49.0 37.1 24.6 69.6 70.3 70.6 30.8 63.1 36.0 61.4 65.3 68.4 12.4 29.9 52.4 60.0 67.6 64.5 53.5

OICR+FRCNN [26] 65.5 67.2 47.2 21.6 22.1 68.0 68.5 35.9 5.7 63.1 49.5 30.3 64.7 66.1 13.0 25.6 50.0 57.1 60.2 59.0 47.0

PCL+FRCNN [25] 63.2 69.9 47.9 22.6 27.3 71.0 69.1 49.6 12.0 60.1 51.5 37.3 63.3 63.9 15.8 23.6 48.8 55.3 61.2 62.1 48.8

WS-RPN+FRCNN [28] 63.0 69.7 40.8 11.6 27.7 70.5 74.1 58.5 10.0 66.7 60.6 34.7 75.7 70.3 25.7 26.5 55.4 56.4 55.5 54.9 50.4

W2F [35] 63.5 70.1 50.5 31.9 14.4 72.0 67.8 73.7 23.3 53.4 49.4 65.9 57.2 67.2 27.6 23.8 51.8 58.7 64.0 62.3 52.4

UI+FRCNN [7] 62.7 69.1 43.6 31.1 20.8 69.8 68.1 72.7 23.1 65.2 46.5 64.0 67.2 66.5 10.7 23.8 55.0 62.4 69.6 60.3 52.6

C-MIL+FRCNN [30] 61.8 60.9 56.2 28.9 18.9 68.2 69.6 71.4 18.5 64.3 57.2 66.9 65.9 65.7 13.8 22.9 54.1 61.9 68.2 66.1 53.1

Pred Net(Ens) [1] 67.7 70.4 52.9 31.3 26.1 75.5 73.7 68.6 14.9 54.0 47.3 53.7 70.8 70.2 19.7 29.2 54.9 61.3 67.6 61.2 53.6

SLV(VGG)+FRCNN 62.1 72.1 54.1 34.5 25.6 66.7 67.4 77.2 24.2 61.6 47.5 71.6 72.0 67.2 12.1 24.6 51.7 61.1 65.3 60.1 53.9

Table 2. Average precision (in %) on PASCAL VOC 2007 test set. The first part shows the results of weakly supervised object detectors

using a single model and the second part shows the results of weakly supervised object detectors using an ensemble model or fully

supervised object detector trained by pesudo ground-truths generated by weakly supervised object detectors.

Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv CorLoc

OICR(VGG) [26] 81.7 80.4 48.7 49.5 32.8 81.7 85.4 40.1 40.6 79.5 35.7 33.7 60.5 88.8 21.8 57.9 76.3 59.9 75.3 81.4 60.6

PCL(VGG) [25] 79.6 85.5 62.2 47.9 37.0 83.8 83.4 43.0 38.3 80.1 50.6 30.9 57.8 90.8 27.0 58.2 75.3 68.5 75.7 78.9 62.7

WS-RPN(VGG) [28] 77.5 81.2 55.3 19.7 44.3 80.2 86.6 69.5 10.1 87.7 68.4 52.1 84.4 91.6 57.4 63.4 77.3 58.1 57.0 53.8 63.8

C-MIL [30] - - - - - - - - - - - - - - - - - - - - 65.0

UI [7] 84.2 84.7 59.5 52.7 37.8 81.2 83.3 72.4 41.6 84.9 43.7 69.5 75.9 90.8 18.1 54.9 81.4 60.8 79.1 80.6 66.9

Pred Net(VGG) [1] 88.6 86.3 71.8 53.4 51.2 87.6 89.0 65.3 33.2 86.6 58.8 65.9 87.7 93.3 30.9 58.9 83.4 67.8 78.7 80.2 70.9

SLV(VGG) 84.6 84.3 73.3 58.5 49.2 80.2 87.0 79.4 46.8 83.6 41.8 79.3 88.8 90.4 19.5 59.7 79.4 67.7 82.9 83.2 71.0

OICR+FRCNN [26] 85.8 82.7 62.8 45.2 43.5 84.8 87.0 46.8 15.7 82.2 51.0 45.6 83.7 91.2 22.2 59.7 75.3 65.1 76.8 78.1 64.3

PCL+FRCNN [25] 83.8 85.1 65.5 43.1 50.8 83.2 85.3 59.3 28.5 82.2 57.4 50.7 85.0 92.0 27.9 54.2 72.2 65.9 77.6 82.1 66.6

WS-RPN+FRCNN [28] 83.8 82.7 60.7 35.1 53.8 82.7 88.6 67.4 22.0 86.3 68.8 50.9 90.8 93.6 44.0 61.2 82.5 65.9 71.1 76.7 68.4

W2F [35] - - - - - - - - - - - - - - - - - - - - 70.3

UI+FRCNN [7] 86.7 85.9 64.3 55.3 42.0 84.8 85.2 78.2 47.2 88.4 49.0 73.3 84.0 92.8 20.5 56.8 84.5 62.9 82.1 78.1 66.9

Pred Net(Ens) [1] 89.2 86.7 72.2 50.9 51.8 88.3 89.5 65.6 33.6 87.4 59.7 66.4 88.5 94.6 30.4 60.2 83.8 68.9 78.9 81.3 71.4

SLV(VGG)+FRCNN 85.8 85.9 73.3 56.9 52.7 79.7 87.1 84.0 49.3 82.9 46.8 81.2 89.8 92.4 21.2 59.3 80.4 70.4 82.1 78.8 72.0

Table 3. CorLoc (in %) on PASCAL VOC 2007 trainval set. The first part shows the results of weakly supervised object detectors using

a single model and the second part shows the results of weakly supervised object detectors using an ensemble model or fully supervised

object detector trained by pseudo ground-truths generated by weakly supervised object detectors.

Method mAP(%) CorLoc(%)

PCL(VGG) [25] 40.6 63.2

WS-RPN(VGG) [28] 40.8 64.9

C-MIL [30] 46.7 67.4

UI [7] 48.0 67.4

Pred Net(VGG) [1] 48.4 69.5

SLV(VGG) 49.2 69.2

Table 4. Detection and localization performance for different de-

tectors using a single model on PASCAL VOC 2012 dataset.

the baseline model and trains the SLV module only. The two

parts of the proposed network are trained separately, which

is similar to re-train an independent Fast-RCNN model.

In the row 4 and 5 of Table 1, we present the performance

of models with different training strategies. Compared with

the alternative training strategy (row 4), the model trained

with the proposed end-to-end training framework (row 5)

outperforms the former a lot. Just as we discussed in Sec-

tion 3.3, end-to-end training framework shorten the gap be-

tween weakly-supervised and fully-supervised object detec-

tion.

SLV vs. Other labeling schemes. Regarding SVL as

a pseudo labeling strategy, we compare 3 different label-

ing schemes and analyze the strengths and weaknesses of

them respectively. The first scheme is a conventional ver-

sion that selects the highest-scoring proposal for each posi-

tive class. The second scheme is a clustering version that

selects the highest-scoring proposal from every proposal

cluster for each positive class. And the last scheme is the

proposed SLV. Fig 5 contains a few labeling examples of 3

schemes in different scenarios, the first row shows that the

SLV module is beneficial to find as many labels as possi-

ble rather than only one for each positive class. Then, the

second row shows the property of 3 schemes when labeling

larger objects and the bounding boxes labeled by SLV have

higher IoU with ground-truth boxes. However, as shown in

the third row of Fig 5, when objects are gathering closely,

the SLV is prone to labeling these objets as one instance.

Meanwhile, all 3 schemes failed when labeling the “table”

due to its weak feature representation (the plate in the table

is labeled instead). This is an issue worth exploring in fu-

ture work. Despite these bad cases, the performance of the

network with SLV (53.5% mAP) still surpasses its counter-

parts using two other labeling schemes (52.1% mAP for the

first scheme and 52.4% mAP for the second scheme).
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Figure 6. Detection results of our method and a competitor (the PCL model). Green bounding boxes are the objects detected by our method

and red ones are the results detected by the competitor.

4.4. Comparison with Other Methods

In this subsection, we compare the results of our method

with other works. We report our experiment results on

PASCAL VOC 2007 and 2012 datasets on Table 2, Table

3 and Table 4. Our method obtains 53.5% on mAP and

71.0% on CorLoc with single VGG16 model on VOC 2007

dataset, which outperforms all the other single model meth-

ods. We further re-train a Fast-RCNN detector based on

pseudo ground-truths produced by SLV (VGG) and the re-

trained model obtains 53.9% on mAP and 72.0% on CorLoc

on VOC 2007 dataset, which are the new state-of-the-arts.

On VOC 2012 dataset, our method obtains 49.2% on mAP,

which is also the best in all the single model methods and

obtains 69.2% on CorLoc.

Different from the recent works, e.g. [33], that select

high-scoring proposals as pseudo ground-truths to enhance

localization ability, the proposed SLV is devoted to search-

ing the boundaries of different objects from a more macro

perspective and thus obtains a better detection ability. We

illustrate some typical detection results of our method and

a competitor model in Fig 6. It is obvious that the bound-

ing boxes output by our method have a better localization

performance. This is due to our multi-task network is able

to classify and localize proposals at the same time, while

the competitor is single-task form and only highlights the

most discriminative object parts. Though our method out-

performs the competitor significantly, it is also worth noting

that the detection results on some classes like “chair”, “ta-

ble”, “plant” and “person”, are undesirable sometimes (last

row of Fig 6). We suggest that the supervisions generated

in SLV module are not precise enough in object-gathering

scenarios: many chairs are gathering or an indoor table sur-

rounded by many other objects.

5. Conclusion

In this paper, we propose a novel and effective mod-

ule, spatial likelihood voting (SLV), for weakly supervised

object detection. We propose to evolve the instance clas-

sification problem in most MIL-based models into multi-

tasking field to shorten the gap between weakly super-

vised and fully supervised object detection. The pro-

posed SLV module converges the proposal localizing pro-

cess without any bounding box annotations and an end-to-

end training framework is proposed for our model. The

proposed framework obtains better classification and lo-

calization performance through end-to-end multi-tasking

learning. Extensive experiments conducted on VOC 2007

and 2012 datasets show substantial improvements of our

method compared with previous WSOD methods.
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