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Abstract

Humans are able to describe image contents with coarse
to fine details as they wish. However, most image cap-
tioning models are intention-agnostic which cannot gener-
ate diverse descriptions according to different user inten-
tions initiatively. In this work, we propose the Abstract
Scene Graph (ASG) structure to represent user intention
in fine-grained level and control what and how detailed
the generated description should be. The ASG is a di-
rected graph consisting of three types of abstract nodes
(object, attribute, relationship) grounded in the image with-
out any concrete semantic labels. Thus it is easy to obtain
either manually or automatically. From the ASG, we pro-
pose a novel ASG2Caption model, which is able to recog-
nise user intentions and semantics in the graph, and there-
fore generate desired captions following the graph struc-
ture. Our model achieves better controllability condition-
ing on ASGs than carefully designed baselines on both Vi-
sualGenome and MSCOCO datasets. It also significantly
improves the caption diversity via automatically sampling
diverse ASGs as control signals. Code will be released at
https://github.com/cshizhe/asg2cap.

1. Introduction

Image captioning is a complex problem since it requires
a machine to complete several computer vision tasks, such
as object recognition, scene classification, attributes and re-
lationship detection simultaneously, and then summarize in
a sentence. Thanks to the rapid development of deep learn-
ing [12, 13], recent image captioning models [3, 31, 40]
have made substantial progress and even outperform hu-
mans in terms of several accuracy-based evaluation metrics
[5, 27, 36].

However, most image captioning models are intention-
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Intention-agnostic Captions

- A couple of chairs sitting next
to a table with flowers.

- A couple of chairs sitting next
to each other on a table.

- A couple of white chairs sitting
on top of a wooden table.

ASG 2

<obj>
\<ob1> | <obj> |

<G>

A cluster of pink flowers in front Atall tree is standlng behind

of a wooden table. s and a table.

Figure 1: Although intention-agnostic captions can cor-
rectly describe image contents, they fail to realise what a
user wants to describe and lack diversity. Therefore, we
propose Abstract Scene Graphs (ASG) to control the gen-
eration of user desired and diverse image captions in fine-
grained level. The corresponding region, ASG node and
generated phrase are labelled with the same colour.

agnostic and only passively generate image descriptions,
which do not care about what contents users are interested
in, and how detailed the description should be. On the con-
trary, we humans are able to describe image contents from
coarse to fine details as we wish. For example, we can
describe more discriminative details (such as the quantity
and colour) of flowers in Figure | if we are asked to do
s0, but current systems fail to realise such user intention.
What is worse, such passive caption generation can greatly
hinder diversity and tend to generate mediocre descriptions
[34, 38]. Despite achieving high accuracy, these descrip-
tions mainly capture frequent descriptive patterns and can-
not represent holistic image understanding, which is sup-
posed to recognize different aspects in the image and thus
be able to produce more diverse descriptions.

In order to address aforementioned limitations, few pre-
vious endeavours have proposed to actively control image
captioning process. One type of works [8, 11, 25] focuses
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on controlling expressive styles of image descriptions such
as factual, romantic, humorous styles etc., while the other
type aims to control the description contents such as differ-
ent image regions [15], objects [0, 48], and part-of-speech
tags [7], so that the model is able to describe user interested
contents in the image. However, all of the above works can
only handle a coarse-grained control signal such as one-hot
labels or a set of image regions, which are hard to realise
user desired control at a fine-grained level, for instance de-
scribing various objects in different level of details as well
as their relationships.

In this work, we propose a more fine-grained control
signal, Abstract Scene Graph (ASG), to represent differ-
ent intentions for controllable image caption generation. As
shown in Figure 1, the ASG is a directed graph consisting of
three types of abstract nodes grounded in the image, namely
object, attribute and relationship, while no concrete seman-
tic label is necessary for each node. Therefore, such graph
structure is easy to obtain either manually or automatically
since it does not require semantic recognition. More impor-
tantly, the ASG is capable of reflecting user’s fine-grained
intention on what to describe and how detailed to describe.

In order to generate captions with respect to designated
ASGs, we then propose an ASG2Caption model based on
an encoder-decoder framework. The model tackles three
main challenges in ASG controlled image caption genera-
tion. Firstly, notice that our ASG only contains an abstract
scene layout without any semantic labels, it is necessary to
capture both intentions and semantics in the graph. There-
fore, we propose a role-aware graph encoder to differenti-
ate fine-grained intention roles of nodes and enhance each
node with graph contexts to improve semantic representa-
tion. Secondly, the ASG not only controls what contents to
describe via different nodes, but also implicitly decides the
descriptive order via how nodes are connected. Our pro-
posed decoder thus considers both content and structure of
nodes for attention to generate desired content in graph flow
order. Last but not least, it is important to fully cover infor-
mation in ASG without omission or repetition. For this pur-
pose, our model gradually updates the graph representation
during decoding to keep tracking of graph access status.

Since there are no available datasets with ASG an-
notations, we automatically construct ASGs for train-
ing and evaluation on two widely used image captioning
datasets, VisualGenome and MSCOCO. Extensive exper-
iments demonstrate that our approach can achieve better
controllability given designated ASGs than carefully de-
signed baselines. Furthermore, our model is capable of gen-
erating more diverse captions based on automatically sam-
pled ASGs to describe various aspects in the image.

The contributions of our work are three-fold:

e To the best of our knowledge, we are the first to pro-

pose Abstract Scene Graph for fine-grained control-

lable image captioning. It is able to control the level
of details (such as, whether attributes, relationships
should be included) in caption generation process.

e The proposed ASG2Caption model consists of a role-
aware graph encoder and language decoder for graphs
to automatically recognize abstract graph nodes and
generate captions with intended contents and orders.

e We achieve state-of-the-art controllability given desig-
nated ASGs on two datasets. Our approach can also
be easily extended to automatically generated ASGs,
which is able to generate diverse image descriptions.

2. Related Work
2.1. Image Captioning

Image captioning [3, 9, 37, 39, 40] has achieved signifi-
cant improvements based on neural encoder-decoder frame-
work [35]. The Show-Tell model [37] employs convolu-
tional neural networks (CNNs) [12] to encode image into
fixed-length vector, and recurrent neural networks (RNNs)
[13] as decoder to sequentially generate words. To capture
fine-grained visual details, attentive image captioning mod-
els [3, 23, 40] are proposed to dynamically ground words
with relevant image parts in generation. To reduce exposure
bias and metric mismatching in sequential training [29], no-
table efforts are made to optimise non-differentiable metrics
using reinforcement learning [22, 31, 41]. To further boost
accuracy, detected semantic concepts [9, 39, 45] are adopted
in captioning framework. The visual concepts learned from
large-scale external datasets also enable the model to gen-
erate captions with novel objects beyond paired image cap-
tioning datasets [1, 24]. A more structured representation
over concepts, scene graph [16], is further explored [43, 44]
in image captioning which can take advantage of detected
objects and their relationships. In this work, instead of us-
ing a fully detected scene graph (which is already a chal-
lenging enough task [46, 47]) to improve captioning accu-
racy, we propose to employ Abstract Scene Graph (ASG) as
control signal to generate intention-aware and diverse im-
age captions. The ASG is convenient to interact with users
to control captioning in fine-grained level, and easier to be
obtained automatically than fully detected scene graphs.

2.2. Controllable Image Caption Generation

Controllable text generation [14, 18] aims to generate
sentences following designated control signals, which can
be more interactive and interpretable to humans. There
are broadly two types of control for image captioning,
namely style control and content control. Style control
[8, 11,25, 26] aims to describe global image content in dif-
ferent styles. Since paired stylised texts are scarce in train-
ing, recent works [8, |1, 25] mainly disentangle style codes
from semantic contents and apply unpaired style transfer.
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Figure 2: The proposed ASG2Caption model consists of a role-aware graph encoder and a language decoder for graphs. Given
an image Z and ASG G, our encoder first initializes each node as role-aware embedding, and employs a multi-layer MR-GCN
to encode graph contexts in G,,. Then the decoder dynamically incorporates graph content and graph flow attentions for
ASG-controlled captioning. After generating a word, we update the graph X;_; into A} to record graph access status.

The content control works [0, 15, 42, 48] instead aim to
generate captions capturing different aspects in the image
such as different regions, objects and so on, which are more
relevant to holistic visual understanding. Johnson et al. [15]
is the first to propose the dense captioning task, which de-
tects and describes diverse regions in the image. Zheng et
al. [48] constrain the model to involve a human concerned
object. Cornia et al. [0] further control multiple objects and
their orders in the generated description. Besides manip-
ulating on object-level, Deshpande et al. [7] employ Part-
of-Speech (POS) syntax to guide caption generation, which
however mainly focus on improving diversity rather than
POS control. Beyond single image, Park ez al. [28] propose
to only describe semantic differences between two images.

However, none of above works can control caption gen-
eration at more fine-grained level. For instance, whether
(and how many) associative attributes should be used?
Should other objects (and its associated relationships) be in-
cluded and what is the description order? In this paper, we
propose to utilize fine-grained ASG to control designated
structure of objects, attributes and relationships at the same
time, and enable generating more diverse captions that re-
flect different intentions.

3. Abstract Scene Graph

In order to represent user intentions at fine-grained level,
we first propose an Abstract Scene Graph (ASG) as the con-
trol signal for generating customized image captions. An
ASG for image 7 is denoted as G = (V, £), where V and &
are the sets of nodes and edges respectively. As illustrated
in the top left of Figure 2, the nodes can be classified into
three types according to their intention roles: object node o,
attribute node a and relationship node r. The user intention
is constructed into G as follows:

e add user interested object o; to G, where object o; is
grounded in Z with a corresponding bounding box;

e if the user wants to know more descriptive details of
0;, add an attribute node a; ; to G and assign a directed
edge from o; to a;;. |!| is the number of associative
attributes since multiple a; ; for o; are allowed;

e if the user wants to describe relationship between o;
and o, where o; is the subject and o; is the object, add
relationship node 7; ; to G and assign directed edges
from o; to 7; ; and from r; ; to o; respectively.

It is convenient to construct ASGs automatically or man-
ually. Notice that our ASG is only a graph layout without
any semantic labels, a full ASG of image can be accurately
generated based on off-the-shelf object proposal network
and binary relationship classifier to tell whether two objects
contain any relationship. Then users can easily select sub-
graphs from the full ASG or automatic sampling can be ap-
plied to generate diverse ASGs capturing different aspects
in the image. The details of automatic ASG generation are
provided in the supplementary material.

4. The ASG2Caption Model

Given an image 7 and a designated ASG G, the goal is
to generate a fluent sentence y = {y1,- -+ , yr} that strictly
aligns with G to satisfy user’s intention. In this section, we
present the proposed ASG2Caption model which is illus-
trated in Figure 2. We will describe the proposed encoder
and decoder in Section 4.1 and 4.2 respectively, followed by
its training and inference strategies in Section 4.3.

4.1. Role-aware Graph Encoder

The encoder is proposed to encode ASG G grounded in
image 7 as a set of node embeddings X = {x1,--- , )y }.
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Firstly, x; is supposed to reflect its intention role besides
the visual appearance, which is especially important to dif-
ferentiate object and connected attribute nodes since they
are grounded in the same region. Secondly, since nodes are
not isolated, contextual information from neighbour nodes
is beneficial for recognizing the semantic meaning of the
node. Therefore, we propose a role-aware graph encoder,
which contains a role-aware node embedding to distinguish
node intentions and a multi-relational graph convolutional
network (MR-GCN) [32] for contextual encoding.
Role-aware Node Embedding. For the i-th node in G,
we firstly initialize it as its corresponding visual feature v;.
Specifically, the feature of object node is extracted from the
grounded bounding box in the image; the feature of attribute
node is the same as its connected object; and the feature of
relationship node is extracted from the union bounding box
of the two involved objects. Since visual features alone can-
not distinguish intention roles of different nodes, we further

enhance each node with role embedding to obtain a role-
(0)

aware node embedding ;" as follows:
v; © W, [0], ifi € o;
mgo) = v; © (W, [1] + posi]), ifi € q; ()
v; © W, [2], ifier

where W,. € R3*4 ig the role embedding matrix, d is the
feature dimension, W,.[k] denotes the k-th row of W,., and
pos|i] is a positional embedding to distinguish the order of
different attribute nodes connected with the same object.
Multi-relational Graph Convolutional Network.
Though edges in ASG are uni-directional, the influence
between connected nodes is mutual. Furthermore, since
nodes are of different types, how the message passing from
one type of node to another is different from its inverse
direction. Therefore, we extend the original ASG with dif-
ferent bidirectional edges, which leads to a multi-relational
graph G,,, = {V, &,,,, R} for contextual encoding.
Specifically, there are six types of edges in R to cap-
ture mutual relations between neighboured nodes, which
are: object to attribute, subject to relationship, relationship
to object and their inverse directions respectively. We em-
ploy a MR-GCN to encode graph context in G,,, as follows:

1
SRR Y %l D@

FER jENT

where N denotes neighbours of i-th node under relation
7 € R, o is the ReLU activation function, and W*(l) are pa-
rameters to be learned at [-th MR-GCN layer. Utilizing one
layer brings contexts for each node from its direct neigh-
bour nodes, while stacking multiple layers enables to en-
code broader contexts in the graph. We stack L layers and
then the outputs of the final L-th layer are employed as our

final node embeddings X'. We take an average of X and
fuse it with global image feature via linear transformation
to obtain global encoded graph embedding g.

4.2. Language Decoder for Graphs

The decoder aims to convert the encoded G into an im-
age caption. Unlike previous works that attend on a set of
unrelated vectors [23, 40], our node embeddings X contain
structured connections from G, which reflects user desig-
nated order that should not be ignored. Furthermore, in or-
der to fully satisfy user intention, it is important to express
all the nodes in G without omission or repetition, while pre-
vious attention methods [23, 40] hardly consider the access
status of attended vectors. Therefore, in order to improve
graph-to-sentence quality, we propose a language decoder
specifically for graphs, which includes a graph-based at-
tention mechanism that considers both graph semantics and
structures, and a graph updating mechanism that keeps a
record of what has been described or not.

Overview of the Decoder. The decoder employs a two-
layer LSTM structure [3], including an attention LSTM and
alanguage LSTM. The attention LSTM takes the global en-
coded embedding g, previous word embedding w;_; and
previous output from language LSTM h!_, as input to com-
pute an attentive query h¢:

h¢ = LSTM([g; we—1; ht ], h% 1;6%) (3)

where [;] is vector concatenation and §* are parameters.
We denote node embeddings at ¢-th step as X; =
{@¢1,- -, 24y} where A is the output of encoder X'. The
h¢ is used to retrieve a context vector z; from A&} via the
proposed graph-based attention mechanism. Then language
LSTM is fed with z; and h{ to generate word sequentially:

hl = LSTM([z¢; h2], ht ;6" 4)
p(yely<t) = softmax(Wyh; + by) 5)

where 6/, Wy, b, are parameters. After generating word ¥,
we update node embeddings X; into X;; via the proposed
graph updating mechanism to record new graph access sta-
tus. We will explain the graph-based attention and graph
updating mechanisms in details in the following sections.

Graph-based Attention Mechanism. In order to take
into account both semantic content and graph structure, we
combine two types of attentions called graph content atten-
tion and graph flow attention respectively.

The graph content attention considers semantic rele-
vancy between node embeddings X; and the query hA{ to
compute an attention score vector ag, which is:

ag; = wl tanh(Wyewy; + Wichy) (6)

af = softmax(ay) @)
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Figure 3: Graph flow attention employs graph flow order to
select relevant nodes to generate the next word.

\4

where W, Wh., w. are parameters in content attention and
we omit the bias term for simplicity. Since connections be-
tween nodes are ignored, the content attention is similar to
teleport which can transfer from one node to another node
in far distance in G at different decoding timesteps.
However, the structure of ASG implicitly reflects user
desired orders on caption generation. For example, if the
current attended node is a relationship node, then the next
node to be accessed is most likely to be the following ob-
ject node according to the graph flow. Therefore, we further
propose a graph flow attention to capture the graph struc-
ture. The flow graph Gy is illustrated in Figure 2, which is
different from the original ASG in three ways. The first is
that a start symbol S should be assigned and the second dif-
ference lies in the bidirectional connection between object
node and attribute node since in general the order of objects
and their attributes are not compulsive and should be de-
cided by sentence fluency. Finally, a self-loop edge will be
constructed for a node if there exists no output edge of the
node, which ensures the attention on the graph doesn’t van-
ish. Suppose My is the adjacent matrix of the flow graph
Gy, where the i-th row denotes the normalized in-degree of
the i-th node. The graph flow attention transfers attention
score vector in previous decoding step cx¢z—1 in three ways:
1) stay at the same node a£ o = o¢—1. For example, the
model might express one node with multiple words;
2) move one step a{, 1 = Mya_q, for instance transfer-
ring from a relationship node to its object node;
3) move two steps af’z = (Mf)2at_1 such as transfer-
ring from a relationship node to an attribute node.
The final flow attention is a soft interpolation of the three
flow scores controlled by a dynamic gate as follows:

st = softmax(Wso(Wphi + Wio2i-1)) 8)
2
a{ = Z St,kaik )
k=0

where Wy, W, Wy, are parameters and s; € R3. Figure 3

presents the process of graph flow attention.

Our graph-based attention dynamically fuses the graph
content attention af and the graph flow attention a{ with
learnable parameters wg, Wy, W, which is:

B = sigmoid(wyo(Wyphy + Wy.24—1)) (10)
o = fral + (1—B)ad (11)

Therefore, the context vector for predicting word at the ¢-
th step is z; = ZLZ‘l oy iy, which is a weighted sum of
graph node features.

Graph Updating Mechanism. We update the graph
representation to keep a record of the access status for dif-
ferent nodes in each decoding step. The attention score o
indicates accessed intensity of each node so that highly at-
tended node is supposed to be updated more. However,
when generating some non-visual words such as “the” and
“of”, though graph nodes are accessed, they are not ex-
pressed by the generated word and thus should not be up-
dated. Therefore, we propose a visual sentinel gate as [23]
to adaptively modify the attention intensity as follows:

Uy = sigmoid(fvs(hi;Gvs))at (12)

where we implement f,; as a fully connected network
parametrized by 6,5 which outputs a scalar to indicate
whether the attended node is expressed by the generated
word.

The updating mechanism for each node is decomposed
into two parts: an erase followed by an add operation in-
spired by NTM [10]. Firstly, the i-th graph node represen-
tation x ; is erased according to its update intensity u; ; in
a fine-grained way for each feature dimension:

et,i = Singid(fers([hi; l't,i}; Hers)) (13)
Tppr,i = (1 — g i) (14)

Therefore, a node can be set as zero if it no longer needs to
be accessed. In case a node might need multiple access and
track its status, we also employ an add update operation:

ar; = 0(faaa([h; 24,); Oada)) (15)
Ti1, = Log1,i + Ue,iQr (16)

where f.,s and f,4q are fully connected networks with dif-
ferent parameters. In this way, we update the graph embed-
dings X; into X, for the next decoding step.

4.3. Training and Inference

We utilize the standard cross entropy loss to train our
ASG2Caption model. The loss for a single pair (Z, G, y) is:

T
L= —logZP(yt|y<t,g7z) a7

t=1
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Table 1: Statistics of VisualGenome and MSCOCO datasets for controllable image captioning with ASGs.

train validation test #objs #rels #attrs  #words
dataset . . . .
#imgs #sents #imgs  #sents | #imgs  #sents | persent persent perobj per sent
VisualGenome | 96,738 3,397,459 | 4,925 172,290 | 4,941 171,759 2.09 0.95 0.47 5.30
MSCOCO 112,742 475,117 4970 20,851 | 4979 20,825 2.93 1.56 0.51 10.28

Table 2: Comparison with carefully designed baselines for controllable image caption generation conditioning on ASGs.

Method VisualGenome MSCOCO

B4 M R c S |G G Ga G| B4 M R c S | G Go Ga Gy
ST [37] 11.1 17.0 345 1399 31.1 1.2 05 07 05 10.5 16.8 362 1006 24.1 1.8 08 1.1 1.0
BUTD [3] 10.9 16.9 345 1394 314 1.2 05 0.7 0.5 11.5 17.9 379 1112 264 1.8 0.8 1.1 1.0
C-ST 128 190 376 1576 366 | 1.1 04 07 04 | 144 201 414 1356 329 |16 06 1.0 0.8
C-BUTD 127 190 379 1595 368 | 1.1 04 07 04 | 155 209 426 1438 349 |15 06 1.0 038
Ours ‘ 17.6 221 44.7 2024 40.6 ‘ 07 03 03 03 ‘ 230 245 501 2042 421 ‘ 0.7 04 03 03

After training, our model can generate controllable image ROUGE [20], CIDEr [36] and SPICE [2]. Generally, those

captions given the image and a designated ASG obtained
manually or automatically as described in Section 3.

5. Experiments
5.1. Datasets and Experimental Settings

We automatically construct triplets of (image Z, ASG
G, caption y) based on annotations of two widely used im-
age captioning datasets, VisualGenome [19] and MSCOCO
[21]. Table 1 presents statistics of the two datasets.
VisualGenome contains object annotations and dense re-
gions descriptions. To obtain ASG for corresponding cap-
tion and region, we firstly use a Stanford sentence scene
graph parser [33] to parse groundtruth region caption to a
scene graph. We then ground objects from the scene graph
to object regions according to their locations and semantic
labels. After aligning objects, we remove all the semantic
labels from the scene graph, and only keep the graph layout
and nodes type. More details can be found in the supple-
mentary material. We follow the data split setting in [3].
MSCOCO dataset contains more than 120,000 images and
each image is annotated with around five descriptions. We
use the same way as for VisualGenome to get ASGs for
training. We adopt the ‘Karpathy’ splits setting [17]. As
shown in Table 1, the ASGs in MSCOCO are more complex
than those in VisualGenome dataset since they contain more
relationships and the captions are longer.

Evaluation Metrics. We evaluate caption qualities in terms
of two aspects, controllability and diversity respectively.
To evaluate the controllability given ASG, we utilize ASG
aligned with groundtruth image caption as control signal.
The generated caption is evaluated against groundtruth via
five automatic metrics including BLEU [27], METEOR [5],

scores are higher if semantic recognition is correct and sen-
tence structure aligns better with the ASG. We also propose
a Graph Structure metric G based on SPICE [2] to purely
evaluate whether the structure is faithful to ASG. It mea-
sures difference of numbers for (0), (0, a) and (o, r, 0) pairs
respectively between generated and groundtruch captions,
where the lower the better. We also break down the overall
score G for each type of pairs as G, G,, G, respectively.
More details can be found in the supplementary material.
For the diversity measurement, we sample the same
number of image captions for each model, and evaluate the
diversity of sampled captions using two types of metrics: 1)
n-gram diversity (Div-n): a widely used metric [4, 7] which
is the ratio of distinct n-grams to the total number of words
in the best 5 sampled captions; 2) SelfCIDEr [38]: a recent
metric to evaluate semantic diversity derived from latent se-
mantic analysis and kernelised to use CIDEr similarity. The
higher scores the more diverse captions are.
Implementation Details. We employ Faster-RCNN [30]
pretrained on VisualGenome to extract grounded region fea-
tures and ResNet101 [12] pretrained on ImageNet to extract
the global image feature. For role-aware graph encoder, we
set the feature dimensionality d as 512 and L as 2. For
language decoder, the word embedding and hidden size of
LSTM are set to be 512. During training, the learning rate
is 0.0001 with batch size of 128. In the inference phrase,
we utilize beam search with beam size of 5 if not specified.

5.2. Evaluation on Controllability

We compare the proposed approach with two groups of
carefully designed baselines. The first group contains tradi-
tional intention-agnostic image captioning models, includ-
ing: 1) Show-Tell (ST) [37] which employs a pretrained
ResNet101 as encoder to extract global image representa-
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Table 3: Ablation study to demonstrate contributions from different proposed components. (role: role-aware node embed-
ding; rgen: MR-GCN; ctn: graph content attention; flow: graph flow attention; gupdt: graph updating; bs: beam search)

Enc Dec VisualGenome MSCOCO

# | role rgen | ctn flow gupdt bs | B4 M R C S B4 M R C S

1 112 183 36.7 1469 356 | 13.6 19.7 413 1302 326
2 v 10.7 182 369 1463 355 | 145 204 422 1357 346
3 v v 142 205 409 1769 38.1 | 182 225 449 1669 378
4| v v v 157 214 43,6 191.7 40.0 | 21.6 237 48.6 190.5 409
5 v v v v 159 215 44.0 193.1 40.1 | 223 240 494 1962 41.5
6| vV v v v 158 214 435 191.6 399 | 21.8 241 49.1 1942 414
7 v v v v v 16.1 21.6 44.1 1944 40.1 | 226 244 50.0 199.8 41.8
8 v v v v v v | 17.6 221 447 2024 40.6 | 23.0 245 50.1 2042 421

tion and an LSTM as decoder; and 2) state-of-the-art Bot-
tomUpTopDown (BUTD) model [3] which dynamically at-
tends on relevant image regions when generating different
words. The second group of models extend the above ap-
proaches for ASG-controlled image captioning. For the
non-attentive model (C-ST), we use global encoded graph
embedding g instead of original image feature; while for
the attentive model (C-BUTD), we make the model attend
to graph nodes in ASG instead of all detected image regions.

Table 2 presents the comparison result. It is worth not-
ing that controllable baselines outperform non-controllable
baselines due to the awareness of control signal ASG. Our
proposed model achieves further improvements than con-
trollable baselines which utilize the same ASGs control sig-
nal inputs in terms of both overall caption quality and align-
ment with graph structure. According to detailed graph
structure metrics, we can see that controllable baselines are
struggling to generate designated attributes compared to ob-
jects and relationships. On the challenging fine-grained at-
tribute control, our model reduces more than half of mis-
alignment on VisualGenome (0.7 — 0.3) and MSCOCO
(1.0 — 0.3) dataset. In Figure 4, we visualise some ex-
amples of our ASR2Caption model and the best baseline
model C-BUTD. Our model is more effective to follow des-
ignated ASGs for caption generation than C-BUTD model.
In the bottom image of Figure 4, though both models fail
to recognize the correct concept “umbrella”, our model still
successfully aligns with the graph structure.

In order to demonstrate contributions from different
components in our model, we provide an extensive abla-
tion study in Table 3. We begin with baselines (Row 1 and
2) which are C-ST and C-BUTD model respectively. Then
in Row 3, we add the role-aware node embedding in the
encoder and the performance is largely improved, which
indicates that it is important to distinguish different inten-
tion roles in the graph. Comparing Row 4 against Row
3 where the MR-GCN is employed for contextual graph

GT: large office desk with computers near a window.

C-BUTD: a desk with two monitors and a window.

Ours: a wooden computer desk with computers sitting next to a window.
<---attr---> <---attr---> <obj> <rel> <----obj----> <----—| rel------- > <---0bj--->

et Cas)
<> <G>

GT: two small children with umbrellas in a field near the shore.

C-BUTD: a couple of kids holding a kite on a beach.

Ours: two small children playing with kites in a field near the ocean.
<aftr> <attr> <-obj-> <-----rel-----> <obj> <rel> <-obj-> <rel> <----obj---->

Figure 4: Generated image captions using ASG correspond-
ing to the groundtruth caption.

encoding, we see that graph context is beneficial for the
graph node encoding. Row 5 and 6 enhance the decoder
with graph flow attention and graph updating respectively.
The graph flow attention shows complementarity with the
graph content attention via capturing the structure informa-
tion in the graph, and outperforms Row 4 on two datasets.
However, the graph updating mechanism is more effective
on MSCOCO dataset where the number of graph nodes are
larger than on VisualGenome dataset. Since the graph up-
dating module explicitly records the status of graph nodes,
the effectiveness might be more apparent when generating
longer sentences for larger graphs. In Row 7, we incor-
porate all the proposed components which obtains further
gains. Finally, we apply beam search on the proposed model
and achieves the best performance.
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Figure 5: Generated image captions using user created ASGs for the leftmost image. Even subtle changes in the ASG
represent different user intentions and lead to different descriptions. Best viewed in colour.

Figure 6: Examples for diverse image caption generation conditioning on sampled ASGs. Our generated captions are different
from each other while the comparison baseline (dense-cap) generates repeated captions. Best viewed in colour.

Table 4: Comparison with state-of-the-art approaches for
diverse image caption generation.

\ Method ‘ Div-1 Div-2  SelfCIDEr

Visual | Region 0.41 0.43 0.47

Genome | Ours 0.54 0.63 0.75
BS [4] 0.21 0.29 -
MS POS [7] 0.24 0.35 -
COCO SeqCVAE [4] | 0.25 0.54 -

BUTD-BS 0.29 0.39 0.58

Ours 0.43 0.56 0.76

Besides ASGs corresponding to groundtruth captions, in
Figure 5 we show an example of user created ASGs which
represent different user intentions in a fine-grained level.
For example, ASGO and ASG1 care about different level
of details about the woman, while ASG2 and ASG5 intends
to know relationships between various number of objects.
Subtle differences such as directions of edges also influ-
ence the captioning order as shown in ASG3 and ASG4.
Even for large complex graphs like ASG6, our model still
successfully generates desired image captions.

5.3. Evaluation on Diversity

The bonus of our ASG-controlled image captioning is
the ability to generate diverse image descriptions that cap-
ture different aspects of the image at different level of
details given diverse ASGs. We first automatically ob-
tain a global ASG for the image (Section 3), and then
sample subgraphs from the ASG. For simplicity, we ran-
domly select connected subject-relationship-object nodes as
subgraph and randomly add one attribute node to subject
and object nodes. On VisualGenome dataset, we compare
with dense image captioning approach which generates di-
verse captions to describe different image regions. For fair

comparison, we employ the same regions as our sampled
ASGs. On MSCOCO dataset, since there are only global
image descriptions for images, we utilise beam search of
BUTD model to produce diverse captions as baseline. We
also compare with other state-of-the-art methods [4, 7] on
MSCOCO dataset that strive for diversity.

As shown in Table 4, the generated captions of our ap-
proach are more diverse than compared methods especially
on the SelfCider score [38] which focuses on semantic sim-
ilarity. We illustrate an example image with different ASGs
in Figure 6. The generated caption effectively respects the
given ASG, and the diversity of ASGs leads to significant
diverse image descriptions.

6. Conclusion

In this work, we focus on controllable image caption
generation which actively considers user intentions to gen-
erate desired image descriptions. In order to provide a fine-
grained control on what and how detailed to describe, we
propose a novel control signal called Abstract Scene Graph
(ASG), which is composed of three types of abstract nodes
(object, attribute and relationship) grounded in the image
without any semantic labels. An ASG2Caption model is
then proposed with a role-aware graph encoder and a lan-
guage decoder specifically for graphs to follow structures of
the ASG for caption generation. Our model achieves state-
of-the-art controllability conditioning on user desired ASGs
on two datasets. It also significantly improves diversity of
captions given automatically sampled ASGs.
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