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Abstract

In this work, we address the task of semi-supervised

video object segmentation (VOS) and explore how to make

efficient use of video property to tackle the challenge of

semi-supervision. We propose a novel pipeline called State-

Aware Tracker (SAT), which can produce accurate segmen-

tation results with real-time speed. For higher efficiency,

SAT takes advantage of the inter-frame consistency and

deals with each target object as a tracklet. For more sta-

ble and robust performance over video sequences, SAT gets

awareness for each state and makes self-adaptation via two

feedback loops. One loop assists SAT in generating more

stable tracklets. The other loop helps to construct a more

robust and holistic target representation. SAT achieves a

promising result of 72.3% J&F mean with 39 FPS on

DAVIS2017-Val dataset, which shows a decent trade-off be-

tween efficiency and accuracy.

1. Introduction

Semi-supervised video object segmentation (VOS) re-

quires to segment target objects over video sequences with

only the initial mask given, which is a fundamental task for

computer vision. In VOS task, the initial mask is provided

as visual guidance. Nevertheless, throughout a video se-

quence, the target object can undergo large pose, scale, and

appearance changes. Moreover, it can even meet abnormal

states like occlusion, fast motion, and truncation. There-

fore, it is a challenging task to make a robust representation

over video sequences in a semi-supervised manner.

Luckily, video sequence brings additional context infor-

mation for VOS task. First, the inter-frame consistency

of video makes it possible to pass information efficiently

between frames. Furthermore, in VOS tasks, information

from preceding frames could be regarded as the temporal

context, which can provide helpful cues for the following
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Figure 1. Accuracy versus speed on DAVIS2017-Val dataset.

Some previous methods achieve high accuracy with slow running

speed. Others sacrifice too much accuracy for the faster speed.

Our method achieves a decent speed-accuracy trade-off.

predictions. Hence, making efficient use of the additional

information brought by video is of great importance for

VOS tasks.

However, previous works do not make good use of the

characteristics of videos. [2, 15, 23, 26, 12] completely

ignore the relation between frames and deal with each

frame independently, which causes tremendous informa-

tion waste. Other methods [22, 17, 31, 27, 31] use feature

concatenation, correlation, or optical flow to propagate pre-

dicted mask or feature from the previous frame to the cur-

rent frame, but they have apparent drawbacks. First, pre-

vious works usually propagate information on full images,

while the target object usually occupies a small region. In

this case, operations on full images can cause redundant

computation. Furthermore, the target object can undergo

different states throughout the video, but these methods ap-

ply fixed propagation strategies without adaptation, which

makes them unstable over long sequences. Moreover, they

only seek cues from the first or the previous frame for target

modeling, which is not enough for a holistic representation.

As a result, most existing methods can not tackle VOS with

both satisfactory accuracy and fast speed. Therefore, a more

efficient and robust pipeline for semi-supervised video ob-
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ject segmentation is required.

In this paper, we reformulate VOS as a continuous pro-

cess of state estimation and target modeling, in which seg-

mentation is a specific aspect of state estimation. Specif-

ically, we propose a simple and efficient pipeline called

State-Aware Tracker (SAT). Taking advantage of the inter-

frame consistency, SAT takes each target object as a track-

let, which not only makes the pipeline more efficient but

also filters distractors to facilitate target modeling. In order

to construct a more reliable information flow, we propose

an estimation-feedback mechanism that enables our model

to be aware of the current state and make self-adaptation

for different states. For a more holistic target modeling,

SAT uses the temporal context to construct a global rep-

resentation dynamically to provide robust visual guidance

throughout the video sequence. As demonstrated in Fig. 1,

SAT achieves competitive accuracy and runs faster than all

other approaches on DAVIS2017-Val dataset.

A simplified illustration of our pipeline is provided in

Fig. 2. The inference procedure could be summarized as

Segmentation - Estimation - Feedback. First, SAT crops a

search region around the target object and takes each target

as a tracklet. Joint Segmentation Network predicts masks

for each tracklet. Second, State Estimator evaluates the

segmentation result and produces a state score to represent

the current state. Third, based on state estimation results,

we design two feedback loops. Cropping Strategy Loop

picks different methods adaptively to predict a bounding

box for the target. Then, we crop the search region for the

next frame according to the predicted box. This switch-

ing strategy makes the tracking process more stable over

time. Meanwhile, Global Modeling Loop uses the state es-

timation results to update a global feature dynamically. In

return, the global feature can assist Joint Segmentation Net-

work in generating better segmentation results.

To verify the effectiveness of our method, we conduct

extensive experiments and ablation studies on DAVIS2016,

DAVIS2017 and YouTube-VOS datasets. Results show

that SAT achieves strong performance with a decent speed-

accuracy trade-off. Our main contributions can be sum-

marized as follows: (1) We re-analyze the task of semi-

supervised video object segmentation and develop State-

Aware Tracker, which reaches both high accuracy and fast

running speed on DAVIS benchmarks. (2) We propose a

state estimation-feedback mechanism to make the VOS pro-

cess more stable and robust over time. (3) We propose a new

method of constructing global representation for the target

object to provide more robust guidance.

2. Related Works

Video object segmentation task aims at segmenting tar-

get object in video frames given the initial mask of the

first frame. In recent years, a wide variety of methods has

Frame Tracklet

Joint

Segmentation

Network

State

Estimator

0.96

Global Modeling

Cropping Strategy

Figure 2. A simplified demonstration of our video object segmen-

tation pipeline.

been proposed to address this challenge. Online learn-

ing based methods : In order to distinguish the target ob-

ject from background and distractors, online-learning based

methods fine-tune the segmentation network on the first

frame. OSVOS [2] fine-tunes a pretrained segmentation

network on the first frame of test videos. OnAVOS [23] ex-

tends OSVOS by developing an online adaptation method.

OSVOS-S [15] introduces instance information to enhance

the performance of OSVOS. Lucid tracker [9] studies the

data augmentation method for the first frame of test videos

and brings significant improvement. Many other meth-

ods [25, 14, 32] take online learning as a boosting trick to

reach better accuracy. Online learning has been proved to be

an effective way to make VOS models more discriminative

for the target object. However, it is too computational ex-

pensive to be used in practical applications. Generally, on-

line models address the challenge of semi-supervised learn-

ing via updating model weight, which entails extensive iter-

ations of optimization. Instead of updating model weight,

our method updates a global representation via dynamic

feature fusion, which tackles the challenge of target mod-

eling more efficiently.

Offline learning based methods : Offline methods ex-

ploit the use of the initial frame and pass target information

to the following frames via propagation or matching. Mask-

Track [17] concatenates the predicted mask of the previous

frame with the image of the current frame to provide spa-

tial guidance. FEELVOS [22] develops pixel-wise corre-

lation to pass location-sensitive embeddings over consecu-

tive frames. RGMP [26] uses a siamese encoder to capture

local similarities between the search image and the refer-

ence image. AGAME [8] proposes a probabilistic genera-

tive model to predict target and background feature distri-

butions. These methods do not entail computational expen-

sive online fine-tuning, but they still cannot reach fast speed

due to inefficient information flow. Moreover, They usu-

ally suffer sub-optimal accuracy because they lack robust

target representation. Our method is also offline trained and

propagates visual cues from frame to frame. Different from

previous, we take each object as a tracklet and apply self-

adaptation, thus making the information flow more efficient

and stable. Besides, we use the temporal context to update a

global representation, which provides more robust guidance
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Figure 3. An overview of our video object segmentation pipeline. SAT can be divided into three parts by the dotted line in gray: Joint

Segmentation Network, State Estimator, and Feedback. Joint Segmentation Network fuses the feature of the saliency encoder (in orange),

the similarity encoder (in yellow), and the global feature (in green), and then decodes the fused feature to predict a mask. Afterward, State

Estimator evaluates the prediction result and calculates a state score to represent the current state. Finally, based on the state estimation

result, Cropping Strategy Loop switches the cropping strategy to keep a more stable tracklet. Global Modeling Loop constructs a global

representation to enhance the feature of the segmentation network.

over video sequences.

Tracking based methods: FAVOS [3] develops a part-

based tracking method to track local regions of the target

object. SiamMask [24] narrows the gap between object

tracking and object segmentation by adding a mask branch

on SiamRPN [11], and it runs much faster than previous

works. These tracking-based methods take tracking and

segmentation as two separated parts. The segmentation

result is not involved in the process of tracking, and

it could be regarded as post-processing for the tracker.

Different from previous works, we fuse object tracking and

segmentation into a truly unified pipeline, in which there

is no restrict boundary between tracking and segmentation.

In our framework, these two tasks cooperate closely and

enhance each other.

3. Method

3.1. Network Overview

In this work, we propose a novel pipeline called State-

Aware Tracker (SAT), which gets high efficiency via deal-

ing with each target as a tracklet. Besides, SAT gets aware-

ness for each states and develop self-adaptation via two

feedback loops.

As in Figure 3, we describe our inference procedure with

three steps : Segmentation - Estimation - Feedback. First,

Joint Segmentation Network fuses the feature of the sim-

ilarity encoder, the saliency encoder, and the global fea-

ture to produce a mask prediction. Second, State Estimator

evaluates the segmentation result and describes the current

state with a state score and estimates whether it is a normal

state or an abnormal state. Third, we construct two feed-

back loops to make self-adaptation for different states. In

Cropping Strategy Loop, if it is a normal state, we use the

predicted mask to generate a minimal bounding box. Other-

wise, we use a regression head to predict the bounding-box

and apply temporal smoothness. Then, based on the pre-

dicted box, we crop the search region for the next frame. In

Global Modeling Loop, we use the state estimation results,

the predicted mask and the current frame image patch to up-

date a global feature, and use the global feature to enhance

Joint Segmentation Network for better segmentation results.

In the following section, we introduce each stage in detail.

3.2. Segmentation

As shown in Figure 3, the branch on bottom denotes the

saliency encoder, and the two branches on top demonstrate

the similarity encoder. For the input of the saliency encoder,

we crop a relatively small region around the target to filter

distractors, and we zoom it to a larger resolution to provide

more details. In this way, the saliency encoder can extract

a clean feature with rich details for the salient object of the

input image patch. In this work, we use a shrinked ResNet-

50 [6] for the saliency encoder.

The similarity encoder takes a larger search region of

the current frame and a target region of the initial frame

as input. It uses feature correlation to encode appearance

similarities between the current image and the target ob-

ject. This correlated feature provides appropriate sup-

plementary for the saliency encoder to distinguish the tar-

get object from distractors. In this work, the implementa-

tion of the similarity encoder follows SiamFC++ [30] with

Alexnet [10] backbone.
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The saliency encoder extracts a class-agnostic feature for

the target object, which is clean but lacks discrimination.

Meanwhile, the correlated feature of the similarity encoder

provides instance-level appearance similarity, which assists

our network to distinguish the target object from distractors.

In addition, the global feature updated by the Global Mod-

eling Loop provides a holistic view for the target object,

which is robust for visual variants over long sequences. In

Joint Segmentation Network, we fuse these three features

via element-wise addition to obtain a strong high-level fea-

ture with both discrimination and robustness.

After the feature fusion, we upsample the high-level

feature by bilinear interpolation and concatenate it with

low-level features of the saliency encoder successively.

Consider that the input image of the saliency encoder

is cropped around the target with high resolution, the

low-level feature of the saliency encoder is clean and full

of details, which assists the Joint Segmentation Network to

decode a high-quality mask with fine contours.

3.3. Estimation

During the process of video segmentation, the target ob-

ject can go through various states, such as well-presented,

truncated, occluded, even can run out of the search region.

In different states, we should take different actions to crop

the search region for the next frame and apply different

strategies to update the global representation.

State Estimator evaluates each local state with a state

score and divides all states into two categories: normal state

and abnormal state. We analyze that the state of the target

object could be described by the mask predicting confidence

and the mask concentration. As shown in Tab. 1, when the

target is well-presented in the current image, the mask pre-

dicting confidence tends to be high, and the predicted mask

is usually spatially concentrated. When the target gets trun-

cated, the predicted mask tends to be separated into several

parts, and it leads to low spatial concentration. When the

target is occluded or runs out of the search region, the model

usually predicts with low confidence.

Confidence Concentration State

Well-Presented High High Normal

Truncated - Low Abnormal

Occluded Low - Abnormal

Disappear Low - Abnormal

Table 1. State estimation criterion. - denotes that the result does

not influence the state estimation, which can be either high or low

in this case.

Therefore, we propose a confidence score Scf to denote

the mask predicting confidence, and a concentration score

Scc to represent the geometric concentration for the pre-

dicted mask. We calculate the confidence score as Eq. 1,

where Pi,j denotes mask prediction score at location (i, j),
and M represents predicted binary mask. Mi,j equals 1

when the pixel at (i, j) is predicted as foreground, other-

wise it equals 0.

Scf =

∑
i,j Pi,j · Mi,j
∑

i,j Mi,j

(1)

We define concentration score as the ratio of the max

connected region area to the total area of the predicted

binary mask. As in Eq. 2, |Rc
i | denotes the pixel number of

the i th connected region of the predicted mask.

Scc =
max({|Rc

1
|, |Rc

2
|, · · · , |Rc

n|})∑n

1
|Rc

i |
(2)

Finally, we calculate a state score Sstate as Eq. 3. If

Sstate > T , we estimate the current state as a normal state.

Otherwise, we judge it as an abnormal state. In this work,

we set T = 0.85 according to the result of the grid search.

Sstate = Scf × Scc (3)

3.4. Feedback

Based on the estimation result, we construct two feed-

back loops. One loop switches the cropping strategy to

make our tracker more stable over time. The other loop

updates a global representation to enhance the process of

segmentation.

Cropping Strategy Loop: For each frame, we generate a

bounding box for the target object and crop the search re-

gion for the next frame according to the box. In order to

maintain a stable and accurate tracklet, we design two box

generation strategies and switch the strategy for different

states. For normal states, we select the largest connected

region of the binary mask and calculate its minimal bound-

ing box to indicate the position of the target. We use the

largest connected region in order to avoid the interference

of small pieces of false-positive predictions. For abnormal

states, we add a regression head after the similarity encoder

to predict a bounding box, then apply a temporal smooth-

ness on location, scale, and ratio. In this work, we construct

our regression head following SiamFC++[30].

Considering that mask can provide a more accurate rep-

resentation for object contours when the object is well-

presented, mask-box can predict a more accurate location

in normal states. Furthermore, the mask-box corresponds

to a smaller search region, which makes it more robust for

distractors. In contrast, regression-box is generated from

a larger search region, so it can retrieve the object when

it runs fast. When the object is truncated, the regression-

box can provide complete predictions for the target object.

In addition, with the help of the temporal smoothness, the
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regression-box can still indicate a reasonable location if the

object is occluded or even disappeared.

With the above analysis, during inference, we pick

mask-box for normal states to produce more accurate

locations, while we choose regression-box for abnormal

states to get more robust predictions. Fig. 4 demonstrates

some examples for strategy switching. If we use mask-box

for all frames, our model will lose track of the target when

some abnormal states occur, otherwise if we keep using

regression-boxes, we would get less accurate location

predictions when the target is well-presented, or there

are distractors in the background. Therefore, switching

between these two strategies enables our model to make

self-adaptions in different states and make our tracking

process more accurate and stable.

Distractor Truncation Fast Motion

Figure 4. Switches between the mask-box (in white) and the

regression-box (in color). The first column shows that the mask-

box is more robust to distractors. When the two players are twisted

together (second row), regression-box fails, and State Estimator

chooses mask-box. The second column shows the regression-box

provides a complete representation when the object is truncated

or partially occluded. The third column shows that the regression-

box can retrieve the target object in case of fast motion. The dotted

line in cyan represents the search region of the similarity encoder;

the one in red indicates the input region of the saliency encoder.

Global Modeling Loop : Global Modeling Loop updates

a global feature for the target object dynamically, and uses

this global feature to enhance the process of segmentation.

As demonstrated in Fig. 5, after predicting the binary mask

for frame T of target tracklet , we filter the background via

element-wise multiplication. Then we feed the background-

filtered image to a feature extractor (shrinked ResNet-50)

to get a neat target feature. Consider that all background-

filtered frames share the same instance-level content, in

spite that the appearance of the target object could change

violently through the video flow. We fuse the high-level

features of each background-filtered frame step by step to

updates a robust global representation. As Eq. 4, G denotes

the global representation, and F denotes the high-level fea-

ture of the background-filtered image. µ denotes a hyper-

parameter for step length that we set 0.5. Consider that if the

target is occluded, disappeared, or poorly segmented, the

extracted feature would be useless or even harmful for the

global representation. Therefore, we score the high-level

feature of each frame with the state score Sstate produced

by State Estimator, thus alleviates adverse effects caused by

abnormal situations or low-quality masks.

Gt = (1− Sstate · µ) · Gt−1 + Sstate · µ · Ft (4)

In this way, Global Modeling Loop updates a global

feature that is robust for visual variants over time. In return,

we use this global feature to enhance the high-level repre-

sentation of Joint Segmentation Network. This feedback

loop makes our target representation more holistic and

robust for long video sequences.

Extractor

*Score
…

*

Fusion

Figure 5. Updating process of Global Modeling Loop.

4. Experiments

4.1. Network Training

The whole training process consists of two stages. At the

first stage, we train the similarity encoder and the regression

head together on object tracking datasets [13, 4, 5, 7, 21].

The training strategy follows SiamFC++ [30]. Then, we

train the whole pipeline with the weight of the similarity

encoder and the regression head frozen. The backbone of

the saliency encoder and the feature extractor in Global

Modeling Loop are pretrained on ImageNet [4]. For train-

ing data, we adopt COCO [13], DAVIS2017 [20] train-

ing set (60 videos) and the YouTube-VOS [29] training

set (3471 videos). We apply a cross-entropy loss on the pre-

dict binary mask of stride 4, and we also add auxiliary losses

on the output feature of stride 8 (with weight 0.5) and stride

16 (with weight 0.3). We use SGD optimizer with momen-

tum 0.9, set batch size as 16, and train our network on 8

GPUs with synchronized batch normalization. The train-

ing process takes about 8 hours, with 20 epochs. For each

epoch, we select 160 000 images randomly. The first two

epochs are a warm-up stage in which the learning rate in-

creases linearly from 10−5 to 10−2. In the last 18 epochs,

we apply a cosine annealing learning rate.

For each iteration, we randomly choose one target image

and one search image from the same video sequence. The

saliency encoder takes the cropped search image as input,

while Global Modeling Loop picks the cropped target im-

age. We use the ground truth mask to filter the background
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of the target image to train the extractor of Global Modeling

Loop.

4.2. Ablation Studies

In Table 2, we perform extensive ablations on

DAVIS2017 validation dataset. We upgrade our model step

by step from the most naive baseline to the full-version SAT

to verify the effectiveness of each principal component.

Then, we also explore the upper-bound of our method.

Naive Seg Baseline : Our work starts from a naive

segmentation baseline. We deal with each target as a

tracklet, and we combine the saliency encoder and the

decoder together to build a naive-segmentation network.

For each video frame, we generate a min-max bounding

box according to the predicted binary mask and crop a

257 × 257 search region for the next frame. This version

performs weakly with only 48.1% J&F mean. When

the target object is truncated, occluded, or run out of the

search region, the min-max bounding box generated by

the predicted mask cannot locate the target object, which

causes target lost for successive frames.

Track-Seg Baseline: To tackle the problem of losing

track. We combine a siamese tracker (SiamFC++[30])

and the naive-segmentation network together. We use the

siamese tracker to predict the target location and use the

naive-segmentation network to produce a binary mask.

This version gains excellent improvement compared with

the naive baseline. However, it is still not able to deal with

large pose/scale variations, and the segmentation accuracy

is heavily constrained by the tracking quality.

Correlated Feature: In order to obtain a more discrim-

inative target representation, we introduce the correlated

feature of similarity encoder to enhance the naive-

segmentation network. The correlated feature contains

appearance similarity, which brings 2.3% improvement.

Global Modeling Loop : For a more robust target

representation over long sequences. We design Global

modeling loop, which brings a significant improvement

of 4.8%. The effectiveness of the mask filter and state

score weight is shown in the second part of Table 2.

Experiment results indicate that our idea of constructing

a global representation is effective. Compared with only

using the first frame or first frame + previous frame, the

global representation brings 2.6% and 1.2% improvement

respectively. We notice that the state score weight is

also essential for updating the global representation,

which improves the result by 1.2%. The effect of Global

Modeling Loop is guaranteed by the mask filter, which

brings a 5.6% improvement. We find that the version

without mask filter and the version which concatenates

mask filter with images both bring adverse effects. We

analyze that foreground objects of different frames share

the same high-level semantic representation despite pose

or scale changes, while the background keeps changing

through the whole video. Therefore, foreground features of

different frames are complementary for each other, while

background features are not additive. Hence, an explicit

process of background filtering is necessary.

Version CF GM CS J&F

Naive Seg 48.1

Track-Seg 61.6 (+13.5)

Track-Seg X 63.9 (+2.3)

Track-Seg X X 68.7 (+4.8)

Track-Seg (SAT) X X X 72.3 (+3.6)

first + previous frame X X 71.1 (-1.2)

first frame only X X 69.7 (-2.6)

no Score Weight X X 71.1 (-1.2)

no Mask Filter X X 66.7 (-5.6)

concat Mask X X 66.5 (-5.8)

Track-Seg X X 65.9 (-6.4)

Track-Seg X X 68.0 (-4.3)

Naive Seg X X 60.1 (-12.2)

Table 2. Ablation studies for each component on DAVIS2017-Val

dataset. CF denotes Correlated Feature. GM denotes Global Mod-

eling Loop. CS denotes Cropping Strategy Loop.

Cropping Strategy Loop: In order to maintain a more

stable tracklet. We construct Cropping Strategy Loop,

which switches the bounding box generation strategy ac-

cording to the local state. This feedback loop brings a 3.6%

improvement. More importantly, the switching mechanism

weakens the dependency for either tracking results or seg-

mentation results, which enables us to use small backbones

for each branch.

We also analysis the switching mechanism by counter-

ing the usage rate of each strategy. On DAVIS2017-Val

dataset, there are 30 sequences and 3923 frames in total.

State Estimator judges 2876 (74%) frames as normal states

1047 (26%) as abnormal states. This statistic result agrees

with our design intention that we use mask-box for the ma-

jority frames of normal states and regression-box for small

numbers of abnormal situations.

Upper-Bound Analysis: As shown in Tab. 3, we ex-

plore the upper-bound of our pipeline by maximizing the

effect of our two loops. For a clean global representation,

we use the ground truth mask to filter the background of

each frame, and this brings 1.7% improvement. For an ac-

curate bounding box for search region cropping, we use

the ground truth mask to generate minimal bounding box,

which brings 1.8% improvement. In the ideal condition,

the two loops make 5.2% improvement together. Therefore,

constructing a robust global representation and maintaining

a stable tracklet are two topics that worth further study.
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Mask Filter (GT) Box (GT) J&F

SAT 72.3

SAT X 74.0 (+1.7)

SAT X 74.1 (+1.8)

SAT X X 77.5 (+5.2)

Table 3. Upper-Bound for our pipeline. Mask GT means using the

ground truth mask to filter the background for global guidance.

Box GT means using the ground truth bounding box to crop the

search region for the next frame.

4.3. Comparison to state­of­the­art

We evaluate our method on DAVIS2017-Val [20],

DAVIS2016-Val [18] and YouTube-VOS[29] datasets.

Quantitative results demonstrate that our approach achieves

promising performance for both accuracy and speed.

DAVIS2017: For the task of multi-object VOS, we pre-

dict a probability map for each target, then we concatenate

them together, and apply a softmax aggregation to get the

final result. We compare SAT with state-of-the-art meth-

ods. For the evaluation metrics, J&F evaluates the general

quality of VOS result, J estimates the mask IOU, F de-

scribes the quality of contour. JD denotes the performance

decay of J over time. FPS is measured for the time of every

forward pass on a single RTX 2080Ti GPU.

As shown in Tab. 4, some newly proposed methods like

FEELVOS [22], AGAME [8] aim to make the balance be-

tween speed and accuracy but SAT gets a more promising

result for both. SiamMask [24] and RANet [25] also run

at real-time speed, but their segmentation accuracy is obvi-

ously worse than ours. In general, SAT surpassed most of

newly proposed models for both accuracy and efficiency.

SAT gets the best running speed and contour quality

while achieves the highest J&F among newly proposed

methods. Besides, SAT has the lowest performance decay

JD, which means our method is robust over time, and we

would gain more advantages over others for long sequences.

At the bottom row of Tab. 4, We also develop a faster ver-

sion with ResNet-18 backbone, which runs at 60 FPS with

slightly lower prediction accuracy.

YouTube-VOS: We mainly compare our method with

some fast and offline learning methods on YouTube-VOS

benchmark. Tab. 6 shows our method achieves competitive

performance and surpasses [29, 26, 24] for both seen and

unseen categories.

DAVIS2016: Single object segmentation is a relatively

simpler task. As shown in Tab. 7, online fine-tuning of-

ten brings huge promotion on DAVIS2016 while costs enor-

mous computation. Hence, we mainly compare our method

with some newly proposed offline models. SAT performs

better than FEELVOS [22], AGAME [8], RGMP [26] and

SiamMask [24].

Computation Analysis: Running speed can be influ-

enced by the environment and hardware condition. For a

fair comparison, we also counter the multiply-accumulate

operations of several fast VOS models. As shown in Tab.

5, our method costs obvious fewer Gflops than others. The

computation of CNNs is highly related to input resolution

and backbone size. Each component of SAT is specially

designed for efficiency. The similarity encoder has a large

input of 303×303, so we pick Alexnet as the backbone. The

saliency encoder takes 257×257 image as input, and we use

a shrinked ResNet-50 backbone, in which we set the chan-

nel expansion rate as 1. Global Modeling Loop only cares

about the high-level feature, so we resize the filtered images

to 129 × 129. In contrast, RANet [25] and AGAME [8]

use ResNet-101 backbone with 480×864 input size, which

makes them computational expensive. SiamMask [24] takes

255 × 255 images as input and uses a ResNet-50 back-

bone, and it replaces the stride-2 convolutions of the last

two stages to stride-1, which helps to keep spatial infor-

mation but brings more computation. Besides, SiamMask

follows DeepMask[19] to apply a pixel-wise mask repre-

sentation, which entails much computation.

Method OL J&F JM↑ JD↓ FM↑ FPS

PReMVOS[14] X 77.8 73.9 16.2 81.7 0.01

OSVOS-s[15] X 68.0 64.7 15.1 71.3 0.22

OnAVOS[23] X 67.9 64.5 27.9 71.2 0.08

CINM[1] X 67.5 64.5 24.6 70.5 0.01

Dyenet[12] X 69.1 67.3 - 71.0 2.4

OSVOS[2] X 60.3 56.7 26.1 63.9 0.22

*STM[16] × 81.8 79.2 - 84.3 6.25

FEELVOS [22] × 71.5 69.1 17.5 74.0 2.2

AGAME[8] × 70.0 67.2 14.0 72.7 14.3

RGMP[26] × 66.7 64.8 18.9 68.6 7.7

RANet[25] × 65.7 63.2 18.6 68.2 30

STCNN[28] × 61.7 58.7 - 64.6 0.25

FAVOS[3] × 58.2 54.6 14.4 61.8 0.56

SiamMask[24] × 56.4 54.3 19.3 58.5 35

Ours × 72.3 68.6 13.6 76.0 39

Ours-Fast × 69.5 65.4 16.6 73.6 60

Table 4. Quantitative results on DAVIS2017 validation set. OL de-

notes online fine-tuning. FPS denotes frame per second. The best

two results among offline methods are marked in red and blue re-

spectively. *: STM requires more training data and longer training

time than other works.

Method Ours-f Ours SiamMask [24] RANet [25] AGAME [8]

Gflops ∼ 12 ∼ 13 ∼ 16 > 65 > 65

FPS 60 39 35 30 14.3

Table 5. Computation analysis for some fast VOS models, Gflops

counters multiply-accumulate operations. Ours-f denotes the fast

version SAT with a Alexnet backbone.
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Figure 6. Qualitative results of SAT on DAVIS Benchmark.

Method OL G J s J u Fs Fu

PreMVOS[14] X 66.9 71.4 56.5 75.9 63.7

OSVOS[2] X 58.8 59.8 54.2 60.5 60.7

OnAVOS[23] X 55.2 60.1 46.1 62.7 51.4

*STM[16] × 79.4 79.7 84.2 72.8 80.9

S2S[29] × 57.6 66.7 48.2 - -

RGMP [26] × 53.8 59.5 45.2 - -

SiamMask[24] × 52.8 60.2 45.1 58.2 47.7

Ours × 63.6 67.1 55.3 70.2 61.7

Table 6. Quantitative results on Youtube-VOS benckmark. OL de-

notes online fine-tuning. The subscript s denotes seen categories

while u denotes unseen categories. The best two results among

offline methods are marked in red and blue respectively. *: STM

requires more training data and longer training time than other

works.

4.4. Qualitative result

Fig. 6 shows the qualitative result of our method on

DAVIS benchmarks. SAT can produce robust and accurate

segmentation results even in complicated scenes. The first

three rows show that SAT is robust for distractors, motion

blur and occlusion. The last row shows that SAT is robust

for tremendous pose variant.

5. Conclusion

In this paper, we present State-Aware Tracker (SAT),

which achieves promising performance with high efficiency

for the task of semi-supervised video object segmentation.

SAT takes each target object as a tracklet to perform VOS

more efficiently. With an Estimation-Feedback mechanism,

SAT can get awareness for the current state and make self-

Method OL J&F JM↑ FM↑ FPS

RANet+[25] X 87.1 86.6 87.6 0.25

PReMVOS[14] X 86.8 84.9 88.6 0.01

OSVOS[2] X 80.2 79.8 80.6 0.22

*STM[16] × 89.3 88.7 89.9 6.25

RGMP[26] × 81.8 81.5 82.0 7.7

AGAME[8] × - 82.0 - 14.3

FEELVOS[22] × 81.7 81.1 82.2 2.2

FAVOS[3] × 80.8 82.4 79.5 0.56

SiamMask[24] × 69.8 71.7 67.8 35

Ours × 83.1 82.6 83.6 39

Table 7. Quantitative results on DAVIS2016 validation set. OL de-

notes online fine-tuning. FPS denotes frame per second. The best

two results among offline methods are marked in red and blue re-

spectively. *: STM requires more training data and longer training

time than other works.

adaptation to reach stable and robust performance. Our

methods achieves competitive performance on several VOS

benchmarks with a decent speed-accuracy trade-off.
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