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Abstract

Learning structures of 3D shapes is a fundamental prob-

lem in the field of computer graphics and geometry pro-

cessing. We present a simple yet interpretable unsupervised

method for learning a new structural representation in the

form of 3D structure points. The 3D structure points pro-

duced by our method encode the shape structure intrinsi-

cally and exhibit semantic consistency across all the shape

instances with similar structures. This is a challenging goal

that has not fully been achieved by other methods. Specif-

ically, our method takes a 3D point cloud as input and en-

codes it as a set of local features. The local features are then

passed through a novel point integration module to produce

a set of 3D structure points. The chamfer distance is used

as reconstruction loss to ensure the structure points lie close

to the input point cloud. Extensive experiments have shown

that our method outperforms the state-of-the-art on the se-

mantic shape correspondence task and achieves compara-

ble performance with the state-of-the-art on the segmenta-

tion label transfer task. Moreover, the PCA based shape em-

bedding built upon consistent structure points demonstrates

good performance in preserving the shape structures. Code

is available at https://github.com/NolenChen/

3DStructurePoints

1. Introduction

Analyzing 3D shape structures is a fundamental prob-

lem in the field of computer graphics and geometry process-

ing. One common way is to co-analyze a large collection of

shapes, such as shape co-segmentation [4, 48], shape corre-

spondence estimation [14], shape abstraction [37, 22, 33]

and 3D keypoint discovery [35]. An important require-

ment for such co-analysis is to leverage the semantic con-

sistency among different shapes to discover semantically

consistent features or structures that can facilitate different

tasks. Quite a few structural representations have been pro-

posed for 3D shapes, such as medial axis, curve skeleton

and keypoints, which are designed for different tasks. Early

works mainly use hand-crafted features and formulate it as

optimization problems. While, they usually rely on param-

eter tuning, and are designed for specific tasks or datasets.

Recently, deep learning techniques have been emerged to

address these problems[13, 26]. In this work, we propose

a method to learn a new structural representation for estab-

lishing semantic correspondence for 3D point clouds.

Figure 1: (a) Semantic correspondence. (b) Segmentation

label transfer. (c) Visualization of one principal component

of PCA embedding space.

There has recently been active research on deep learning

techniques for processing 3D point clouds. PointNet [28] is

a pioneer work in this direction. After that, a number of net-

work structures have been proposed and have achieved great

success in various tasks. Most existing works mainly focus

on generating accurate reconstruction of the target shapes,

but the generated point clouds lack of structure informa-

tion. Recently, several works [36, 47, 41, 8, 31] have been

proposed to generate structured point clouds, but with no

guarantee for point-wise correspondence.

To address this issue, we propose a novel unsupervised

method to learn semantically consistent structure points for
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3D shapes in the same category. Given a 3D shape repre-

sented as a point cloud, the structure points generated by

our network are a set of ordered points on the surface of the

shape that provide a good abstraction and approximation of

the input shape. Our architecture is simple but directly in-

terpretable. Extensive experiments show that our method is

robust to different point samplings and can be generalized

to real scanned point clouds unseen in the training stage.

Our method achieves state-of-the-art performance on the se-

mantic shape correspondence task and the segmentation la-

bel transfer task. Moreover, based on the high consistency

of the structure points, we build a PCA based shape em-

bedding that can preserve shape structures well. Figure 1

illustrates the related applications.

Our key contributions are summarized as follows:

• A simple yet interpretable unsupervised architecture

for extracting semantically meaningful structure points

for 3D shapes represented as point clouds. It is robust

to different sampling of point clouds and is applicable

to real scanned data.

• Our method outperforms the state-of-the-art on the se-

mantic shape correspondence task and achieves com-

parable performance with state-of-the-art methods on

the segmentation label transfer task.

• A PCA based shape embedding built upon consistent

structure points is able to preserve the shape structures

well and has the potential to be used in several im-

portant tasks, such as shape reconstruction and shape

completion.

2. Related Work

2.1. Shape Structure Analysis

Recently, quite a few works have been proposed for

learning keypoints as structural shape representations. Sev-

eral unsupervised methods have been proposed to learn key-

points in 2D image domain. [16, 24, 46] disentangle the

structure and appearance of 2D images for keypoints dis-

covery. For keypoint detection on 3D shapes, KeyPoint-

Net [35] utilizes multi-view consistency to discover a sparse

set of geometrically and semantically consistent keypoints

across different shapes in the same category.

Unlike previous works, we conduct unsupervised learn-

ing of either sparse or dense consistent structure points as

structural representation directly on 3D point clouds. Our

method can be easily generalized to real scanned data.

2.2. Deep Learning on Point Clouds

Recent advances in deep neural networks have shown its

great success in processing point clouds. PointNet [28], a

pioneering work, utilizes point-wise MLP layers together

with symmetric and permutation-invariant functions to ag-

gregate information from all the points. To aggregate both

local and global information, PointNet++ [29] introduces

a hierarchical structure that applies PointNet recursively

on the partitioned point cloud. So-Net [21] uses Self-

Organizing Map to model the spatial distribution of a point

cloud to extract hierarchical features. Inspired by 2D con-

volution, [32, 39, 38] reformulate the convolution operation

and adapt it to point clouds. Our approach is built upon

PointNet++ and it can also be built on other point cloud

processing networks.

Due to the irregular structures of point clouds, design-

ing a decoder for generating point clouds is more difficult

than that for 2D images. Previous works such as [1, 10, 44]

mainly use MLP to generate point clouds from the encoded

embedding. The point clouds generated by these methods

lack structure information. FoldingNet [42] and its vari-

ants [7, 8, 12, 41] propose to generate the point clouds by

deforming primitive structures. [23] proposes a structural

point cloud generator based on predicting structures at mul-

tiple viewpoints. [31, 36] use tree structure to design de-

coder network for generating structured point clouds. [47]

introduced capsule network for processing point clouds, in

which shape structure information is encoded in the latent

capsules. Our network, as a new kind of structured point

cloud auto-encoder, produces structure points that exhibit

point-wise consistency. Moreover, our PCA based structure

points embedding also has the potential to be used in some

important tasks like shape reconstruction and completion.

2.3. 3D Shape Correspondence

Computing correspondences for 3D shapes is a funda-

mental task in geometric processings. Earlier methods

[15, 18, 19, 30, 40] mainly rely on hand-crafted descrip-

tors or optimization among a collection of shapes to com-

pute the correspondence. The functional map and its vari-

ants [14, 27] provide a framework for representing maps

between spaces of real-valued functions defined on shapes.

Recently, deep learning techniques have been widely

used in learning correspondence for 3D shapes. A series of

methods [3, 5, 11, 13] have been proposed to learn local de-

scriptors for registrating point clouds. ShapeUnicode [26]

proposes a way to learn unified embedding for 3D shapes

in different representations, and demonstrates its ability in

establishing correspondence among 3D shapes. However,

these methods require labeled pairwise correspondences in

the training stage. Deep functional map [34] aims at build-

ing functional bases with deep learning, while indicator

functions are still needed in the training stage. [7, 45]

use self supervised learning to learn local descriptors about

point clouds, and demonstrate good performance in regis-

tration of 3D scans.

Unlike previous methods, our approach learns consistent
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Figure 2: Pipeline of our network: Given a point cloud, PointNet++ is first used to extract the local contextual features F and

their corresponding points Q. Then, the features F and the sample points Q are further passed through the point integration

module to produce the structure points S.

structure points across all shapes in a category in an unsu-

pervised way. Based on the high consistency of the struc-

ture points, we can achieve good performance in transfer-

ring segmentation labels, and build the embedding space

for point clouds directly with PCA.

3. Method

In this section, we introduce our end-to-end framework

for learning intrinsic structure points from point clouds

without explicit supervision. As illustrated in Figure 2,

given a point cloud, X = {x1, x2, ..., xn} with xi ∈ R
3,

our model predicts an ordered list of structure points, S =
{s1, s2, ..., sm} with si ∈ R

3. The network is trained for

a collection of 3D shapes in the same category in an un-

supervised manner. In the following, we first describe our

network architecture which is composed of a PointNet++

encoder and a point integration module. Then we intro-

duce a reconstruction loss for training. Finally, we show

that the produced structure points exhibit semantic consis-

tency across all the shapes in the same category, which is an

essential property for shape co-analysis.

3.1. Network Architecture

Our network architecture is summarized in Figure 2. It

can be seen as an encoder-decoder based architecture con-

sisting of two modules, PointNet++ encoder and Point inte-

gration module. In the following, we provide more details.

PointNet++ Encoder Given a point cloud, X =
{x1, x2, ..., xn} with xi ∈ R

3, the first step is to extract

sample points Q = {q1, q2, ..., ql}(qi ∈ R
3) with the local

contextual features F = {f1, f2, ..., fl}(fi ∈ R
c), where l

indicates the number of sample points and c is the dimen-

sion of the feature representation.

We build our architecture upon the PointNet++ [29] en-

coder, which extracts point cloud features by adaptively

combining features from multiple scales. The PointNet++

encoder is composed of multiple set abstraction levels.

Each level consists of three key layers: sampling layer,

multi-scale grouping layer and PointNet layer for process-

ing and abstracting the input points in a hierarchical way.

We refer the reader to the original paper for more details.

Figure 3: The probability maps of two structure points

(in red and green boxes) are shown in second and third

columns. Darker color indicates higher probability.

Point Integration Module The input to this module is the

sample points Q with their local contextual features F of

size l × (3 + c) obtained by the encoder. The outputs are

m structure points S. Detailly, given the local contextual

features F , we first apply a shared multi-layer perceptron

(MLP) block followed by softmax as activation function to

produce the probability maps P = {p1, p2, ..., pm} . The

element p
j
i in the probability map pi indicates the probabil-

ity of the point qj being the structure point si. Therefore,

the structure points S can be computed as follows:

si =

l∑

j=1

qjp
j
i with

l∑

j=1

p
j
i = 1 for each i (1)

Equation 1 is a convex combination of the points Q, ensur-

ing that the predicted structure points S are located within

the convex hull of the points Q.

In Figure 3, we visualize the learned probability map for

different structure points. The first column shows the in-
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put point clouds (in grey) and their corresponding 16 struc-

ture points (in color). The probability map of two structure

points marked with red and green boxes are illustrated in the

second and third columns. Note that, the learned probability

maps have concentration effect, though we do not explicitly

enforce them to be concentrated in local regions.

3.2. Reconstruction Loss

To train the network in an unsupervised manner, we de-

fine our reconstruction loss based on the Chamfer distance

(CD) [10] to constrain the predicted structure points to be

close to the input point cloud. Specifically, the reconstruc-

tion loss is the Chamfer distance between the predicted

structure points S and the input points X:

Lrec(S,X) =
∑

si∈S

min
xj∈X

‖si−xj‖
2
2+

∑

xj∈X

min
si∈S

‖si−xj‖
2
2

(2)

3.3. Cross­Object Consistency

We do not explicitly enforce the structure points to be

consistent for different instances, but the network is able to

generate semantically consistent probability maps P for the

objects in the same category, leading to the consistency of

the produced structure points as shown in Figure 4. In the

following, we give a detailed explanation about the consis-

tency of structure points.

To simplify discussion, we first consider two identical

shapes A and B defined by the same point cloud X , except

that these points are processed in possibly different orders

for A and B. After passing through PointNet++ feature ex-

tractor and the shared MLP, a set of sample points of shape

A are extracted with the corresponding m-dimensional

probability vectors. Let us denote these sample points of

A by the ordered sequence of points (a1, a2, ..., aℓ), with

the corresponding probability vectors ζi = (pi1, p
i
2, ..., p

i
m),

i = 1, 2, . . . , ℓ. Since B is identical to A, we may sup-

pose that the sample points (b1, b2, ..., bℓ) obtained in the

same way for B are a permutation of the sample points

(a1, a2, ..., aℓ) for A. So we may denote bi = aπ(i), where

π(.) is a permutation function of {1, 2, .., ℓ}. Then the

probability vectors of the sample points bi of shape B are

ζπ(i) = (p
π(i)
1 , p

π(i)
2 , ...p

π(i)
m ), i = 1, 2, . . . , ℓ. And the j-th

structure point for shape A is given by:

sAj =
l∑

i=1

pijai (3)

Then for the j-th structure point sBj for shape B, we have:

sBj =

ℓ∑

i=1

p
π(i)
j bi =

ℓ∑

i=1

p
π(i)
j aπ(i) =

ℓ∑

i=1

pijai = sAj (4)

That is, the j-th structure point for shape A is the same

as the j-th structure point for shape B. When two shapes

A and B are similar, because the neural networks in

the pipeline are continuous mappings, the structure points

{sAj }
m
j=1 of A will be individually close to their correspond-

ing structure points {sBj }
m
j=1 of B.

4. Experiments

4.1. Datasets

We conduct most of our experiments on the ShapeNet

[43] dataset. In the 3D semantic correspondence task, we

use the same datasets in [13], where ShapeNet [43] and the

BHCP benchmark [18] are used for training and testing re-

spectively. For segmentation label transfer task, ShapeNet

part dataset [43] is used. Farthest point sampling [9] is ap-

plied to sample point clouds from 3D shapes.

4.2. Implementation Details

The PointNet++ encoder we used is composed of two

set abstraction levels with 512 and 128 grouping centers re-

spectively. Multi-scale grouping (MSG) is used to combine

the multi-scale features. The MSG layers in two levels con-

tain scales (0.1, 0.2, 0.4) and (0.2, 0.4, 0.8) respectively.

The output of the PointNet++ encoder contains l = 128
sample points, with each sample point having 640 dimen-

sional local contextual features. The configuration of the

MLP block in the point integration module depends on the

number of structure points. Specifically, for m = 512 struc-

ture points, the MLP block contains 3 layers with the neuron

numbers (640, 512, 512). The dropout ratio is set to 0.2 to

avoid over-fitting of the MLP block. Adam[20] is used as

the optimizer. We train our network on a single NVIDIA

GTX 1080Ti GPU with less than 1 hour per category.

4.3. Consistency Across Objects

The structure points produced for different shapes are vi-

sualized in Figure 4, where the input point clouds (grey) and

the sparse structure points (colored) are shown in the 1st and

3rd rows, and the corresponding dense structure points are

illustrated in the 2rd and 4th rows. Corresponding structure

points are visualized in the same color. It can be seen that

our approach can generate sparse and dense structure points

in a consistent manner for the shapes with similar structures.

Note that such correspondence may not exist in the regions

with significant structure differences. An example is the

chairs with and without armrest in Fig. 4.

4.4. 3D Semantic Correspondence

To evaluate the cross-object consistency of the structure

points, we test our approach on the task of computing 3D

shape semantic correspondence and compare it with the

state-of-the-art methods that have been specifically tuned
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Figure 4: Consistency across different shapes. The produced 16 structure points (colored) for different input point clouds

(grey) are shown in 1st and 3rd rows, and the produced 1024 structure points are in 2nd and 4th rows. Corresponding structure

points are in the same color.

for this task including LMVCNN [13], ShapeUnicode [26]

and EdgeNet [3], as well as some point cloud encoder-

decoder architectures: AtlasNet2 [8], FoldingNet [42], Top-

Net [36] and 3DPointCapsule [47]. We also use the criti-

cal points in PointNet [28] and the FCN based decoder de-

scribed in [1] as baseline comparisons. Since LMVCNN

is rotation-invariant, for fair comparison with it, we train

our method with rotation augmentation and test on the point

clouds with arbitrary rotations.

Specifically, to make the network applicable to a ro-

tated point cloud, we perform a PCA (Principle Compo-

nents Analysis) [17] based augmentation for training. We

first compute three main axes for each shape in the train-

ing dataset. In each training iteration the main axes of each

shape are randomly swapped and the shapes are aligned ac-

cording to the swapped axes. The consistency of the struc-

ture points for original and augmented shape are enforced

with Mean Square Error (MSE) loss. During testing, we

also compute the three main axes for each shape, and align it

accordingly. Compared to data augmentation with random

rotations, the PCA based scheme can reduce the rotation

space, and makes the network converge more efficiently.

We use the datasets used in [13], where ShapeNet [43]

and the BHCP benchmark [18] are used for training and

testing respectively. Note that we use airplanes to train the

network for helicopters in the same way it did in [13] since

helicopters are not included in the training data.

Our network is trained on a collection of aligned shapes

represented by 2048 points with 512 structure points as out-

put. During testing, given a point xq on a 3D shape, we

first find its closest structure point sq , and then use the cor-

responding structure point s′q on the target shape as the cor-

responding point of xq . The correspondence accuracy is

measured by the fraction of the correspondences that are

correctly predicted with the error below given Euclidean

thresholds.

Figure 5: Correspondence accuracy for each category in the

BHCP benchmark.

In Figure 5, the solid lines show the results tested on

the aligned data and the dotted lines denote the results

tested on the unaligned data. We can clearly see that

our method significantly outperforms other state-of-the-art

methods. Moreover, we demonstrate the good generaliza-

tion to unseen categories (e.g. train with airplanes and test

with helicopters). However, in this case, the performance of

our method on the rotated data is not as good as the aligned

one. That is because the PCA of helicopters is quite differ-

ent from that of airplanes, therefore more difficult for the

network to adapt to the unseen category of helicopters.

4.5. Example based Label Transfer

We further evaluate the quality of the structure points

by transferring segmentation labels from few examples,

and compare our average IOU with a state-of-the-art shape

segmentation method BAE-NET [4] on shapenet part[43]

dataset. BAE-NET has different settings(e.g. unsupervised,

one-shot and few-shot), we compare our method with it’s
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few-shot setting. Specifically, our network is trained on

the training set without any label. During testing, to la-

bel a point xq on a shape, we find its closest structure

point sq as well as a list of corresponding structure points

E = {s1q, s
2
q, ..., s

k
q} on k example shapes, and the label of

structure point s′q ∈ E which has the most similar features

with sq is transferred to xq .

Figure 6: Label transfer results based on 3 examples. For

each category, the average IOUs by 8 randomly selected ex-

ample sets (green dots) are illustrated. The mean and me-

dian are shown in red and blue.

As discussed in [4], the accuracy of the segmentation re-

sults will be affected by the selection of the example shapes

in the few-shot setting. Empirically, the exemplars should

contain all the segmentation labels and represent the vari-

ations of the dataset. In Figure 6, we show all the results

of our segmentation label transfer by using 8 randomly se-

lected exemplar sets, each set contains 3 exemplars. For

the categories with regular shapes (e.g. Laptop), the results

are consistent. While, the accuracy may vary a lot for the

categories with large shape variations (e.g. ’Earphone’). In

Table 1, the best performing results are reported for both

methods, and Figure 7 demonstrates some qualitative re-

sults. We can see that, our label transfer results are on par

with BAE-Net in most categories with structured shapes.

For some categories such as ’Bag’, ’Cap’, and ’Earphone’,

due to their large variations, 3 exemplars are not enough

for our method. For the ’Car’ category, since it contains

flat surface that BAE-Net cannot separate, we do not report

its result. Moreover, in BAE-NET, the segmentation labels

are either pre-defined by the user (few-shot setting) or im-

plicitly defined by the network (unsupervised setting); once

the training is done, the labels cannot change. In contrast,

our work achieves the few-shot label transfer by transfer-

ring segmentation labels directly from exemplars, thus has

the potential of transferring arbitrary labels (e.g., labels with

different hierarchies) after training. (More results are in the

supplementary material)

Figure 7: Qualitative results for label transfer, the example

shapes are in the blue box.

4.6. PCA based Shape Embedding

Given high quality shape correspondences, we can build

a shape embedding space based on PCA. Specifically, given

a collection of point clouds, we produce m structure points

S = {s11, s
2
1, s

3
1, ..., s

1
m, s2m, s3m} for each point cloud with

the proposed network. Where {s1i , s
2
i , s

3
i } ∈ R

3 denotes

the location of ith structure point. Then a shape morphable

model [2] can be constructed based on the learnt structure

points. Thus, a new shape X can be be represented as a

linear combination of the principal components:

X = S̄ +

k∑

i=1

αici (5)

Where S̄ is the mean shape of the structure points, k is

the number of principal components, ci and αi denote the

ith principal component and the corresponding coefficient

respectively. Figure 8(a) shows the PCA embedding space

by adding the first two PCA principal components to the

mean shape with ratio from −3σ to 3σ, where σ2 denotes

the eigen value of the corresponding principal component.

Figure 8(b) shows some reconstruction results with only 50
principal components. We can see that the structures of the

shapes can be well preserved with our PCA based embed-

ding. (More results are in supplementary material)

5. Ablations and Visualizations

5.1. Feature Embedding Visualization

To better understand the mechanism of the proposed

method, we extract and visualize the latent features learned

by the network. The local contextual features F produced

by PointNet++ are first weighted by the probability map

P to get per-point features H = {h1, h2, ..., hm} with

hi ∈ R
c for each structure point:
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Airplane Bag Cap Car Chair Earphone Guitar Knife Lamp Laptop Motorbike Mug Pistol Rocket Skateboard Table

BAE-Net 74.7 83.9 85.5 - 86.0 76.2 87.8 83.6 70.1 94.8 64.6 94.8 78.7 52.1 74.2 73.3

Ours 74.9 78.6 79.3 60.6 84.5 69.0 87.9 80.6 72.4 94.4 60.0 92.7 79.4 50.3 70.4 73.9

Table 1: Comparison of our label transfer results against BAE-NET with 3 labeled exemplars on the ShapeNet part dataset[43]

measured with average IOU(%)

Figure 8: PCA based shape embedding. (a) Visualization of the PCA embedding space by adding the PCA principle compo-

nents to the mean shape with ratio from −3σ to 3σ. The first two components are used in the 1st and 2rd row respectively

(b) Input point clouds (first row) and the corresponding reconstructions (second row) with 50 principal components.

hi =

l∑

j=1

fjp
j
i with

l∑

j=1

p
j
i = 1 for each i (6)

The per-point features H for all the shapes in the

ShapeNet testing dataset with the same category are then

embedded in a 2-dimensional embedding space using t-

SNE [25] for visualization.

Figure 9: The T-SNE embedding of the learned features.

The first row shows examples of structure points overlaid

with the input point clouds, and the second row shows the

corresponding t-SNE embeddings.

Figure 9 illustrates the t-SNE results of the embedding

space computed on four categories when 16 structure points

are predicted. The 2D points in the plot are colored with

16 unique colors each corresponding to a specific structure

point. Note that, the learned features are well clustered,

which means the structure points with the same semantic

location tend to have similar features, though we do not ex-

plicitly enforce the consistency of the latent features. One

may note that symmetry structure points on the same shape

do not have similar features, this is because the PointNet++

encoder we used is not symmetric invariant. One may con-

sider adding symmetry constraints into the loss or using a

symmetry invariant feature encoder to make the structure

points symmetric invariant.

5.2. Robustness to Sampling Densities

To evaluate the robustness of our approach to input point

clouds with different densities, we train our network on

2048 points sampled on each shape, and test the network

on input point clouds with different densities.

We use the point-wise average Euclidean distance to

measure the stability of the produced structure points with

different input densities in comparison with the structure

points produced from 2048 input points. To generate non-

uniformly sampled points, we first randomly sample a rel-

atively small number of seed points from the initial point

cloud, and remove points near the seeds with certain proba-

bility. This creates a set of non-uniformly distributed points

with missing points (or “holes”) around the seed points.

Sample Num
Average Distance(%)

256 512 1024 4096

Chair 0.7346 0.1308 0.0200 0.0027

Airplane 0.1209 0.0169 0.0022 0.0001

Car 0.5470 0.1348 0.0099 0.0017

Motorbike 0.3070 0.0610 0.0195 0.0111

Table 2: Stability of the network for producing 1024 struc-

ture points with input points of different uniform densities.

Table 2 shows the stability of the structure points with

different numbers of uniformly sampled points as inputs.

For non-uniformly sampled inputs, the average stability of
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these categories is 0.3499%. We also demonstrate some

qualitative results in Figure 10 and 11. As shown by qualita-

tive and quantitative results, our approach is not sensitive to

the point sampling density. That is because the PointNet++

[29] we used to encode local features is not sensitive to the

sampling of point clouds and our point integration module

also maintains such property.

Figure 10: Robustness to different samplings. The 1st row

shows 16 structure points and different numbers of input

point clouds. The 2nd row shows 1024 structure points.

Corresponding structure points have the same color.

Figure 11: Robustness to non-uniform sampling. The 1st

row shows 16 structure points and non-uniform input point

clouds. The 2nd row shows 1024 structure points. Corre-

sponding structure points have the same color.

5.3. Testing with Real Scanned Data

We show the good generalization of our method by test-

ing on real scanned data. Specifically, we train our network

on the ShapeNet dataset with rotation augmentation, and

test the trained network on real scanned point clouds [6]. As

illustrated in Figure 12, even though the real scanned point

clouds are noisy and not seen during training, our network

can still produce semantically consistent structure points.

5.4. Testing with Different Feature Encoder

The proposed point integration module can also be inte-

grated with other point cloud learning architectures to learn

consistent structure points. Specifically, We replace the

PointNet++ feature encoder with PointConv [39], a state-

of-the-art point cloud learning architecture, and evaluate the

performance of semantic shape correspondence. As shown

in Figure 13, both architectures can produce similar results

on semantic shape correspondence accuracy.

Figure 12: Structure points on real scanned data. We show

the produced 16 (1st row) and 1024 (2nd row) structure

points for scanned point clouds of chairs. Corresponding

structure points are in the same color.

Figure 13: Testing with different point cloud encoder.

6. Conclusion

In this paper, we present a simple yet interpretable unsu-

pervised method for learning a new structural representation

in the form of 3D structure points. The produced structure

points encode shape structures and exhibit semantic con-

sistency across all the shape instances with similar shape

structures. We evaluate the proposed method with extensive

experiments and show state-of-the-art performance on both

semantic correspondence and segmentation label transfer

tasks. We also show the good generalization of our net-

work by testing on real scanned data. Moreover, our PCA

based structure points embedding also has the potential to

be used in some important tasks like shape reconstruction

and completion, which we would like to explore more in

the future.
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