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Abstract

This paper presents a method to interpret the success of

knowledge distillation by quantifying and analyzing task-

relevant and task-irrelevant visual concepts that are en-

coded in intermediate layers of a deep neural network

(DNN). More specifically, three hypotheses are proposed

as follows. 1. Knowledge distillation makes the DNN

learn more visual concepts than learning from raw data.

2. Knowledge distillation ensures that the DNN is prone to

learning various visual concepts simultaneously. Whereas,

in the scenario of learning from raw data, the DNN learns

visual concepts sequentially. 3. Knowledge distillation

yields more stable optimization directions than learning

from raw data. Accordingly, we design three types of math-

ematical metrics to evaluate feature representations of the

DNN. In experiments, we diagnosed various DNNs, and

above hypotheses were verified.

1. Introduction

The success of knowledge distillation [16] has been

demonstrated in various studies [31, 45, 11]. It trans-

fers knowledge from a well-learned deep neural network

(DNN), namely the teacher network, to another DNN,

namely the student network. However, explaining how and

why knowledge distillation outperforms learning from raw

data still remains a challenge.

In this work, we aim to analyze the success of knowl-

edge distillation from a new perspective, i.e. quantifying the

knowledge encoded in the intermediate layer of a DNN. We

quantify and compare the amount of the knowledge encoded

in the DNN learned via knowledge distillation and the DNN

learned from raw data, respectively. Here, the DNN learned

from raw data is termed the baseline network. In this re-

search, the amount of the knowledge of a specific layer is

measured as the number of visual concepts (e.g. object parts
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Figure 1. Explanation of knowledge distillation by quantifying vi-

sual concepts. Three hypotheses are proposed and verified as fol-

lows. 1. Knowledge distillation makes the DNN learn more visual

concepts than learning from raw data. 2. Knowledge distillation

ensures that the DNN is prone to learning various visual concepts

simultaneously. 3. Knowledge distillation yields more stable opti-

mization directions than learning from raw data.

like tails, heads and etc.), which is shown in Figure 1. These

visual concepts activate the feature map of this specific layer

and are used for prediction.

We design three types of mathematical metrics to ana-

lyze task-relevant and task-irrelevant visual concepts. Then,

these metrics are used to quantitatively verify three hy-

potheses as follows.

Hypothesis 1: Knowledge distillation makes the DNN

learn more visual concepts. In this paper, a visual concept

is defined as an image region, whose information is sig-

nificantly less discarded than the average information dis-

carded in background regions, and is mainly used by the

DNN. We distinguish visual concepts that are relevant to

the task away from other concepts, i.e. task-irrelevant con-

cepts. Let us take the classification task as an example. As

is vividly shown in Figure 1, visual concepts on the fore-

ground are usually regarded task-relevant, while those on

the background are considered task-irrelevant.
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According to the information-bottleneck theory [41, 36],

DNNs tend to expose task-relevant visual concepts and dis-

card task-irrelevant concepts to learn discriminative fea-

tures. Compared to the baseline network (learned from raw

data), a well-trained teacher network is usually considered

to encode more task-relevant visual concepts and/or less

task-irrelevant concepts. Because the student network mim-

ics the logic of the teacher network, the student network is

supposed to contain more task-relevant visual concepts and

less task-irrelevant concepts.

Hypothesis 2: Knowledge distillation ensures the

DNN is prone to learning various visual concepts simul-

taneously. In comparison, the baseline network tends to

learn visual concepts sequentially, i.e. paying attention to

different concepts in different epochs.

Hypothesis 3: Knowledge distillation usually yields

more stable optimization directions than learning from

raw data. When learning from raw data, the DNN usually

tries to model various visual concepts in early epochs and

then discard non-discriminative ones in later epochs [41,

36], which leads to unstable optimization directions. We

name the phenomenon of inconsistent optimization direc-

tions through different epochs “detours”1 for short in this

paper. In comparison, during the knowledge distillation,

the teacher network directly guides the student network to

target visual concepts without significant detours1. Let us

take the classification of birds as an example. The baseline

network tends to extract features from the head, belly, tail,

and tree-branch in early epochs, and later discards features

from the tree-branch. Whereas, the student network directly

learns features from the head and belly with less detours1.

Methods: We propose three types of mathematical met-

rics to quantify visual concepts hidden in intermediate lay-

ers of a DNN, and analyze how visual concepts are learned

during the learning procedure. These metrics measure 1.

the number of visual concepts, 2. the learning speed of dif-

ferent concepts, 3. the stability of optimization directions,

respectively. We use these metrics to analyze the student

network and the baseline network in comparative studies to

prove above three hypotheses. More specifically, the stu-

dent network is learned via knowledge distillation, and the

baseline network learned from raw data is constructed to

have the same architecture as the student network.

Note that visual concepts should be quantified without

subjective manual annotations. There are mainly two rea-

sons. 1) It is impossible for people to annotate all kinds of

potential visual concepts in the world. 2) For a rigorous re-

search, the subjective bias in human annotations should not

affect the quantitative metric. To this end, [14, 26] lever-

ages the entropy to quantify visual concepts encoded in an

intermediate layer.

1“Detours” indicate the phenomenon that a DNN tries to model various

visual concepts in early epochs and discard non-discriminative ones later.

Contributions: Our contributions can be summarized as

follows.

1. We propose a method to quantify visual concepts en-

coded in intermediate layers of a DNN.

2. Based on the quantification of visual concepts, we

propose three types of metrics to interpret knowledge distil-

lation from the view of knowledge representations.

3. Three hypotheses about knowledge distillation are

proposed and verified, which shed light on the explanation

of knowledge distillation.

2. Related Work

Although deep neural networks have exhibited superior

performance in various tasks, they are still regarded as

black boxes. Previous studies of interpreting DNNs can be

roughly summarized into semantic explanations and math-

ematical explanations of the representation capacity.

Semantic explanations for DNNs: An intuitive way to

interpret DNNs is to visualize visual concepts encoded in

intermediate layers of DNNs. Feature visualization meth-

ods usually show concepts that may significantly activate

a specific neuron of a certain layer. Gradient-based meth-

ods [47, 37, 46, 27] used gradients of outputs w.r.t. the input

image to measure the importance of intermediate-layer ac-

tivation units or input units. Inversion-based [5] methods

inverted feature maps of convolutional layers into images.

From visualization results, people roughly understand vi-

sual concepts encoded in intermediate layers of DNNs. For

example, filters in low layers usually encode simple visual

concepts such as edges and textures, and filters in high lay-

ers usually encode concepts like objects and patterns.

Other methods usually estimated the pixel-wise attribu-

tion/importance/saliency on an input image, which mea-

sured the influence of each input pixel to the final out-

put [30, 25, 20, 9]. Some methods explored the saliency

of the input image using intermediate-layer features, such

as CAM [52], Grad-CAM [34], and Grad-CAM++ [2].

Zhou et al. [51] computed the actual image-resolution re-

ceptive field of neural activations in a feature map.

Bau et al. [1] disentangled feature representations into

semantic concepts using human annotations. Fong and

Vedaldi [8] demonstrated that a DNN used multiple filters to

represent a specific semantic concept. Zhang et al. used an

explanatory graph [48] and a decision tree [50] to represent

hierarchical compositional part representations in CNNs.

TCAV [19] measured the importance of user-defined con-

cepts to classification.

Another direction of explainable AI is to learn a DNN

with interpretable feature representations in an unsuper-

vised or weakly-supervised manner. In the capsule net-

work [33], activities of each capsule encoded various prop-

erties. The interpretable CNN [49] learned object part

features without part annotations. InfoGAN [4] and β-
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VAE [15] learned interpretable factorised latent represen-

tations for generative networks.

In contrast, in this research, the quantification of

intermediate-layer visual concepts requires us to design

metrics with coherency and generality. I.e. unlike previ-

ous studies compute importance/saliency/attention [47, 37,

46, 27] based on heuristic assumptions or using massive

human-annotated concepts [1] to explain network features,

we quantify visual concepts using the conditional entropy

of the input. The entropy is a generic tool with strong con-

nections to various theories, e.g. the information-bottleneck

theory [41, 36]. Moreover, the coherency allows the same

metric to ensure fair comparisons between layers of a DNN,

and between DNNs learned in different epochs.

Mathematical explanations for the representation ca-

pacity of DNNs: Evaluating the representation capacity of

DNNs mathematically provides a new perspective for ex-

planations. The information-bottleneck theory [41, 36] used

the mutual information to evaluate the representation ca-

pacity of DNNs [13, 43]. The stiffness [10] was proposed

to diagnose the generalization of a DNN. The CLEVER

score [40] was used to estimate the robustness of neural net-

works. The Fourier analysis [44] was applied to explain the

generalization of DNNs learned by stochastic gradient de-

scent. Novak et al. [28] investigated the correlation between

the sensitivity of trained neural networks and generaliza-

tion. Canonical correlation analysis (CCA) [21] was used

to measure the similarity between representations of neural

networks. Chen et al. [3] proposed instance-wise feature

selection via mutual information for model interpretation.

Zhang et al. [23] explored knowledge consistency between

DNNs.

Different from previous methods, our research aims to

bridge the gap between mathematical explanations and se-

mantic explanations. We use the entropy of the input to

measure the number of visual concepts in a DNN. Further-

more, we quantify visual concepts on the background and

the foreground w.r.t. the input image, explore whether a

DNN learn various concepts simultaneously or sequentially,

and analyze the stability of optimization directions.

Knowledge distillation: knowledge distillation is a pop-

ular and successful technique in knowledge transferring.

Hinton et al. [16] considered “soft targets” led to the su-

perior performance of knowledge distillation. Furlanello et

al. [11] explained the dark knowledge transferred from the

teacher to the student as importance weighting.

From a theoretical perspective, Lopez-Paz et al. [24] in-

terpreted knowledge distillation as a form of learning with

privileged information. Phuong et al. [29] explained the

success of knowledge distillation from the view of data dis-

tribution, optimization bias, and the size of the training set.

However, to the best of our knowledge, the mathemati-

cal explanations for knowledge distillation are rare. In this

paper, we interpret knowledge distillation from a new per-

spective, i.e. quantifying, analyzing, and comparing visual

concepts encoded in intermediated layers between DNNs

learned by knowledge distillation and DNNs learned purely

from raw data mathematically.

3. Algorithm

In this section, we are given a pre-trained DNN (i.e. the

teacher network) and then distill it into another DNN (i.e.

the student network). In this way, we aim to compare and

explain the difference between the student network and the

DNN learned from raw data (i.e. the baseline network). To

simplify the story, we limit our attention to the task of object

classification. Let x ∈ Rn denote the input image, and

fT (x), fS(x) ∈ RL denote intermediate-layer features of

the teacher network and its corresponding student network,

respectively. Knowledge distillation is conducted to force

fS(x) to approximate fT (x). Classification results of the

teacher and the student are given as yT = gT (fT (x)) and

yS = gS(fS(x)) ∈ Rc, respectively.

We compare visual concepts encoded in the baseline net-

work and those in the student network to explain knowledge

distillation. For a fair comparison, the baseline network has

the same architecture as the student network.

3.1. Preliminaries: Quantification of Information
Discarding

According to the information-bottleneck theory [41, 36],

the information of the input image is gradually discarded

through layers. [14, 26] proposed a method to quantify the

input information that was encoded in a specific interme-

diate layer of a DNN, i.e. measuring how much input in-

formation was neglected when the DNN extracted the fea-

ture of this layer. The information discarding is formulated

as the conditional entropy H(X ′) of the input, given the

intermediate-layer feature f∗ = f(x), as follows.

H(X ′) s.t. ∀x′ ∈ X ′, ‖ f(x′)− f∗ ‖2≤ τ (1)

X ′ denotes a set of images, which correspond to the con-

cept of a specific object instance. The concept of the object

is assumed to be represented by a small range of features

‖ f(x′)− f∗ ‖2≤ τ , where τ is a small positive scalar. It

was assumed that x′ follows an i.i.d. Gaussian distribution,

x′ ∼ N (x,Σ = diag(σ2
1 , . . . , σ

2
n)), where σi controls the

magnitude of the perturbation at each i-th pixel. n denotes

the number of pixels of the input image. In this way, the

assumption of the Gaussian distribution ensures that the en-

tropy H(X ′) of the entire image can be decomposed into

pixel-level entropies {Hi} as follows.

H(X ′) =

n
∑

i=1

Hi (2)
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where Hi = log σi +
1

2
log(2πe) measures the discarding

of pixel-wise information. Please see [14, 26] for details.

3.2. Quantification of visual concepts

Hypothesis 1: Knowledge distillation makes the

DNN learn more reliable visual concepts than learning

from raw data.

In this section, we aim to compare the number of visual

concepts that are encoded in the baseline network and those

in the student network, so as to verify the above hypothesis.

Using the annotated concepts or not: For comparison,

we try to define and quantify visual concepts encoded in

the intermediate layer of a DNN (either the student network

or the baseline network). Note that, we do not study vi-

sual concepts defined by human annotations. For example,

Bau et al. [1] defined visual concepts of objects, parts, tex-

tures, scenes, materials, and colors by using manual annota-

tions. However, this research requires us to use and quantify

visual concepts without explicit names, which cannot be ac-

curately labeled. These visual concepts are usually referred

to as “Dark Matters” [42].

There are mainly two reasons to use dark-matter visual

concepts, instead of traditional semantic visual concepts. 1.

There exist no standard definitions for semantic visual con-

cepts, and the taxonomy of semantic visual concepts may

have significant subjective bias. 2. The cost of annotating

all visual concepts is usually unaffordable.

Metric: In this paper, we quantify dark-matter visual

concepts from the perspective of the information theory.

Given a pre-trained DNN, a set of training images I and

an input image x ∈ I, let us focus on the pixel-wise infor-

mation discarding Hi w.r.t. the intermediate-layer feature

f∗ = f(x). High pixel-wise entropies {Hi} (shown in

Equation (2)), indicate that the DNN neglects more infor-

mation of these pixels. Whereas, the DNN mainly utilizes

pixels with low entropies {Hi} to compute the feature f∗.

In this way, image regions with low pixel-wise entropies

{Hi} can be considered to represent relatively valid visual

concepts. For example, the head and wings of the bird in

Figure 2 are mainly used by the DNN for fine-grained clas-

sification. Therefore, metrics are defined as follows.

N bg
concept(x) =

∑

i∈Λbg w.r.t. x

✶(H −Hi > b),

N fg
concept(x) =

∑

i∈Λfg w.r.t. x

✶(H −Hi > b),

λ = Ex∈I[N
fg
concept(x)/(N

fg
concept(x) +N bg

concept(x))]

(3)

where N
bg
concept(x) and N

fg
concept(x) denote the number of vi-

sual concepts encoded on the background and the fore-

ground, respectively. Λbg and Λfg are sets of pixels on

the background and the foreground w.r.t. the input im-

age x, respectively. ✶(·) is the indicator function. If

Foreground

Background

Visual concepts on 

the foreground

Visual concepts on 

the background

Input image {𝐻𝐻𝑖𝑖} Visual concepts

Figure 2. Visualization of visual concepts. The second column

shows {Hi} of different images. Image regions with low pixel-

wise entropies {Hi} are considered as visual concepts, which are

shown in the third column.

the condition inside is valid, ✶(·) returns 1, and otherwise

0. H = Ei∈Λbg
[Hi] denotes the average entropy value on

the background, which measures the significance of infor-

mation discarding w.r.t. background pixels. Those pixels on

the background are considered to represent task-irrelevant

visual concepts. Therefore, we can use H as a baseline en-

tropy. Image regions with significantly lower entropy values

than H can be considered as valid visual concepts, where b

is a positive scalar. The metric λ is used to measure the

discriminative power of features. As shown in Figure 2, in

order to improve the stability and efficiency of the compu-

tation, {Hi} is computed in 16 × 16 grids, i.e. all pixels in

each local grid share the same σi. The dark color in Figure

2 indicates the low entropy value Hi.

In statistics, visual concepts on the foreground are usu-

ally task-relevant, while those on the background are mainly

task-irrelevant. In this way, a well-learned DNN is sup-

posed to encode a large number of visual concepts on the

foreground and very few ones on the background. Thus, a

larger λ value indicates a more discriminative DNN.

Generality and coherency: The design of a metric

should consider both the generality and the coherency. The

generality is referred to as that the metric is supposed to

have strong connections to existing mathematical theories.

The coherency ensures comprehensive and fair comparisons

in different cases. In this paper, we aim to quantify and

compare the number of visual concepts between different

network architectures and between different layers. As dis-

cussed in [14, 26], existing methods of explaining DNNs

usually depend on specific network architecture or specific

tasks, such as gradient-based methods [47, 37, 46, 27],

perturbation-based methods [9, 20] and inversion-based

methods [5]. Unlike previous methods, the conditional en-

tropy of the input ensures fair comparisons between dif-

ferent network architectures and between different layers,

which is summarized in Table 1.
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Generality
Coherency

Layers Nets

Gradient-based [47, 37, 46, 27] No No No

Perturbation-based [9, 20] No No No

Inversion-based [5] No No No

Entropy-based Yes Yes Yes

Table 1. Comparisons of different methods in terms of general-

ity and coherency. The entropy-based method provides coherent

results across layers and networks.

3.3. Learning simultaneously or sequentially

Hypothesis 2: Knowledge distillation ensures that

the DNN is prone to learning various concepts simul-

taneously. Whereas, the DNN learned from raw data

learns concepts sequentially through different epochs.

In this section, we propose two metrics to prove Hypoth-

esis 2. Given a set of training images I, g1, g2, . . . , gM de-

note DNNs learned in different epochs. This DNN can be

either the student network or the baseline network. gM ob-

tained after the last epoch M is regarded as the final DNN.

For each specific image I ∈ I, we quantify visual concepts

on the foreground, which are learned by the DNN after dif-

ferent epochs N
fg
1
(I), N fg

2
(I), . . . , N fg

M (I).

In this way, whether or not a DNN learns visual concepts

simultaneously can be analyzed in following two terms: 1.

whether N
fg
j (I) increases fast along with the epoch number;

2. whether N
fg
j (I) of different images increases simultane-

ously. The first term indicates whether a DNN learns var-

ious visual concepts of a specific image quickly, while the

second term evaluates whether a DNN learns visual con-

cepts of different images simultaneously.

For a rigorous evaluation, as shown in Figure 3, we cal-

culate the epoch number m̂ = argmaxk N
fg

k (I), where

a DNN obtains richest visual concepts on the foreground.

Let w0 and wk denote initial parameters and parameters

learned after the k-th epoch, respectively. We utilize
∑m

k=1

‖wk−wk−1‖
‖w0‖

, named “weight distance” , to measure

the learning effect at m-th epoch [12, 7]. Compared to us-

ing the epoch number, the weight distance better quantifies

the total path of updating the parameter wk at each epoch

k. Thus, we use the average value Dmean and standard de-

viation value Dstd of weight distances to quantify whether a

DNN learns visual concepts simultaneously.

Dmean = E
I∈I

[ m̂
∑

k=1

‖wk − wk−1‖

‖w0‖

]

,

Dstd = V ar
I∈I

[ m̂
∑

k=1

‖wk − wk−1‖

‖w0‖

]

(4)

fo
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g
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u
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d
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u
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o
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p
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weight distance
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task-irrelevant concepts
mainly learn 
new concepts𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑓𝑓𝑓𝑓
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Information 

Bottleneck

Figure 3. Procedure of learning foreground visual concepts w.r.t.

weight distances. According to the information-bottleneck the-

ory, a DNN tends to learn various visual concepts mainly in

early stages and then mainly discard task-irrelevant concepts later.

Strictly speaking, a DNN learns new concepts and discards old

concepts during the entire stages. We can consider that the learn-

ing stage of m̂ encodes richest concepts.

Dmean represents the average weight distance, where the

DNN obtains the richest task-relevant visual concepts. The

value of Dmean indicates whether a DNN learns visual con-

cepts quickly. Dstd describes the variation of the weight dis-

tance w.r.t different images, and its value denotes whether a

DNN learns various visual concepts simultaneously. Hence,

small values of Dmean and Dstd indicate that the DNN learns

various concepts quickly and simultaneously.

3.4. Learning with Less Detours

Hypothesis 3: Knowledge distillation yields more

stable optimization directions than learning from raw

data.

During the knowledge distillation, the teacher network

directly guides the student network to learn target visual

concepts without significant detours1. In comparison, ac-

cording to the information-bottleneck theory [41, 36], when

learning from raw data, the DNN usually tries to model

various visual concepts and then discard non-discriminative

ones, which leads to unstable optimization directions.

In order to quantify the stability of optimization di-

rections of a DNN, a new metric is proposed. Let

S1(I), S2(I), . . . , SM (I) denote the set of visual concepts

on the foreground of image I encoded by g1, g2, . . . , gM ,

respectively. Here, each visual concept a ∈ Sj(I) is re-

ferred to as a specific pixel i on the foreground of image I ,

which satisfies H − Hi > b. The stability of optimization

directions can be measured as follows.

ρ =
‖SM (I)‖

‖
⋃M

j=1
Sj(I)‖

(5)

The numerator reflects the number of visual concepts,

which have been chosen ultimately for object classification

(shown as the black box in Figure 4). The denominator

represents visual concepts temporarily learned during the
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Epoch 0 Epoch 1 Epoch M

...

Union

𝜌𝜌 = 𝑆𝑆𝑀𝑀(𝐼𝐼)⋃𝑗𝑗=1𝑀𝑀 𝑆𝑆𝑗𝑗(𝐼𝐼) = = 0.789

Figure 4. Detours1 of learning visual concepts. We visualize sets

of foreground visual concepts learned after different epochs. The

green box indicates the union of visual concepts learned during all

epochs. The (1−ρ) value denotes the ratio of visual concepts that

are discarded during the learning procedure w.r.t. the union set of

concepts. Thus, a larger ρ value indicates that the DNN learns with

less detours1.

learning procedure, which is shown as the green box in Fig-

ure 4. (
⋃M

j=1
Sj(I) \ SM (I)) denotes the set of visual con-

cepts, which have been tried, but finally are discarded by the

DNN. A high value of ρ indicates that the DNN is optimized

with less detours1 and more stably; vice versa.

4. Experiment

4.1. Implementation Details

Datasets & DNNs: We designed comparative experi-

ments to verify three proposed hypotheses. For compre-

hensive comparisons, we conducted experiments based on

AlexNet [22], VGG-11, VGG-16, VGG-19 [38], ResNet-

50, ResNet-101, and ResNet-152 [18]. Given each DNN

as the teacher network, we distilled knowledge from the

teacher network to the student network, which had the same

architecture as the teacher network for fair comparisons.

Meanwhile, the baseline network was also required to have

the same architecture as the teacher network.

We trained these DNNs based on the ILSVRC-2013

DET dataset [35], the CUB200-2011 dataset [39], and the

Pascal VOC 2012 dataset [6]. All teacher networks in

Sections 4.3, 4.4, 4.5 were pre-trained on the ImageNet

dataset [32], and then fine-tuned using all three datasets, re-

spectively. Meanwhile, all baseline networks were learned

from scratch. For training on the ILSVRC-2013 DET

dataset, we conducted the classification of terrestrial mam-

mal categories for comparative experiments, considering

the high computational burden. For the ILSVRC-2013

DET dataset and the Pascal VOC 2012 dataset, data aug-

mentation [17] was applied to prevent overfitting. For the

CUB200-2011 dataset, we used object images cropped by

object bounding boxes for both training and testing. In

particular, for the Pascal VOC 2012 dataset, images were

cropped by using 1.2width×1.2height of the original ob-

ject bounding box for stable results. For the ILSVRC-2013

DET dataset, we cropped each image by using 1.5width×
1.5height of the original object bounding box. Because

there existed no ground-truth annotations of object segmen-

tation in the ILSVRC-2013 DET dataset, we used the object

bounding box as the foreground region. Pixels within the

object bounding box were regarded as the foreground Λfg,

and pixels outside the object bounding box were referred to

as the background Λbg.

Distillation: In the procedure of knowledge distillation,

we selected a fully-connected (FC) layer l as the target

layer. ‖fT (x)− fS(x)‖
2 was used as the distillation loss to

mimic the feature of the corresponding layer of the teacher

network, where fT (x) and fS(x) denoted the lth-layer fea-

tures of the teacher network and its corresponding student

network, respectively.

Parameters of the student network under the target FC

layer l were learned exclusively using the distillation loss.

Hence, the learning process was not affected by the infor-

mation of additional human annotations except the knowl-

edge encoded in the teacher network, which ensured fair

comparisons. Then we froze parameters under the tar-

get layer l and learned parameters above the target layer

l merely using the classification loss.

Selection of layers: For each pair of the student network

and the baseline network, we aimed to quantify visual con-

cepts encoded in FC layers and thus conducted comparative

experiments. We found that these selected DNNs usually

had three FC layers. For sake of brevity, we named three FC

layers FC1, FC2, FC3 for short, respectively. Note that, for

the ILSVRC-2013 DET dataset and the Pascal VOC 2012

dataset, dimensions of intermediate-layer features encoded

in the FC3 layer were much smaller than feature dimen-

sions of the FC1 and FC2 layers. Hence, the target layer

was chosen from the FC1 and FC2 layer, when DNNs were

learned on the ILSVRC-2013 DET dataset and the Pascal

VOC 2012 dataset. For the CUB200-2011 dataset, all three

FC layers were selected as target layers. Note that, ResNets

usually only had one FC layer. In this way, we replaced

the only FC layer into a block with two convolutional and

three FC layers, each followed by a ReLU layer. Thus, we

could measure visual concepts in the student network and

the baseline network w.r.t. each FC layer. For the hyper-

parameter b (shown in Equation (3)), it was set to 0.25 for

AlexNet, and was set to 0.2 for other DNNs. It was because

AlexNet had much less layers than other DNNs.

4.2. Quantification of Visual Concepts in the
Teacher Network, the Student Network and
the Baseline Network

According to our hypotheses, the teacher network was

learned from a large number of training data. Hence, the

teacher network had learned better representations, i.e. en-

coding more visual concepts on the foreground and less

concepts on the background than the baseline network.

Thus, the student network learned from the teacher was sup-

posed to contain more visual concepts on the foreground
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Dataset Layer N fg
concept ↑ λ ↑

CUB

VGG-16 FC1

T 34.00 0.78

S 29.57 0.75

B 22.50 0.68

VGG-16 FC2

T 34.62 0.80

S 32.92 0.75

B 23.31 0.67

VGG-16 FC3

T 33.97 0.81

S 29.78 0.63

B 23.26 0.71

ILSVRC

VGG-16 FC1

T 36.80 0.87

S 35.98 0.84

B 36.47 0.81

VGG-16 FC2

T 38.76 0.89

S 42.74 0.82

B 36.35 0.82

Table 2. Comparisons of visual concepts encoded in the teacher

network (T), the student network (S) and the baseline network

(B). The teacher network encoded more visual concepts on the

foreground N fg
concept and obtained a larger ratio λ than the student

network. Meanwhile, the student network had larger values of

N fg
concept and λ than the baseline network.

than the baseline network. In this section, we aimed to com-

pare the number of visual concepts encoded in the teacher

network, the student network, and the baseline network.

We learned a teacher network from scratch, on the

ILSVRC-2013 DET dataset and the CUB200-2011 dataset.

In order to boost the performance of the teacher network,

data augmentation [17] was used. The student network was

distilled in the same way as Section 4.1, which had the same

architecture as the teacher network and the baseline net-

work. Results based on VGG-16 were reported in Table 2.

We found that the number of concepts on the foreground

N
fg
concept and the ratio λ of the teacher network were larger

than those of the student network. Meanwhile, the student

network obtained larger values of N
fg
concept and λ than the

baseline network. In this way, the assumed relationship

between the teacher network, the student network, and the

baseline network was roughly verified. We also noticed that

there was an exception that the N
fg
concept value of the teacher

network was smaller than that of the student network. It

was because the teacher network had a larger average back-

ground entropy value H than the student network.

4.3. Verification of Hypothesis 1

Hypothesis 1 assumed that knowledge distillation en-

sured the student network to learn more task-relevant visual

concepts and less task-irrelevant visual concepts. Thus, we

utilized N
fg
concept, N

bg
concept and λ metrics in Equation (3) to

verify this hypothesis.

Values of N
fg
concept, N

bg
concept and λ, which evaluated at

the FC1 and FC2 layers of each DNN learned using the

CUB200-2011 dataset, the ILSVRC-2013 dataset and the

Pascal VOC 2012 dataset, were shown in Table 3. Most re-

sults proved Hypothesis 1. I.e. the student network tended

to encode more visual concepts on the foreground and less

concepts on the background, thereby exhibiting a larger ra-

tio λ than the baseline network. Figure 5 showed visual

concepts encoded in the FC1 layer of VGG-11, which also

proved Hypothesis 1. Note that very few student networks

encoded more background visual concepts N
bg
concept. It was

because that DNNs used as the teacher network were pre-

trained on the ImageNet dataset in Sections 4.3, 4.4, 4.5

to verify Hypotheses 1-3. Pre-trained teacher networks en-

coded visual concepts of 1000 categories, which were much

more than necessary. This would make the student network

exhibited a larger N
bg
concept value than the baseline network.

4.4. Verification of Hypothesis 2

For Hypothesis 2, we aimed to verify that knowledge dis-

tillation enabled the student network to have a higher learn-

ing speed, i.e. learning different concepts simultaneously.

We used Dmean and Dstd to prove this hypothesis.

As shown in Table 3, the Dmean value and Dstd value of

the student network were both smaller than that of the base-

line network, which verified Hypothesis 2. Note that there

were still failure cases. For example, the Dmean and Dstd

were measured at the FC1 layer of AlexNet or at the FC2

layer of VGG-11. The reason was that AlexNet and VGG-

11 both had relatively shallow network architectures. When

learning from raw data, DNNs with shallow architectures

would learn more concepts and avoid overfitting. Neverthe-

less, besides very few exceptional cases, knowledge distil-

lation outperformed learning from raw data for most DNNs.

4.5. Verification of Hypothesis 3

Hypothesis 3 aimed to prove that compared to the base-

line network, knowledge distillation made the student net-

work optimized with less detours1. The metric ρ depicted

the stability of optimization directions and was used to ver-

ify above hypothesis. Results reported in Table 3 demon-

strated that in most cases, the ρ value of the student network

was larger than that of the baseline network. When we mea-

sured ρ by AlexNet and VGG-11, failure cases emerged due

to the shallow architectures of these two networks. Hence,

the optimization directions of the student network tended to

be unstable and took more detours1.

5. Conclusion and Discussions

In this paper, we interpret the success of knowledge dis-

tillation from the perspective of quantifying the knowledge

encoded in the intermediate layer of a DNN. Three types

of metrics were proposed to verify three hypotheses in the

scenario of classification. I.e. knowledge distillation en-

sures DNNs learn more task-relevant concepts and less task-

irrelevant concepts, have a higher learning speed, and opti-

mize with less detours1 than learning from raw data.
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Visual concepts 
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Visual concepts
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Figure 5. Visualization of visual concepts encoded in the FC1 layer of VGG-11. Generally, the student network had a larger N fg
concept value

and a smaller N bg
concept value than the baseline network.

Network Layer N
fg
concept ↑ N

bg
concept ↓ λ ↑ Dmean ↓ Dstd ↓ ρ ↑ N

fg
concept ↑ N

bg
concept ↓ λ ↑ Dmean ↓ Dstd ↓ ρ ↑ N

fg
concept ↑ N

bg
concept ↓ λ ↑ Dmean ↓ Dstd ↓ ρ ↑
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2
0
1
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d
at

as
et

25.84 5.86 0.79 1.14 0.56 0.43

B 24.13 5.65 0.81 4.81 14.54 0.52 41.00 0.92 0.98 1.32 0.31 0.61 20.30 6.08 0.77 2.00 2.21 0.44

FC2

S 38.13 3.50 0.92 3.77 3.97 0.49 57.86 1.70 0.98 0.28 0.01 0.60 31.81 7.29 0.81 0.62 0.07 0.47

B 23.33 5.48 0.80 5.36 20.79 0.49 42.24 0.96 0.98 1.15 0.15 0.60 21.85 6.56 0.77 2.04 1.46 0.44

FC3

S 33.20 4.31 0.89 8.13 39.79 0.51 − − − − − − − − − − − −
B 22.73 4.94 0.83 13.57 137.74 0.42 − − − − − − − − − − − −

VGG-11

FC1

S 30.69 10.65 0.75 1.21 0.61 0.56 44.48 4.68 0.91 0.26 0.06 0.50 30.56 8.36 0.78 1.09 0.30 0.38

B 24.26 10.77 0.70 2.01 3.18 0.55 28.27 7.80 0.80 0.93 0.08 0.53 20.31 7.28 0.73 1.41 0.54 0.44

FC2

S 36.51 10.66 0.78 5.22 19.32 0.49 54.20 6.98 0.89 0.18 0.02 0.48 38.08 10.34 0.79 0.70 0.29 0.45

B 26.86 10.71 0.72 6.62 16.21 0.54 29.68 8.64 0.79 1.19 0.52 0.47 20.03 7.42 0.72 1.65 1.80 0.36

FC3

S 34.53 14.21 0.72 4.15 4.55 0.50 − − − − − − − − − − − −
B 24.53 10.95 0.69 20.66 95.29 0.49 − − − − − − − − − − − −

VGG-16

FC1

S 43.77 8.73 0.84 0.64 0.06 0.66 56.29 3.13 0.95 0.02 0.0001 0.47 42.26 11.54 0.80 0.33 0.09 0.52

B 22.50 11.27 0.68 2.38 4.98 0.50 36.06 7.71 0.83 0.40 0.13 0.44 26.87 8.26 0.76 1.65 0.61 0.48

FC2

S 36.83 11.03 0.77 0.80 0.37 0.54 37.79 4.31 0.90 0.17 0.02 0.32 31.19 8.70 0.78 0.83 0.45 0.35

B 23.31 11.56 0.67 5.43 22.96 0.50 38.41 9.66 0.80 0.79 0.52 0.43 29.37 8.04 0.78 2.65 1.90 0.46

FC3

S 32.32 10.21 0.77 6.17 32.63 0.47 − − − − − − − − − − − −
B 23.26 9.97 0.71 17.53 216.05 0.46 − − − − − − − − − − − −

VGG-19

FC1

S 40.74 10.42 0.80 0.66 0.15 0.60 46.50 2.52 0.95 0.16 0.0002 0.39 46.38 14.05 0.77 0.25 0.07 0.45

B 22.42 11.19 0.67 2.33 3.67 0.47 29.71 5.83 0.84 0.33 0.12 0.39 28.65 7.93 0.78 1.10 0.80 0.41

FC2

S 40.20 9.03 0.82 1.16 0.63 0.56 50.90 5.96 0.91 0.06 0.0006 0.37 47.03 13.66 0.78 0.10 0.03 0.45

B 24.00 10.40 0.70 4.64 19.07 0.47 30.31 6.15 0.84 0.45 0.18 0.37 28.46 8.20 0.78 2.14 1.92 0.41

FC3

S 28.60 6.37 0.82 4.89 11.57 0.48 − − − − − − − − − − − −
B 21.29 7.77 0.74 20.61 143.61 0.46 − − − − − − − − − − − −

ResNet-50

FC1

S 43.02 10.15 0.81 24.43 166.76 0.48 56.00 6.50 0.90 3.45 4.74 0.45 42.54 10.76 0.80 3.43 19.60 0.40

B 42.15 11.83 0.79 20.78 122.79 0.53 43.80 5.75 0.89 2.73 6.82 0.36 39.65 9.81 0.81 1.64 15.20 0.39

FC2

S 48.58 9.75 0.83 37.62 206.22 0.55 52.57 6.54 0.90 0.25 1.45 0.40 41.03 12.37 0.77 1.85 13.03 0.41

B 42.06 11.88 0.79 29.28 248.03 0.52 43.63 6.93 0.87 0.02 0.02 0.35 38.00 10.00 0.80 2.68 30.91 0.38

FC3

S 41.38 11.73 0.77 926.61 142807.00 0.43 − − − − − − − − − − − −
B 42.03 11.48 0.79 111.18 3299.20 0.53 − − − − − − − − − − − −

ResNet-101

FC1

S 45.93 11.14 0.81 23.32 236.76 0.51 48.59 5.06 0.91 1.99 2.20 0.39 42.54 9.37 0.82 1.39 32.87 0.35

B 44.18 12.55 0.78 40.41 828.72 0.52 42.94 8.16 0.84 5.41 10.39 0.35 43.33 9.30 0.83 15.28 48.71 0.39

FC2

S 51.59 9.02 0.85 67.60 947.85 0.54 49.27 6.39 0.89 0.98 0.65 0.37 41.71 9.16 0.82 3.30 100.97 0.38

B 43.22 12.32 0.78 43.40 1155.22 0.50 41.79 7.30 0.85 6.58 17.16 0.34 41.35 8.32 0.84 2.26 48.61 0.39

FC3

S 47.71 10.24 0.82 73.33 2797.15 0.53 − − − − − − − − − − − −
B 42.40 10.53 0.80 162.68 16481.93 0.49 − − − − − − − − − − − −

ResNet-152

FC1

S 44.81 12.09 0.79 26.35 289.59 0.48 44.90 5.63 0.89 6.25 5.86 0.36 41.09 10.09 0.81 0.33 3.59 0.39

B 45.62 10.68 0.81 36.92 767.58 0.54 39.93 5.40 0.89 6.08 6.74 0.33 40.15 10.82 0.79 0.59 11.39 0.37

FC2

S 43.79 10.04 0.81 7.13 42.77 0.52 40.98 6.90 0.86 4.64 5.71 0.32 41.36 12.04 0.78 14.29 17.33 0.38

B 45.08 10.85 0.81 44.59 1200.97 0.52 40.29 5.56 0.89 7.86 12.24 0.33 38.57 12.07 0.77 18.03 67.52 0.36

FC3

S 44.21 11.89 0.79 47.28 1463.55 0.50 − − − − − − − − − − − −
B 44.89 10.77 0.81 167.41 16331.28 0.52 − − − − − − − − − − − −

Table 3. Comparisons between the student network (S) and the baseline network (B). ↑/↓ indicates that larger/smaller values were better.

In general, the student network had larger values of N fg
concept, λ, ρ, and smaller values of N bg

concept, Dmean, Dstd than the baseline network,

which proved Hypotheses 1-3.

There are several limitations of our work. We only fo-

cus on the classification task in this paper. However, ap-

plying our methods to other tasks (e.g. object segmenta-

tion), or other types of data (e.g. the video) is theoreti-

cally feasible. Meanwhile, for these tasks, side information

may be required. In this paper, our proposed metrics are

implemented by using the entropy-based analysis, which

has strong connections to the information-bottleneck the-

ory. Unlike the information-bottleneck theory, the proposed

metrics can measure the pixel-wise discarding. However,

the learning procedure of DNNs cannot be precisely divided

into the learning phase and the discarding phase. In each

epoch, the DNN may simultaneously learn new visual con-

cepts and discard old task-irrelevant concepts. Thus, the

target epoch m̂ in Figure 3 is just a rough estimation of the

division of two learning phases.
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