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Abstract

In this work, we introduce Panoptic-DeepLab, a simple,

strong, and fast system for panoptic segmentation, aiming

to establish a solid baseline for bottom-up methods that

can achieve comparable performance of two-stage methods

while yielding fast inference speed. In particular, Panoptic-

DeepLab adopts the dual-ASPP and dual-decoder struc-

tures specific to semantic, and instance segmentation, re-

spectively. The semantic segmentation branch is the same

as the typical design of any semantic segmentation model

(e.g., DeepLab), while the instance segmentation branch is

class-agnostic, involving a simple instance center regres-

sion. As a result, our single Panoptic-DeepLab simultane-

ously ranks first at all three Cityscapes benchmarks, setting

the new state-of-art of 84.2% mIoU, 39.0% AP, and 65.5%

PQ on test set. Additionally, equipped with MobileNetV3,

Panoptic-DeepLab runs nearly in real-time with a single

1025× 2049 image (15.8 frames per second), while achiev-

ing a competitive performance on Cityscapes (54.1 PQ%

on test set). On Mapillary Vistas test set, our ensemble of

six models attains 42.7% PQ, outperforming the challenge

winner in 2018 by a healthy margin of 1.5%. Finally, our

Panoptic-DeepLab also performs on par with several top-

down approaches on the challenging COCO dataset. For

the first time, we demonstrate a bottom-up approach could

deliver state-of-the-art results on panoptic segmentation.

1. Introduction

Panoptic segmentation, unifying semantic segmentation

and instance segmentation, has received a lot of attention

thanks to the recently proposed panoptic quality metric [34]

and associated recognition challenges [46, 16, 53]. The goal

of panoptic segmentation is to assign a unique value, encod-

ing both semantic label and instance id, to every pixel in an

image. It requires identifying the class and extent of each

individual ‘thing’ in the image, and labelling all pixels that

Figure 1. Our Panoptic-DeepLab predicts three outputs: seman-

tic segmentation, instance center prediction and instance center

regression. Class-agnostic instance segmentation, obtained by

grouping predicted foreground pixels to their closest predicted

instance centers, is then fused with semantic segmentation by

majority-vote rule to generate final panoptic segmentation.

belong to each ‘stuff’ class.

The task of panoptic segmentation introduces challenges

that preceding methods are unsuited to solve. Models typ-

ically used in the separate instance and semantic segmen-

tation literature have diverged, and fundamentally different

approaches dominate in each setting. For panoptic segmen-

tation, the top-down methods [74, 33, 40, 43, 60], attach-

ing another semantic segmentation branch to Mask R-CNN

[25], generate overlapping instance masks as well as du-

plicate pixel-wise semantic predictions. To settle the con-

flict, the commonly employed heuristic resolves overlap-

ping instance masks by their predicted confidence scores

[34], or even by the pairwise relationship between cate-

gories [43] (e.g., ties should be always in front of per-

son). Additionally, the discrepancy between semantic and

instance segmentation results are sorted out by favoring the

instance predictions. Though effective, it may be hard to

implement the hand-crafted heuristics in a fast and paral-

lel fashion. Another effective way is to develop advanced

modules to fuse semantic and instance segmentation results

[43, 40, 74]. However, these top-down methods are usually
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slow in speed, resulted from the multiple sequential pro-

cesses in the pipeline.

On the other hand, bottom-up methods naturally resolve

the conflict by predicting non-overlapping segments. Only

few works [75, 22] adopt the bottom-up approach, which

typically starts with a semantic segmentation prediction fol-

lowed by grouping operations to generate instance masks.

Tackling panoptic segmentation in such a sequential order

allows a simple and fast scheme, such as majority vote [75],

to merge semantic and instance segmentation results. Al-

though obtaining promising fast inference speed, bottom-

up approaches still demonstrate inferior performance com-

pared to top-down ones prevailing in public benchmarks

[46, 16, 53].

The difficulties faced by top-down methods, and the

dearth of previous investigations into complementary ap-

proaches motivate us to establish a simple, strong, and fast

bottom-up baseline for panoptic segmentation. Our pro-

posed Panoptic-DeepLab (Fig. 1) requires only three loss

functions during training, and introduces extra marginal pa-

rameters as well as additional slight computation overhead

when building on top of a modern semantic segmentation

model. The design of the proposed Panoptic-DeepLab is

conceptually simple, adopting dual-ASPP and dual-decoder

modules specific to semantic segmentation and instance

segmentation, respectively. The semantic segmentation

branch follows the typical design of any semantic segmenta-

tion model (e.g., DeepLab [11]), while the instance segmen-

tation branch involves a simple instance center regression

[4, 30], where the model learns to predict instance centers as

well as the offset from each pixel to its corresponding cen-

ter, resulting in an extremely simple grouping operation by

assigning pixels to their closest predicted center. Addition-

ally, with fast GPU implementation of the merging opera-

tion, Panoptic-DeepLab delivers near real-time end-to-end

panoptic segmentation prediction.

We conduct experiments on several popular panoptic

segmentation datasets. On Cityscapes test set [16], a sin-

gle Panoptic-DeepLab model (without fine-tuning on dif-

ferent tasks) achieves state-of-the-art performance of 65.5%

PQ, 39.0% AP, and 84.2% mIoU, simultaneously ranking

first on all three Cityscapes tasks when comparing with

published works. On Mapillary Vistas [53], our best sin-

gle model attains 40.6% PQ on val set, while employ-

ing an ensemble of 6 models reaches a performance of

42.2% PQ on val set and 42.7% PQ on test set, outper-

forming the winner of Mapillary Vistas Panoptic Segmen-

tation Challenge in 2018 by a healthy margin of 1.5% PQ.

For the first time, we show a bottom-up approach could de-

liver state-of-the-art panoptic segmentation results on both

Cityscapes and Mapillary Vistas. On COCO [46] test-dev

set, our Panoptic-DeepLab also demonstrates state-of-the-

art results, performing on par with several top-down ap-

proaches. Finally, we provide extensive experimental re-

sults and disclose every detail in our system. We hope our

Panoptic-DeepLab could serve as a solid baseline to facili-

tate the research on panoptic segmentation, especially from

the bottom-up perspective.

2. Related Works

We categorize current panoptic segmentation methods

[34] into two groups: top-down and bottom-up approaches.

Top-down: Most state-of-the-art methods tackle panop-

tic segmentation from the top-down or proposal-based per-

spective. These methods are often referred to as two-stage

methods because they require an additional stage to gen-

erate proposals. Specifically, Mask R-CNN [25] is com-

monly deployed to extract overlapping instances, followed

by some post-processing methods to resolve mask overlaps.

The remaining regions are then filled by a light-weight stuff

segmentation branch. For example, TASCNet [40] learns

a binary mask to enforce the consistency between ‘thing’

and ‘stuff’ predictions. Liu et al. [52] propose the Spatial

Ranking module to resolve the overlapping instance masks.

AUNet [43] introduces attention modules to guide the fu-

sion between ‘thing’ and ‘stuff’ segmentation. Panoptic

FPN [33] endows Mask R-CNN [25] with a semantic seg-

mentation branch. UPSNet [74] develops a parameter-free

panoptic head which resolves the conflicts in ‘thing’-‘stuff’

fusion by predicting an extra unknown class. Porzi et al.

[60] integrate the multi-scale features from FPN [45] with

a light-weight DeepLab-inspired module [9]. AdaptIS [66]

generates instance masks with point proposals.

Bottom-up: On the other hand, there are few bottom-

up or proposal-free methods for panoptic segmentation.

These works typically get the semantic segmentation pre-

diction before detecting instances by grouping ‘thing’ pix-

els into clusters. The first bottom-up approach, Deeper-

Lab [75], adopts bounding box corners as well as object

centers for class-agnostic instance segmentation, coupled

with DeepLab semantic segmentation outputs [8, 10]. Re-

cently, SSAP [22] proposes to group pixels based on a

pixel-pair affinity pyramid [51] with an efficient graph par-

tition method [31]. Unfortunately, given its simplicity (i.e.,

a single pass of the system for prediction), bottom-up ap-

proaches perform inferiorly to top-down methods at almost

all public benchmarks. In this work, we aim to push the en-

velope of bottom-up approaches. We note that there are sev-

eral instance segmentation works [77, 68, 76, 2, 48, 35, 56,

20, 18, 44, 37, 30, 51, 54, 6], which could be potentially ex-

tended to bottom-up panoptic segmentation. Additionally,

our method bears a similarity to Hough-Voting-based meth-

ods [4, 39, 21, 5] and recent works by Kendall et al. [30],

Uhrig et al. [69] and Neven et al. [54] in the sense that our

class-agnostic instance segmentation is obtained by regress-

ing foreground pixels to their centers. However, our method
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Figure 2. Our Panoptic-DeepLab adopts dual-context and dual-decoder modules for semantic segmentation and instance segmentation

predictions. We apply atrous convolution in the last block of a network backbone to extract denser feature map. The Atrous Spatial Pyramid

Pooling (ASPP) is employed in the context module as well as a light-weight decoder module consisting of a single convolution during each

upsampling stage. The instance segmentation prediction is obtained by predicting the object centers and regressing every foreground pixel

(i.e., pixels with predicted ‘thing‘ class) to their corresponding center. The predicted semantic segmentation and class-agnostic instance

segmentation are then fused to generate the final panoptic segmentation result by the ”majority vote” proposed by DeeperLab.

is even simpler than theirs: we directly predict the instance

center locations and group pixels to their closest predicted

centers. As a result, our method does not require the cluster-

ing method OPTICS [1] used in [30], or the advanced clus-

tering loss function proposed in [54]. Finally, our model

employs the parallel multi-head prediction framework sim-

ilar to [68, 36, 55].

Keypoint representation: Recently, keypoint represen-

tations have been used for instance segmentation and ob-

ject detection. Newell et al. [56] group pixels by embed-

ding vectors. PersonLab [58] generates person segmenta-

tion masks and groups them into instances by learning off-

set to their detected keypoints. CornerNet [38] detects ob-

jects by predicting paired corners and group corners based

on [56]. ExtremeNet [79] groups ‘extreme points’ [57] ac-

cording to the relation to a center point. Zhou et al. [78]

and Duan et al. [19] exploit instance centers for object de-

tection. Following the same direction, we represent each

instance by its center and take a step further by showing

that such a simple representation is able to achieve state-of-

the-art panoptic segmentation results on several challeng-

ing datasets. Different from keypoint-based detection, our

Panoptic-DeepLab only requires class-agnostic object cen-

ter prediction.

3. Panoptic-DeepLab

As shown in Fig. 2, our proposed Panoptic-DeepLab is

deployed in a bottom-up and single-shot manner.

3.1. Architecture

Panoptic-DeepLab consists of four components: (1) an

encoder backbone shared for both semantic segmentation

and instance segmentation, (2) decoupled ASPP modules

and (3) decoupled decoder modules specific to each task,

and (4) task-specific prediction heads.

Basic architecture: The encoder backbone is adapted

from an ImageNet-pretrained neural network paired with

atrous convolution for extracting denser feature maps in its

last block. Motivated by [14, 13, 54], we employ separate

ASPP and decoder modules for semantic segmentation and

instance segmentation, respectively, based on the hypothe-

sis that those two branches requires different contextual and

decoding information, which is empirically verified in the

following section. Our light-weight decoder module fol-

lows DeepLabV3+ [11] with two modifications: (1) we in-

troduce an additional low-level feature with output stride 8

to the decoder, thus the spatial resolution is gradually recov-

ered by a factor of 2, and (2) in each upsampling stage we

apply a single 5× 5 depthwise-separable convolution [28].

Semantic segmentation head: We employ the weighted

bootstrapped cross entropy loss, proposed in [75], for se-

mantic segmentation, predicting both ‘thing’ and ‘stuff’

classes. The loss improves over bootstrapped cross entropy

loss [72, 7, 59] by weighting each pixel differently.

Class-agnostic instance segmentation head: Moti-

vated by Hough Voting [4, 30], we represent each object

instance by its center of mass. For every foreground pixel

(i.e., pixel whose class is a ‘thing’), we further predict the

offset to its corresponding mass center. During training,
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groundtruth instance centers are encoded by a 2-D Gaus-

sian with standard deviation of 8 pixels [67]. In particular,

we adopt the Mean Squared Error (MSE) loss to minimize

the distance between predicted heatmaps and 2D Gaussian-

encoded groundtruth heatmaps. We use L1 loss for the off-

set prediction, which is only activated at pixels belonging

to object instances. During inference, predicted foreground

pixels (obtained by filtering out background ‘stuff’ regions

from semantic segmentation prediction) are grouped to their

closest predicted mass center, forming our class-agnostic

instance segmentation results, as detailed below.

3.2. Panoptic Segmentation

During inference, we use an extremely simple grouping

operation to obtain instance masks, and a highly efficient

majority voting algorithm to merge semantic and instance

segmentation into final panoptic segmentation.

Simple instance representation: We simply represent

each object by its center of mass, {Cn : (in, jn)}. To ob-

tain the center point prediction, we first perform a keypoint-

based non-maximum suppression (NMS) on the instance

center heatmap prediction, essentially equivalent to apply-

ing max pooling on the heatmap prediction and keeping lo-

cations whose values do not change before and after max

pooling. Finally, a hard threshold is used to filter out pre-

dictions with low confidence, and only locations with top-k

highest confidence scores are kept. In experiments, we use

max-pooling with kernel size 7, threshold 0.1, and k = 200.

Simple instance grouping: To obtain the instance id for

each pixel, we use a simple instance center regression. For

example, consider a predicted ‘thing’ pixel at location (i, j),
we predict an offset vector O(i, j) to its instance center.

O(i, j) is a vector with two elements, representing the off-

set in horizontal and vertical directions, respectively. The

instance id for the pixel is thus the index of the closest in-

stance center after moving the pixel location (i, j) by the

offset O(i, j). That is,

k̂i,j = argmin
k

||Ck − ((i, j) +O(i, j))||2

where k̂i,j is the predicted instance id for pixel at (i, j).
We use semantic segmentation prediction to filter out

‘stuff’ pixels whose instance id are always set to 0.

Efficient merging: Given the predicted semantic seg-

mentation and class-agnostic instance segmentation results,

we adopt a fast and parallelizable method to merge the re-

sults, following the “majority vote” principle proposed in

DeeperLab [75]. In particular, the semantic label of a pre-

dicted instance mask is inferred by the majority vote of the

corresponding predicted semantic labels. This operation

is essentially accumulating the class label histograms, and

thus is efficiently implemented in GPU, which takes only 3

ms when operating on a 1025× 2049 input.

3.3. Instance Segmentation

Panoptic-DeepLab can also generate instance segmenta-

tion predictions as a by-product. To properly evaluate the

instance segmentation results, one needs to associate a con-

fidence score with each predicted instance mask. Previous

bottom-up instance segmentation methods use some heuris-

tics to obtain the confidence scores. For example, DWT

[2] and SSAP [22] use an average of semantic segmenta-

tion scores for some easy classes and use random scores

for other harder classes. Additionally, they remove masks

whose areas are below a certain threshold for each class.

On the other hand, our Panoptic-DeepLab does not adopt

any heuristic or post processing for instance segmentation.

Motivated by YOLO [62], we compute the class-specific

confidence score for each instance mask as

Score(Objectness)× Score(Class)

where Score(Objectness) is unnormalized objectness

score obtained from the class-agnostic center point

heatmap, and Score(Class) is obtained from the average

of semantic segmentation predictions within the predicted

mask region.

4. Experiments

Cityscapes [16]: The dataset consists of 2975, 500, and

1525 traffic-related images for training, validation, and test-

ing, respectively. It contains 8 ‘thing’ and 11 ‘stuff’ classes.

Mapillary Vistas [53]: A large-scale traffic-related

dataset, containing 18K, 2K, and 5K images for training,

validation and testing, respectively. It contains 37 ‘thing’

classes and 28 ‘stuff’ classes in a variety of image resolu-

tions, ranging from 1024× 768 to more than 4000× 6000
COCO [46]: There are 118K, 5K, and 20K images for

training, validation, and testing, respectively. The dataset

consists of 80 ‘thing‘ and 53 ‘stuff‘ classes.

Experimental setup: We report mean IoU, average pre-

cision (AP), and panoptic quality (PQ) to evaluate the se-

mantic, instance, and panoptic segmentation results.

All our models are trained using TensorFlow on 32

TPUs. We adopt a similar training protocol as in [11].

In particular, we use the ‘poly’ learning rate policy [50]

with an initial learning rate of 0.001, fine-tune the batch

normalization [29] parameters, perform random scale data

augmentation during training, and optimize with Adam

[32] without weight decay. On Cityscapes, our best set-

ting is obtained by training with whole image (i.e., crop

size equal to 1025 × 2049) with batch size 32. On Map-

illary Vistas, we resize the images to 2177 pixels at the

longest side to handle the large input variations, and ran-

domly crop 1025× 1025 patches during training with batch

size 64. On COCO, we resize the images to 1025 pix-

els at the longest side and train our models with crop size
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Adam MSE De. x2 ASPP x2 L-Crop CSem = 256 CIns = 256 Sem. Only PQ (%) AP (%) mIoU (%) Params (M) M-Adds (B)

60.3 32.7 78.2 41.85 496.84

✓ 61.0 34.3 79.4 41.85 496.84

✓ ✓ 61.8 33.8 78.6 41.85 496.84

✓ ✓ ✓ 60.8 32.7 79.0 41.93 501.88

✓ ✓ ✓ ✓ 62.5 33.9 78.7 43.37 517.17

✓ ✓ ✓ ✓ ✓ 62.7 34.5 79.6 43.37 517.17

✓ ✓ ✓ ✓ ✓ ✓ 63.0 35.3 80.5 46.72 547.49

✓ ✓ ✓ ✓ ✓ ✓ ✓ 62.1 35.1 80.3 46.88 573.86

✓ ✓ ✓ ✓ - - 80.3 43.60 518.84

Table 1. Ablation studies on Cityscapes val set. Adam: Adam optimizer. MSE: MSE loss for instance center. De. x2: Dual decoder. ASPP

x2: Dual ASPP. L-Crop: Large crop size. CSem = 256: 256 (instead of 128) channels in semantic segmentation branch. CIns = 256:

256 (instead of 128) channels in instance segmentation branch. Sem. Only: Only semantic segmentation. M-Adds are measured w.r.t. a

1025× 2049 input.

Method Extra Data Flip MS PQ (%) AP (%) mIoU (%)

w/o Extra Data

TASCNet [40] 55.9 - -

Panoptic FPN [33] 58.1 33.0 75.7

AUNet [43] 59.0 34.4 75.6

UPSNet [74] 59.3 33.3 75.2

UPSNet [74] ✓ ✓ 60.1 33.3 76.8

Seamless [60] 60.3 33.6 77.5

AdaptIS [66] ✓ 62.0 36.3 79.2

DeeperLab [75] 56.5 - -

SSAP [22] ✓ ✓ 61.1 37.3 -

Panoptic-DeepLab 63.0 35.3 80.5

Panoptic-DeepLab ✓ 63.4 36.1 80.9

Panoptic-DeepLab ✓ ✓ 64.1 38.5 81.5

w/ Extra Data

TASCNet [40] COCO 59.3 37.6 78.1

TASCNet [40] COCO ✓ ✓ 60.4 39.1 78.7

UPSNet [74] COCO 60.5 37.8 77.8

UPSNet [74] COCO ✓ ✓ 61.8 39.0 79.2

Seamless [60] MV 65.0 - 80.7

Panoptic-DeepLab MV 65.3 38.8 82.5

Panoptic-DeepLab MV ✓ 65.6 39.4 82.6

Panoptic-DeepLab MV ✓ ✓ 67.0 42.5 83.1

Table 2. Cityscapes val set. Flip: Adding left-right flipped inputs.

MS: Multiscale inputs. MV: Mapillary Vistas.

1025 × 1025 with batch size 64. We set training itera-

tions to 60K, 150K, and 200K for Cityscapes, Mapillary

Vistas, and COCO, respectively. During evaluation, due to

the sensitivity of PQ [74, 40, 60], we re-assign to ‘VOID’

label all ‘stuff’ segments whose areas are smaller than a

threshold. The thresholds on Cityscapes, Mapillary Vistas,

and COCO are 2048, 4096, and 4096, respectively. Ad-

ditionally, we adopt multi-scale inference (scales equal to

{0.5, 0.75, 1, 1.25, 1.5, 1.75, 2} for Cityscapes and Mapil-

lary Vistas and {0.5, 0.75, 1, 1.25, 1.5} for COCO) and left-

right flipped inputs, to further improve the performance.

For all the reported results, unless specified, Xception-71

[15, 61, 11] is employed as the backbone.

Panoptic-DeepLab is trained with three loss functions:

weighted bootstrapped cross entropy loss for semantic seg-

mentation head (Lsem) [75]; MSE loss for center heatmap

head (Lheatmap) [67]; and L1 loss for center offset head

(Loffset) [58]. The final loss L is computed as follows.

Method Extra Data PQ (%) AP (%) mIoU (%)

Semantic Segmentation

GFF-Net [42] - - 82.3

Zhu et al. [80] C, V, MV - - 83.5

Hyundai Mobis AD Lab C, MV - - 83.8

Instance Segmentation

AdaptIS [66] - 32.5 -

UPSNet [74] COCO - 33.0 -

PANet [49] COCO - 36.4 -

Sogou MM COCO - 37.2 -

iFLYTEK-CV COCO - 38.0 -

NJUST COCO - 38.9 -

AInnoSegmentation COCO - 39.5 -

Panoptic Segmentation

SSAP [22] 58.9 32.7 -

TASCNet [40] COCO 60.7 - -

Seamless [60] MV 62.6 - -

Panoptic-DeepLab 62.3 34.6 79.4

Panoptic-DeepLab MV 65.5 39.0 84.2

Table 3. Cityscapes test set. C: Cityscapes coarse annotation. V:

Cityscapes video. MV: Mapillary Vistas.

L = λsemLsem + λheatmapLheatmap + λoffsetLoffset

Specifically, we set λsem = 3 for pixels belonging to in-

stances with an area smaller than 64×64 and λsem = 1 ev-

erywhere else, following DeeperLab [75]. To make sure the

losses are in the similar magnitude, we set λheatmap = 200
and λoffset = 0.01.

4.1. Ablation Studies

We conduct ablation studies on Cityscapes validation

set, as shown in Tab. 1. Replacing SGD momentum opti-

mizer with Adam optimizer yields 0.7% PQ improvement.

Instead of using the sigmoid cross entropy loss for train-

ing the heatmap (i.e., instance center prediction), it brings

0.8% PQ improvement by applying the Mean Squared Er-

ror (MSE) loss to minimize the distance between the pre-

dicted heatmap and the 2D Gaussian-encoded groundtruth

heatmap. It is more effective to adopt both dual-decoder and
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dual-ASPP, which gives us 0.7% PQ improvement while

maintaining similar AP and mIoU. Employing a large crop

size 1025×2049 (instead of 513×1025) during training fur-

ther improves the AP and mIoU by 0.6% and 0.9% respec-

tively. Finally, increasing the feature channels from 128 to

256 in the semantic segmentation branch achieves our best

result of 63.0% PQ, 35.3% AP, and 80.5% mIoU.

Multi-task learning: For reference, we train a

Semantic-DeepLab under the same setting as the best

Panoptic-DeepLab (last row of Tab. 1), showing that multi-

task learning does not bring extra gain to mIoU. Note

that Panoptic-DeepLab adds marginal parameters and small

computation overhead over Semantic-DeepLab.

4.2. Cityscapes

Val set: In Tab. 2, we report our Cityscapes validation

set results. When using only Cityscapes fine annotations,

our best Panoptic-DeepLab, with multi-scale inputs and

left-right flips, outperforms the best bottom-up approach,

SSAP, by 3.0% PQ and 1.2% AP, and is better than the best

proposal-based approach, AdaptIS, by 2.1% PQ, 2.2% AP,

and 2.3% mIoU. When using extra data, our best Panoptic-

DeepLab outperforms UPSNet by 5.2% PQ, 3.5% AP, and

3.9% mIoU, and Seamless by 2.0% PQ and 2.4% mIoU.

Note that we do not exploit any other data, such as COCO,

Cityscapes coarse annotations, depth, or video.

Test set: On the test set, we additionally employ the trick

proposed in [11] that applies atrous convolution in the last

two blocks within the backbone, with rate 2 and 4 respec-

tively, during inference. This trick brings an extra 0.4% AP

and 0.2% mIoU on val set but no improvement over PQ.

We do not use this trick for the Mapillary Vistas Challenge.

As shown in Tab. 3, our single unified Panoptic-DeepLab

achieves state-of-the-art results, ranking first at all three

Cityscapes tasks, when comparing with published works.

Our model ranks second in the instance segmentation track

when also taking into account unpublished entries.

4.3. Mapillary Vistas

Val set: In Tab. 4, we report Mapillary Vistas val set re-

sults. Our best single Panoptic-DeepLab model, with multi-

scale inputs and left-right flips, outperforms the bottom-up

approach, DeeperLab, by 8.3% PQ, and the top-down ap-

proach, Seamless, by 2.6% PQ. In Tab. 5, we report our re-

sults with three families of network backbones. We observe

that naı̈ve HRNet-W48 slightly under-performs Xception-

71. Due to the diverse image resolutions in Mapillary Vis-

tas, we found it important to enrich the context informa-

tion as well as to keep high-resolution features. There-

fore, we propose a simple modification for HRNet [70] and

Auto-DeepLab [47]. For modified HRNet, called HRNet+,

we keep its ImageNet-pretrained head and further attach

dual-ASPP and dual-decoder modules. For modified Auto-

Method Flip MS PQ (%) PQTh (%) PQSt (%) AP (%) mIoU (%)

TASCNet [40] 32.6 31.1 34.4 18.5 -

TASCNet [40] ✓ ✓ 34.3 34.8 33.6 20.4 -

AdaptIS [66] ✓ 35.9 31.5 41.9 - -

Seamless [60] 37.7 33.8 42.9 16.4 50.4

DeeperLab [75] 32.0 - - - 55.3

Panoptic-DeepLab 37.7 30.4 47.4 14.9 55.4

Panoptic-DeepLab ✓ 38.0 30.6 47.9 15.2 55.8

Panoptic-DeepLab ✓ ✓ 40.3 33.5 49.3 17.2 56.8

Table 4. Mapillary Vistas val set. Flip: Adding left-right flipped

inputs. MS: Multiscale inputs.

Backbone Params (M) M-Adds (B) PQ (%) AP (%) mIoU (%)

Xception-65 44.31 1054.05 39.2 16.4 56.9

Xception-71 46.73 1264.32 40.3 17.2 56.8

HRNet-W48 [70] 71.66 2304.87 39.3 17.2 55.4

HRNet-W48+ 88.87 2208.04 40.6 17.8 57.6

HRNet-W48+ (Atrous) 88.87 2972.02 40.5 17.7 57.4

HRNet-Wider+ 60.05 1315.70 40.0 17.0 57.0

HRNet-Wider+ (Atrous) 60.05 1711.69 39.7 16.8 56.5

Auto-DeepLab-L+ 41.54 1493.78 39.3 15.8 56.9

Auto-DeepLab-XL+ 71.98 2378.17 40.3 16.3 57.1

Auto-DeepLab-XL++ 72.16 2386.81 40.3 16.9 57.6

Ensemble (top-6 models) - - 42.2 18.2 58.7

Table 5. Mapillary Vistas val set with different backbones.

HRNet-W48+: Modified HRNet-W48 with ImageNet-pretraining

head kept. HRNet-W48+ (Atrous): Additionally apply atrous

convolution with rate 2 in the output stride 32 branch of HRNet.

HRNet-Wider+: A wider version of HRNet using separable con-

volution with large channels. The ImageNet-pretraining head is

also kept. HRNet-Wider+ (Atrous): Additionally apply atrous

convolution with rate 2 in the output stride 32 branch. Auto-

DeepLab-L+: Auto-DeepLab with F = 48 and remove the stride

in the original output stride 32 path. Auto-DeepLab-XL+: Auto-

DeepLab with F = 64 and remove the stride in the original output

stride 32 path. Auto-DeepLab-XL++: Additionally exploit low-

level features from output stride 8 endpoint in the decoder module.

We employ dual-ASPP and dual-decoder modules for all model

variants except HRNet-W48 which follows the original design in

[70]. Results are obtained with multi-scale and left-right flipped

inputs. M-Adds are measured w.r.t. a 2177× 2177 input.

Method PQ SQ RQ PQTh SQTh RQTh PQSt SQSt RQSt

DeeperLab [75] 31.6 75.5 40.1 25.0 73.4 33.1 40.3 78.3 49.3

AdaptIS [66] 36.8 76.0 46.3 33.3 75.2 42.6 41.4 77.1 51.3

TRI-ML (2018: 2nd) 38.7 78.1 48.4 39.0 79.7 48.9 38.2 75.9 47.9

Team R4D (2018: 1st) 41.2 79.1 50.8 37.9 79.7 47.1 45.6 78.4 55.8

Panoptic-DeepLab 42.7 78.1 52.5 35.9 75.3 46.0 51.6 81.9 61.2

Table 6. Performance on Mapillary Vistas test set.

DeepLab, called Auto-DeepLab+, we remove the stride in

the original 1/32 branch (which improves PQ by 1%). To

summarize, using Xception-71 strikes the best accuracy and

speed trade-off, while HRNet-W48+ achieves the best PQ

of 40.6%. Finally, our ensemble of six models attains a

42.2% PQ, 18.2% AP, and 58.7% mIoU.

Test set: Tab. 6 summarizes our Mapillary Vistas test set

results along with other top-performing methods. Our entry

[12] with an ensemble of six models attain a performance

of 42.7% PQ, outperforming the winner of Mapillary Vistas

Panoptic Segmentation Challenge in 2018 by 1.5% PQ.
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Method Backbone Flip MS PQ (%) PQTh (%) PQSt (%)

AUNet [43] ResNet-50 [26] 39.6 49.1 25.2

Panoptic-FPN [33] ResNet-101 40.3 47.5 29.5

AdaptIS [66] ResNeXt-101 [73] ✓ 42.3 49.2 31.8

UPSNet [74] ResNet-50 42.5 48.5 33.4

Detectron2 [71] ResNet-101 43.0 - -

UPSNet [74] ResNet-50 ✓ ✓ 43.2 49.1 34.1

DeeperLab [75] Xception-71 33.8 - -

SSAP [22] ResNet-101 ✓ ✓ 36.5 - -

Panoptic-DeepLab Xception-71 39.7 43.9 33.2

Panoptic-DeepLab Xception-71 ✓ 40.2 44.4 33.8

Panoptic-DeepLab Xception-71 ✓ ✓ 41.2 44.9 35.7

Table 7. COCO val set. Flip: Adding left-right flipped inputs.

MS: Multiscale inputs.

Method Backbone Flip MS PQ (%) PQTh (%) PQSt (%)

TASCNet [40] ResNet-50 40.7 47.0 31.0

Panoptic-FPN [33] ResNet-101 40.9 48.3 29.7

AdaptIS [66] ResNeXt-101 ✓ 42.8 53.2 36.7

AUNet [43] ResNeXt-152 46.5 55.8 32.5

UPSNet [74] DCN-101 [17] ✓ ✓ 46.6 53.2 36.7

DeeperLab [75] Xception-71 34.3 37.5 29.6

SSAP [22] ResNet-101 ✓ ✓ 36.9 40.1 32.0

Panoptic-DeepLab Xception-71 ✓ ✓ 41.4 45.1 35.9

Table 8. COCO test-dev set. Flip: Adding left-right flipped inputs.

MS: Multiscale inputs.

4.4. COCO

Val set: In Tab. 7, we report COCO val set result. With

a single scale inference, our Panoptic-DeepLab outperforms

the previous best bottom-up SSAP by 3.2% PQ and Deep-

erLab [75] by 5.9% PQ. With multi-scale inference and hor-

izontal flip, Panoptic-DeepLab achieves 41.2% PQ, setting

a new state-of-the-art performance for bottom-up methods,

and performing comparably with top-down methods.

Test-dev set: In Tab. 8, we report COCO test-dev set

result. Our Panoptic-DeepLab is 4.5% PQ better than the

previous best bottom-up SSAP on COCO and our 41.4%
PQ is comparable to most top-down methods without using

heavier backbone [73] or deformable convolution [17].

4.5. Runtime

In Tab. 9, we report the end-to-end runtime (i.e., infer-

ence time from an input image to final panoptic segmenta-

tion, including all operations such as merging semantic and

instance segmentation) of Panoptic-DeepLab with three dif-

ferent network backbones (MobileNetV3 [27], ResNet-50

[26], and Xception-71 [15, 61]) on all three datasets. The

inference speed is measured on a Tesla V100-SXM2 GPU

with batch size of one. We further plot the speed-accuracy

trade-off curve in Fig. 3. Our Panoptic-DeepLab achieves

the best trade-off across all three datasets.

4.6. Discussion

Herein, we list a few interesting aspects in the hope of

inspiring future works on bottom-up panoptic segmentation.

Scale variation: Fig. 4 shows visualization of Panoptic-

DeepLab. In particular, the cross road (in last 2 rows), with

Method Backbone Input Size PQ [val] PQ [test] Speed (ms) M-Adds (B)

Cityscapes

DeeperLab [75] W-MNV2 [64] 1025× 2049 52.3 - 303 -

DeeperLab [75] Xception-71 1025× 2049 56.5 - 463 -

UPSNet [74] ResNet-50 1024× 2048 59.3 - 202 -

Panoptic-DeepLab MNV3 1025× 2049 55.4 54.1 63 54.17

Panoptic-DeepLab ResNet-50 1025× 2049 59.7 58.0 117 381.39

Panoptic-DeepLab Xception-71 1025× 2049 63.0 60.7 175 547.49

Mapillary Vistas

DeeperLab [75] W-MNV2 1441× 1441 25.2 25.3 307 -

DeeperLab [75] Xception-71 1441× 1441 32.0 31.6 469 -

Panoptic-DeepLab MNV3 2177× 2177 28.8 - 148 138.12

Panoptic-DeepLab ResNet-50 2177× 2177 33.3 - 286 910.47

Panoptic-DeepLab Xception-71 2177× 2177 37.7 - 398 1264.32

COCO

DeeperLab [75] W-MNV2 641× 641 27.9 28.1 83 -

DeeperLab [75] Xception-71 641× 641 33.8 34.3 119 -

UPSNet [74] ResNet-50 800× 1333 42.5 - 167 -

Panoptic-DeepLab MNV3 641× 641 30.0 29.8 38 12.24

Panoptic-DeepLab ResNet-50 641× 641 35.1 35.2 50 77.79

Panoptic-DeepLab Xception-71 641× 641 38.9 38.8 74 109.21

Panoptic-DeepLab Xception-71 1025× 1025 39.7 39.6 132 279.25

Table 9. End-to-end runtime, including merging semantic and in-

stance segmentation. All results are obtained by (1) a single-scale

input without flipping, and (2) built-in TensorFlow library without

extra inference optimization. MNV3: MobileNet-V3. PQ [val]:

PQ (%) on val set. PQ [test]: PQ (%) on test(-dev) set. Note the

channels in last block of MNV3 are reduced by a factor of 2 [27].
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Figure 3. PQ vs. Seconds. Our Panoptic-DeepLab model vari-

ants attain a better speed/accuracy trade-off across challenging

datasets. The inference time is measured end-to-end from input

image to panoptic segmentation output. X-71: Xception-71. R-

50: ResNet-50. MNV3: MobileNetV3. Data points from Tab. 9.
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Image Panoptic Prediction Instance Prediction Heatmap Prediction Center Prediction Center Regression

Figure 4. Visualization of Panoptic-DeepLab with Xception-71 on Mapillary Vistas val set. Only single scale inference is used and the

model achieves 37.7% PQ. We encode 2D offset vectors into RGB values, same as [3]. The cross road in last 2 rows is segmented into

multiple instances due to large scale variation. More visualizations are included in supplementary materials.

a large scale variation, is segmented into multiple small

instances. On the other hand, top-down methods handle

scale variation to some extent by the ROIPooling [23] or

ROIAlign [25] operations which normalize regional fea-

tures to a canonical scale [24, 63]. Additionally, incorporat-

ing scale-aware information to feature pyramid [45] or im-

age pyramid [65] may improve the performance of bottom-

up methods.

PQThing
vs. PQStuff: As shown in Tab. 6 and Tab. 8,

Panoptic-DeepLab has higher PQStuff but lower PQThing

when compared with other top-down approaches which bet-

ter handle instances of large scale variation as discussed

above. Combining the best from both bottom-up and top-

down approaches is thus interesting to explore but beyond

the scope of current work.

Panoptic vs. instance annotations: Most bottom-up

panoptic segmentation methods only exploit the panoptic

annotations. We notice there are two types of annotations in

the COCO dataset, panoptic annotations and instance anno-

tations. The former do not allow overlapping masks (thus

creating occlusions among masks), while the latter allows

overlaps, which might make the training target easier to op-

timize, similar to amodal segmentation [81, 41].

End-to-end training: Current bottom-up panoptic seg-

mentation methods still require some post-processing steps

to obtain the final panoptic segmentation, which may make

it hard to end-to-end train the whole system.

5. Conclusion

We have presented Panoptic-DeepLab, a simple, strong,

and fast baseline for bottom-up panoptic segmentation.

Panoptic-DeepLab is simple in design, requiring only three

loss functions during training and adds marginal parame-

ters to a modern semantic segmentation model. Panoptic-

DeepLab is the first bottom-up and single-shot panop-

tic segmentation model that attains state-of-the-art perfor-

mance on several public benchmarks, and delivers near real-

time end-to-end inference speed. We hope our simple and

effective model could establish a solid baseline and further

benefit the research community.
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