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Abstract

Action recognition with skeleton data is attracting more

attention in computer vision. Recently, graph convolutional

networks (GCNs), which model the human body skeletons

as spatiotemporal graphs, have obtained remarkable per-

formance. However, the computational complexity of GCN-

based methods are pretty heavy, typically over 15 GFLOPs

for one action sample. Recent works even reach ∼100

GFLOPs. Another shortcoming is that the receptive fields

of both spatial graph and temporal graph are inflexible. Al-

though some works enhance the expressiveness of spatial

graph by introducing incremental adaptive modules, their

performance is still limited by regular GCN structures. In

this paper, we propose a novel shift graph convolutional net-

work (Shift-GCN) to overcome both shortcomings. Instead

of using heavy regular graph convolutions, our Shift-GCN

is composed of novel shift graph operations and lightweight

point-wise convolutions, where the shift graph operations

provide flexible receptive fields for both spatial graph and

temporal graph. On three datasets for skeleton-based ac-

tion recognition, the proposed Shift-GCN notably exceeds

the state-of-the-art methods with more than 10× less com-

putational complexity.

1. Introduction

In the computer vision field, skeleton-based human ac-

tion recognition has attracted much attention due to its ro-

bustness against the dynamic circumstance and complicated

background [2, 12, 14, 16, 20, 21, 23–25, 27, 30, 34, 36].

Earlier methods [2, 3, 27] simply employ the joint coor-

dinates to form feature vectors, which rarely explore the re-

lations between body joints. With the development of deep

learning, researchers manually structure the skeleton data

as a pseudo-image [5, 7, 10, 14] or a sequence of coordinate

vectors [2, 16, 19, 35, 36], which is fed into CNNs or RNNs
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Figure 1. GFLOPs v.s. accuracy on NTU RGB+D X-sub task.

to generate the prediction. Recently, Yan et al. [34] propose

ST-GCN to model the skeleton data with graph convolu-

tional networks (GCNs), which contains spatial graph con-

volution and temporal graph convolution. Many variants of

ST-GCN are proposed [9,12,20–22,31], which typically in-

troduce incremental modules to enhance the expressiveness

and network capacity.

However, there are two shortcomings of these GCN-

based methods. (1) The computational complexity is too

heavy. For example, ST-GCN [34] costs 16.2 GFLOPs1 for

one action sample. Some recent works even reach ∼100

GFLOPs [20] due to introducing incremental modules and

multi-stream fusion strategy. (2) The receptive fields of both

spatial graph and temporal graph are pre-defined heuristi-

cally. Although [20, 21] makes the spatial adjacent matrix

learnable, our experiments show that their expressiveness is

still limited by the regular spatial GCN structure.

In this paper, we propose shift graph convolutional net-

work (Shift-GCN) to address both shortcomings. Our Shift-

GCN is inspired by shift CNNs [4, 32, 37], which use a

lightweight shift operation as an alternative of 2D convolu-

tion and can adjust receptive fields by simply changing shift

distances. The proposed Shift-GCN consists of spatial shift

graph convolution and temporal shift graph convolution.

For spatial skeleton graph, instead of using three GCNs

with different adjacent matrices to obtain enough receptive

field [9,12,20–22,31], we propose a spatial shift graph oper-

ation to shift information from neighbor nodes to the current

1GFLOPs: Giga FLoating-number OPerations
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convolution node. By interleaving the spatial shift graph op-

erations with point-wise convolutions, information is mixed

across spatial dimension and channel dimension. Specifi-

cally, we propose two kinds of spatial shift graph operation:

local shift graph operation and non-local shift graph oper-

ation. For local shift graph operation, the receptive field

is specified with the body physical structure. In this case,

different nodes have a different number of neighbors, so the

local shift graph operation is designed for each node respec-

tively. However, local shift graph operation has two short-

comings: (1) The receptive field is heuristically pre-defined

and localized, which is not suitable for modeling the diverse

relations between skeletons. (2) Some information is aban-

doned directly due to the different shift operation for differ-

ent nodes. To solve both shortcomings, we propose a non-

local shift graph operation, which makes the receptive field

of each node cover the full skeleton graph and learns the

relations between the joints adaptively. Extensive ablation

studies demonstrate that our non-local shift graph convolu-

tion outperforms the regular spatial graph convolution, even

if the adjacent matrices of regular spatial graph convolution

are learnable [20, 21].

For temporal skeleton graph, the graph is constructed

by connecting consecutive frames on the temporal dimen-

sion. Instead of using a regular 1D temporal convolu-

tion [9, 12, 20, 21, 34], we propose two kinds of temporal

shift graph operations: naive temporal shift graph oper-

ation and adaptive temporal shift graph operation. The

receptive field of naive temporal shift graph operation is

set manually, which is not optimal for temporal modeling:

(1) Different layers may need diverse temporal receptive

fields [11, 33, 38]. (2) Different datasets may need differ-

ent temporal receptive fields [11]. These two problems also

exist in regular 1D temporal convolution, whose kernel size

is set manually. Our adaptive temporal shift graph opera-

tion addresses both problems by adjusting the receptive field

adaptively. Extensive ablation studies demonstrate that our

adaptive temporal shift graph convolution outperforms the

regular temporal convolution with high efficiency.

To verify the superiority of our proposed model, namely,

the spatiotemporal shift graph convolutional network (Shift-

GCN), extensive experiments are performed on three

datasets: NTU RGB+D [19], NTU-120 RGB+D [15] and

Northwestern-UCLA [29]. We notably exceed the state-of-

the-art methods on all three datasets with more than 10×
less computational cost. The GFLOPs v.s. accuracy dia-

gram of NTU RGB+D is shown in Fig.1.

Our contributions can be summarized as follows: (1) We

propose two kinds of spatial shift graph operations for spa-

tial skeleton graph modeling. Our non-local spatial shift

graph operation is computationally efficient and achieves

strong performance. (2) We propose two kinds of temporal

shift graph operations for temporal skeleton graph model-

ing. Our adaptive temporal shift graph operation can ad-

just the receptive field adaptively and outperforms regular

temporal model with much less computational complexity.

(3) On three datasets for skeleton-based action recognition,

the proposed Shift-GCN exceeds the state-of-the-art meth-

ods with more than 10× less computational cost. Code will

be available at https://github.com/kchengiva/

Shift-GCN.

2. Preliminaries

In this section, we provide a brief overview of the previ-

ous GCN-based skeleton action recognition models and the

shift module in CNNs.

2.1. GCN­based skeleton action recognition

Graph convolutional networks (GCNs) have been suc-

cessfully adopted to model skeleton data [9, 12, 20–22, 31,

34]. In these methods, the skeleton data is represented as

a spatiotemporal graph G = (V,E) with N joints and T

frames. The skeleton coordinates of a human action can be

represented as X ∈ R
N×T×d, where d is the dimension of

joint coordinates. GCN-based models contains two parts:

spatial graph convolution and temporal graph convolution.

For spatial graph convolution, the neighbor set of joints

is defined as an adjacent matrix A ∈ {0, 1}N×N . To spec-

ify the spatial location of graph convolution, the adjacent

matrix is typically partitioned into 3 partitions: 1) the cen-

tripetal group, which contains neighboring nodes that are

closer to the skeleton center; 2) the node itself; 3) otherwise

the centrifugal group. For a single frame, let F ∈ R
N×C

and F
′ ∈ R

N×C′

denote the input and output feature re-

spectively, where C and C ′ are the input and output feature

dimension. The graph convolution is computed as:

F
′ =

∑

p∈P

ĀpFWp, (1)

where P ={root, centripetal, centrifugal} denotes the spatial

partitions, Āp = Λ
− 1

2

p ApΛ
− 1

2

p ∈ R
N×N is the normalized

adjacent matrix and Λ
ii
p =

∑
j(A

ij
p ) + α. α is set to 0.001

to avoid empty rows. Wp ∈ R
1×1×C×C′

is the weight of

the 1× 1 convolution for each partition group.

For temporal dimension, since the temporal graph is

constructed by connecting consecutive frames, most GCN-

based models [9, 20, 21, 31, 34] use regular 1D convolution

on the temporal dimension as the temporal graph convolu-

tion. The kernel size is denoted as kt, typically set to 9.

However, there are two disadvantages to these GCN-

based models: (1) The computational cost is too heavy. For

example, ST-GCN [34] costs 16.2 GFLOPs for one action

sample, including 4.0 GFLOPs on spatial graph convolution

and 12.2 GFLOPs on temporal graph convolution. Some re-

cent variants of ST-GCN are even heavy to ∼100 GFLOPs
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Figure 2. The diagram of regular convolution (a), shift convolution in CNNs (b), and the regular convolution in spatial GCNs (c). Our

spatial shift graph convolution is illustrated as (d).

[20]. (2) The receptive field of both spatial graph and tem-

poral graph are pre-defined. Although some works [20, 21]

make the adjacent matrix learnable, our experiments show

that its expressiveness is still limited by the regular GCN

structure.

2.2. Shift CNNs

Let F ∈ R
DF×DF×C denote the input feature, where

DF is the feature map size and C is the channel size. As

shown in Fig.2 (a), regular convolution kernel is a tensor

K ∈ R
DK×DK×C×C′

, where DK is the kernel size. The

FLOPs of regular convolution is D2
K ×D2

F × C × C ′.

Shift convolution [32] is an efficient alternative to reg-

ular convolution in CNNs. As shown in Fig.2 (b), shift

convolution is composed of two operations: (1) shift differ-

ent channels in different directions; (2) apply a point-wise

convolution to exchange information across channels. The

FLOPs of shift convolution is D2
F × C × C ′.

Another advantage of shift convolution is the flexibil-

ity of receptive field. The shift convolution can enlarge its

receptive field by simply increasing the distance of shift,

instead of using larger convolution kernels and increasing

computation cost. Let shift value of each channel be de-

noted as a series of vectors Si, i = 1, 2, · · · , C, where

Si = (xi, yi) denotes the 2D shift vector. The receptive

field of shift convolution can be represented as a union set

of each shift vectors in the opposite direction:

R = {−S1} ∪ {−S2} ∪ · · · ∪ {−SC} (2)

For example, if xi ∈ {−1, 0, 1}, yi ∈ {−1, 0, 1}, the

receptive field is enlarged to 3× 3.

3. Shift graph convolutional network

With the above discussion, it motivates us to introduce

the lightweight shift operation to the heavy GCN-based ac-

tion recognition models. In this section, we propose shift

graph convolutional network, which contains spatial shift

graph convolution and temporal shift graph convolution.

3.1. Spatial shift graph convolution

Introducing the shift operation from CNNs to GCNs is

challenging, because graph features are not well-ordered

like image feature maps. In this subsection, we first discuss

the analogy from CNNs to spatial GCNs. Based on these

analyses, we propose the spatial shift graph convolution for

spatial skeleton graphs.

The analogy from CNNs to GCNs

A regular convolution kernel in CNNs can be regarded as

a fusion of several point-wise convolution kernels, where

each kernel operates on a specified location, as shown in

Fig.2 (a) in different colors. For example, a 3× 3 convolu-

tion kernel is a fusion of 9 point-wise convolution kernels,

where each point-wise convolution kernel operates on “top-

left”, “top” , “top-right”, ... , “bottom-right” respectively.

Similarly, a regular convolution kernel in spatial GCNs

is a fusion of 3 point-wise convolution kernels, and each

kernel operates on a specified spatial partition, as shown

in Fig.2 (c) in different colors. As introduced in Sec.2.1,

the spatial partitions are specified by 3 different adjacent

matrices, which denote “centripetal”, “root”, “centrifugal”

respectively.

A shift convolution in CNNs contains a shift operation

and a point-wise convolution kernel, where the receptive
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field is specified by the shift operation, as shown in Fig.2

(b).

Therefore, a shift graph convolution should contain a

shift graph operation and a point-wise convolution, as

shown in Fig.2 (d). The main idea of the shift graph opera-

tion is shifting the features of the neighbor nodes to the cur-

rent convolution node. Concretely, we propose two kinds of

shift graph convolution: local shift graph convolution and

non-local shift graph convolution.

Local shift graph convolution

For local shift graph convolution, the receptive field is spec-

ified with the physical structure of the human body, which

is pre-defined by skeleton datasets. In this setting, the shift

graph operation is conducted between neighbor nodes of the

body physical graph.

Because the connection between body joints are not

well-ordered like CNN features, different nodes have dif-

ferent number of neighbors. Let v denote a node and

Bv = {B1
v , B

2
v , · · · , B

n
v } denote the set of its neighbor

nodes, where n denotes the number of neighbor nodes of

v. We equally divide the channels of node v into n + 1
partitions. We let the 1st partition retain the feature of v.

The other n partitions are shifted from the B1
v , B

2
v , · · · , B

n
v

respectively. Let F ∈ R
N×C denote the feature for a sin-

gle frame and F̃ ∈ R
N×C denote the corresponding shifted

feature. We operate the shift operation on each node of F.

F̃v = F(v,:c)‖F(B1
v
,c:2c)‖F(B2

v
,2c:3c)‖ · · · ‖F(Bn

v
,nc:) (3)

where c = ⌊ C
n+1⌋, the indexes of F are in Python notation,

and ‖ represents channel-wise concatenation.

To illustrate the intuition of local shift graph operation,

we use a tiny graph feature of 7 nodes and 20 channels as

an instance, shown in Fig.3 (a). We use node 1 and node

2 as two examples. For node 1, it only has one neighbor

node, so its channels are divided into two partitions. The

first partition retains the feature of node 1, while the second

partition is shifted from node 2. For another example, node

2 has three neighbor nodes, so its channels are divided into

four partitions. The first partition retains the feature of node

2, while the other three partitions are shifted from node 1,

node 3, node 4.

The feature after shift operation is illustrated in Fig.3 (a).

In the shifted feature, every node obtains the information

from its receptive field. By combining the local shift graph

operation with a point-wise convolution, we get local shift

graph convolution.

Non-local shift graph convolution

Local shift graph convolution has two shortcomings: (1)

Some information is not utilized. For the example in Fig.3

Figure 3. The process of spatial shift graph operation.

(a), the last quarter of channels in node 3 are abandoned di-

rectly during the shift operation. This is because different

nodes have different numbers of neighbors. (2) Recent re-

searches show that only considering local connections is not

optimal for skeleton action recognition [12, 20, 21, 31]. For

example, the relationship between two hands is important

for recognizing actions such as “clapping” and “reading”,

but the two hands are far away from each other in the body

structure.

We propose a simple solution to solve both shortcom-

ings: making the receptive field of each node covers the full

skeleton graph. We call it non-local shift graph operation.

Non-local shift graph operation is illustrated in Fig.3 (b).

Given a spatial skeleton feature map F ∈ R
N×C , the shift

distance of ith channel is i mod N . The shifted-out chan-

nels are used to fill the corresponding empty spaces. The

shift operation of node 1 and node 2 are shown as exam-

ples. After the non-local shift, the feature looks like a spi-

ral, which makes every node obtains the information from

all other nodes, as shown in Fig.3 (b). By combining the

non-local shift graph operation with a point-wise convolu-

tion, we get non-local shift graph convolution.

In the non-local shift graph convolution, the connection

strength between different nodes is the same. But the im-

portance of human skeletons is different. Hence, we in-

troduce an adaptive non-local shift mechanism. We com-

pute element-wise product between the shifted feature and

a learnable mask:

F̃M = F̃ ◦Mask = F̃ ◦ (tanh(M) + 1) (4)

The FLOPs of regular spatial graph convolution is 3 ×
(NCC ′ + N2C ′). The FLOPs of shift spatial graph con-

volution is about NCC ′, which is more than three times

lighter. Compared to regular graph convolution which only

uses three adjacent matrices to model skeleton relations, our
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non-local shift operation can model various relations across

different skeletons in different channels. Experiments in

Sec.4.2.1 show that our non-local shift GCN achieves better

performance than regular GCNs, even if the adjacent matri-

ces in regular GCNs are set to be learnable [21].

3.2. Temporal shift graph convolution

After formulating a lightweight spatial shift graph con-

volution for modeling each skeleton frame, we now design

a lightweight temporal shift graph convolution to model the

skeleton sequence.

Naive temporal shift graph convolution

The temporal aspect of the graph is constructed by connect-

ing consecutive frames on the temporal dimension. There-

fore, the shift operation in CNNs can be extended to the

temporal domain directly [13]. We equally divide the chan-

nels into 2u + 1 partitions, and each partition has a tem-

poral shift distance of −u,−u+ 1, · · · , 0, · · · , u− 1, u re-

spectively. The shifted-out channels are truncated, and the

empty channels are padded with zeros. After the shift op-

eration, each frame obtains information from its neighbor

frames. By combining this temporal shift operation with

a temporal point-wise convolution, we get naive temporal

shift graph convolution.

Typically, the kernel size of regular temporal convolution

in GCN-based action recognition is 9 [9, 20, 21, 34]. Com-

pared to regular temporal convolution, naive temporal shift

graph convolution costs 9× less computational cost.

Adaptive temporal shift graph convolution

Although naive temporal shift graph convolution is

lightweight, the setting of its hyper parameter u is man-

ual. This causes two drawbacks: (1) Recent researches

[11,33,38] show that different layers need diverse temporal

receptive fields in video classification tasks. The exhaustive

search over all possible combinations of u is intractable.

(2) Different datasets may need different temporal recep-

tive fields [11], which limits the generalization ability of

naive temporal shift graph convolution. These two draw-

backs also exist in regular temporal convolutions, whose

kernel size is set manually.

We propose an adaptive temporal shift graph convolution

to solve both drawbacks. Given a skeleton sequence feature

F ∈ R
N×T×C , every channel has a learnable temporal shift

parameter Si, i = 1, 2, · · · , C. We relax the temporal shift

parameter from integer constraint to real numbers. The non-

integer shift can be computed by linear interpolation:

F̃(v,t,i) = (1− λ) ·F(v,⌊t+Si⌋,i) + λ ·F(v,⌊t+Si⌋+1,i) (5)

where λ = Si − ⌊Si⌋. This operation is differentiable and

can be trained through backpropagation. By combining this

operation with a point-wise convolution, we get adaptive

temporal shift convolution. The adaptive temporal shift op-

eration is lightweight, with C extra parameter and 2NCT

extra FLOPs. Compared with point-wise convolution, this

computational cost is ignorable. The effectiveness and ef-

ficiency of adaptive temporal shift graph convolution are

demonstrated in Sec.4.2.2.

3.3. Spatiotemporal shift GCN

To have an head-to-head comparison with the state-of-

the-art methods [9,12,20,21,31,34], we use the same back-

bone (ST-GCN [34]) to construct our spatiotemporal shift

GCN. The ST-GCN backbone is composed of one input

block and 9 residual blocks, where each block contains a

regular spatial convolution and a regular temporal convolu-

tion. We replace the regular spatial convolution with our

spatial shift operation and a spatial point-wise convolution.

We replace the regular temporal convolution with our tem-

poral shift operation and a temporal point-wise convolution.

There are two modes of combining the shift operation

with point-wise convolution: Shift-Conv and Shift-Conv-

Shift, as shown in Fig.4. The Shift-Conv-Shift mode has

a larger receptive field and typically achieves better perfor-

mance. We verify this phenomenon in the ablation study.

Figure 4. Two modes of combining the shift operation and point-

wise convolution.

4. Experiments

In this section, we first perform exhaustive ablation stud-

ies to verify the effectiveness and efficiency of our proposed

spatial shift graph operation and temporal shift graph opera-

tion. Then, we compare our spatiotemporal shift GCN with

the other state-of-the-art approaches on three datasets.

4.1. Datasets and Experiment Settings.

NTU RGB+D. NTU RGB+D [19], containing 56,880

skeleton action sequences, is the most widely used dataset

for evaluating skeleton-based action recognition models.

The action samples are performed by 40 volunteers and cat-

egorized into 60 classes. Each sample containing an ac-

tion and is guaranteed to have at most 2 subjects, which is

captured by three Microsoft Kinect v2 cameras from differ-

ent views concurrently. The author of this dataset recom-

mends two benchmarks: (1) cross-subject (X-sub) bench-
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mark: training data comes from 20 subjects, and testing data

comes from the other 20 subjects. (2) cross-view (X-view)

benchmark: training data comes from the camera views 2

and 3, and the testing data comes from the camera view 1.

NTU-120 RGB+D. NTU-120 RGB+D [15] is currently the

largest dataset with 3D joints annotations for human action

recognition. The dataset contains 114,480 action samples

in 120 action classes. Samples are captured by 106 volun-

teers with three cameras views. This dataset contains 32

setups, and each setup denotes a specific location and back-

ground. The author of this dataset recommends two bench-

marks: (1) cross-subject (X-sub) benchmark: the 106 sub-

jects are split into training and testing groups. Each group

contains 53 subjects. (2) cross-setup (X-setup) benchmark:

training data comes from samples with even setup IDs, and

testing data comes from samples with odd setup IDs.

Northwestern-UCLA. Northwestern-UCLA dataset [29]

is captured by three Kinect cameras. It contains 1494 video

clips covering 10 categories. Each action is performed by

10 actors. We adopt the same evaluation protocol in [29]:

we use the samples from the first two cameras as training

data and the samples from the other camera as testing data.

Experiment Settings. We use SGD with Nesterov momen-

tum (0.9) to train the model for 140 epochs. Learning rate

is set to 0.1 and divided by 10 at epoch 60, 80 and 100.

For adaptive temporal shift operation, the shift parameters

are initialized with uniform distribution between -1 and 1.

For NTU RGB+D and NTU-120 RGB+D, the batch size

is 64, and we adopt the data pre-processing in [21]. For

Northwestern-UCLA, the batch size is 16, and we adopt the

data pre-processing in [22]. All experiments in the ablation

study use the above setting, including both our proposed

method and regular GCN method.

4.2. Ablation Study

4.2.1 Spatial shift graph convolution

In this subsection, we first show that spatial shift graph

operation can significantly improve the performance of a

point-wise convolution baseline. Then we demonstrate that

spatial shift graph convolution outperforms regular spatial

GCNs with more than 3× less computational cost.

Improving spatial point-wise baseline. To verify that

spatial shift graph operation can effectively enlarge the re-

ceptive field, we build a lightweight spatial point-wise base-

line by replacing the regular spatial convolution in ST-GCN

with a simple point-wise convolution. The only difference

between our spatial shift GCN and this point-wise baseline

is inserting the spatial shift operation. As shown in Table 1,

with our shift graph operation, the spatial point-wise base-

line can be significantly improved. Specifically, our non-

local shift operation can improve the baseline at 3.6% on

NTU RGB+D X-view task.

Model Shift mode Top 1

Spatial point-wise - 90.9

Local shift
Shift+Conv 93.5

Shift+Conv+Shift 93.9

Non-local shift

Shift+Conv 94.0

Shift+Conv+Shift 94.2

Shift+Mask+Conv+Shift 94.5
Table 1. Comparisons between the spatial point-wise convolution

and our spatial shift graph convolution.

The variants of spatial shift graph convolution. As

shown in Table 1, non-local shift graph operation is more

effective than local shift graph operation. This phenomenon

indicates that non-local receptive field is important for

skeleton-based action recognition. For both local shift and

non-local shift model, the Shift-Conv-Shift mode is better

than the Shift-Conv mode. This is because the Shift-Conv-

Shift mode has a larger receptive field. The performance

is further improved by introducing a learnable mask on the

shifted feature.

Comparisons to regular spatial GCNs. In Table 2, we

compare our spatial shift GCN with three regular spatial

GCNs on both effectiveness and efficiency: a) ST-GCN

[34], where the adjacent matrices are fixed as a pre-defined

human graph, b) Adaptive GCN [21], where the adjacent

matrices are learnable, c) Adaptive-Nonlocal GCN [21],

where the adjacent matrices are predicted by a non-local

attention module. All models in Table 2 use the same tem-

poral model, so that we can focus on evaluating the effec-

tiveness and efficiency of different spatial models.

Model Spatial FLOPs (G) Top 1

ST-GCN [34] 4.0 93.4

Adaptive GCN [21] 4.0 93.9

Adaptive-NL GCN [21] 5.7 94.2

ST-GCN (one A) 1.3 92.1

Adaptive GCN (one A) 1.3 92.9

Local shift GCN 1.1 93.9

Non-local shift GCN 1.1 94.5
Table 2. Comparisons between regular spatial GCNs and our spa-

tial shift graph GCN.

As shown in Table 2, our local shift GCN outperforms

ST-GCN [34]; our non-local shift GCN outperforms all

three regular GCNs. More importantly, our shift graph con-

volution is much more efficient than regular GCNs. Com-

pared with ST-GCN [34] and adaptive GCN [21], our shift

GCN is 3.6× lighter. Compared with adaptive-nonlocal

GCN [21] which introduces a non-local attention module,

our shift GCN is 5.2× lighter. In Table 2, we also build

a lightweight version of regular GCN using only one adja-

cent matrix, suffixed with “one A”, which gets obvious in-

ferior performance. This phenomenon indicates that regular
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spatial GCNs need multiple adjacent matrices to model the

diverse relations between skeletons, leading to high com-

putational cost. Our non-local shift convolution can model

the diverse relations across different skeletons and different

channels with a lightweight point-wise convolution, which

is more effective and efficient.

4.2.2 Temporal shift graph convolution

In this subsection, we fix the spatial model as the regular

spatial convolution of ST-GCN [34], and evaluate the effec-

tiveness and efficiency of different temporal models.

Model Shift mode Top 1

Temporal point-wise - 79.2

Regular conv(kt=3) - 93.4

Regular conv(kt=5) - 93.6

Regular conv(kt=7) - 93.7

Regular conv(kt=9) - 93.4

Regular conv(kt=11) - 93.4

Naive shift

Shift+Conv

u=1 93.2

u=2 93.2

u=3 93.4

u=4 93.4

Shift+Conv+Shift

u=1 93.0

u=2 93.0

u=3 93.6

u=4 93.3

Adaptive shift
Shift+Conv 94.0

Shift+Conv+Shift 94.2
Table 3. Comparisons between temporal point-wise convolution,

regular temporal convolution, naive temporal shift convolution and

adaptive temporal shift convolution. The computation cost of tem-

poral shift convolution is kt× less than regular temporal convolu-

tion, where kt is the kernel size of regular temporal convolution.

Improving temporal point-wise baseline. By replacing

the regular temporal convolution of ST-GCN [34] with a

temporal point-wise convolution, we build a temporal point-

wise baseline. The only difference between our temporal

shift graph convolution and this baseline is inserting our

temporal shift operation. As shown in Table 3, with our

temporal shift graph operation, the point-wise baseline can

be significantly improved. Specifically, our adaptive tem-

poral shift operation can improve the baseline at 15.0% on

NTU RGB+D X-view task.

The superiority of adaptive temporal shift. We com-

pare three different temporal models: a) the regular tempo-

ral convolution; b) naive temporal shift operation; c) adap-

tive temporal shift operation. The receptive field of regu-

lar temporal convolution and naive temporal shift operation

are set manually, while our adaptive temporal shift opera-

tion can adjust the receptive field adaptively. In Table 3, we

conduct an exhaustive search for the best receptive field of

regular temporal convolution and naive temporal shift op-

eration. Our adaptive temporal shift operation does not re-

quire the troublesome exhaustive search, and outperforms

the best results of the other two methods.

Visualizations of adaptive temporal shift.

We visualize the adaptive temporal shift parameters

trained on NTU RGB+D and Northwestern-UCLA respec-

tively. There are 10 temporal blocks in ST-GCN [34], and

each block is replaced with our Shift-Conv-Shift module, so

there are 20 adaptive temporal shift operations in a model.

We visualize the learned shift parameters from the bottom

layer (input layer) to the top layer (output layer). As shown

in Fig.5, the shift parameters of top layers tend to be larger

than that of bottom layers, which means the top layers need

larger temporal receptive fields while the bottom layers tend

to learn spatial relations. Note that in the video classifica-

tion field, an exhaustive search is conducted in [33] to find

which layer should use temporal convolution, and their con-

clusion is applying temporal convolutions on top layers is

more effective. Our adaptive temporal shift operation learns

the appropriate temporal receptive field for every layer with-

out heuristic design or manually exhaustive search.

Another superiority of adaptive temporal shift operation

is improving the model generalization on different datasets.

As shown in Fig.5, the shift parameters trained on NW-

UCLA dataset tend to be smaller than that of NTU RGB+D

dataset. This is reasonable because the average frame num-

ber of action samples in NTU RGB+D (71.4 frames) is

about twice larger than that of NW-UCLA (39.4 frames).

Figure 5. Visualization of adaptive temporal shift.

4.2.3 Spatiotemporal shift GCN

Both spatial shift graph convolution and temporal shift

graph convolution are more effective and efficient than reg-

ular graph convolution. We conduct spatiotemporal shift

graph convolution and further boost performance and effi-

ciency. As shown in Table 4, spatiotemporal shift GCN out-

performs ST-GCN [34] at 1.7% with 6.5× less computation

cost.
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Spatial model Temporal model FLOPs (G) Top 1

Regular S-GCN Regular T-GCN 16.2 93.4

Shift S-GCN Regular T-GCN 13.3 94.5

Regular S-GCN Shift T-GCN 5.4 94.2

Shift S-GCN Shift T-GCN 2.5 95.1
Table 4. The effectiveness and efficiency of spatiotemporal shift

graph convolution. The accuracy is on NTU RGB+D X-view task.

4.3. Comparison with the state­of­the­art

Many state-of-the-art methods utilize multi-stream fu-

sion strategies. To conduct a fair comparison, we adopt the

same multi-stream fusion strategy as [20], which utilizes 4

streams. The first stream uses the original skeleton coordi-

nates as input, called “joint stream”; the second stream uses

the differential of spatial coordinates as input, called “bone

stream”; the third and fourth stream use the differential on

temporal dimension as input, called “joint motion stream”

and “bone motion stream” respectively. The softmax scores

of multiple streams are added to obtain the fused score.

There are three settings of our spatiotemporal shift GCN

(Shift-GCN): 1-stream, which only uses the joint stream;

2-stream, which uses both joint stream and bone stream;

4-stream, which uses all 4 streams. To verify the superior-

ity and generality of our approach, the shift GCN is com-

pared with state-of-the-art methods on three datasets: NTU

RGB+D dataset [19], Northwestern-UCLA dataset [29],

and the recent proposed NTU-120 RGB+D dataset [15],

shown in Table 5, Table 6, and Table 7 respectively. We

show the computational complexity 2 of the methods that

achieve higher than 85% on NTU RGB+D X-sub task.

On NTU RGB+D, 1s-Shift-GCN achieves higher accu-

racy than 2s-AS-GCN [12] with 10.8× less computational

cost; 2s-Shift-GCN is comparable with the current state-

of-the-art method 4s-Directed-GNN [20] with 25.4× less

computational cost; 4s-Shift-GCN obviously exceeds all

state-of-the-art methods with 12.7× less computation than

4s-Directed-GNN [20]. On Northwestern-UCLA dataset,

our 2s-Shift-GCN outperforms the current state-of-the-art

2s-AGC-LSTM [22] at 0.9% with 33.0× less computation

complexity. On NTU-120 RGB+D dataset, we obviously

exceed all previously reported performance.

5. Conclusion

In this work, we propose a novel shift graph con-

volutional network (Shift-GCN) for skeleton-based action

recognition, which is composed of spatial shift graph con-

volution and temporal shift graph convolution. Our non-

local spatial shift graph convolution obviously outperforms

regular graph convolution with much less computation cost.

2The computational complexity was not explicitly discussed in some

papers; we estimate them based on their description. Details are provided

in supplement material.

Methods X-view X-sub FLOPs (G)

Lie Group [26] 52.8 50.1 -

HBRNN [2] 64.0 59.1 -

Deep-LSTM [19] 67.3 60.7 -

VA-LSTM [35] 87.7 79.2 -

TCN [7] 83.1 74.3 -

Synthesized CNN [18] 87.2 80.0 -

3scale ResNet 152 [10] 90.9 84.6 -

ST-GCN [34] 88.3 81.5 -

Motif+VTDB [31] 90.2 84.2 -

2s AS-GCN [12] 94.2 86.8 27.0

2s Adaptive GCN [21] 95.1 88.5 35.8

2s AGC-LSTM [22] 95.0 89.2 54.4

4s Directed-GNN [20] 96.1 89.9 126.8

1s Shift-GCN (ours) 95.1 87.8 2.5

2s Shift-GCN (ours) 96.0 89.7 5.0

4s Shift-GCN (ours) 96.5 90.7 10.0
Table 5. Comparisions of the Top-1 accuracy (%) with the state-

of-the-art methods on the NTU RGB+D dataset.

Methods Top-1 FLOPs (G)

Lie Group [26] 74.2 -

Actionlet ensemble [28] 76.0 -

HBRNN-L [2] 78.5 -

Ensemble TS-LSTM [8] 89.2 -

2s AGC-LSTM [22] 93.3 10.9

1s Shift-GCN (ours) 92.5 0.2

2s Shift-GCN (ours) 94.2 0.3

4s Shift-GCN (ours) 94.6 0.7
Table 6. Comparisions of the accuracy (%) with the state-of-the-art

methods on the Northwesten-UCLA dataset.

Methods X-sub X-setup FLOPs (G)

Part-Aware LSTM [19] 25.5 26.3 -

ST-LSTM [16] 55.7 57.9 -

Multi CNN + RotClips [6] 62.2 61.8 -

SkeMotion [17] 67.7 66.9 -

TSRJI [1] 67.9 62.8 -

1s Shift-GCN (ours) 80.9 83.2 2.5

2s Shift-GCN (ours) 85.3 86.6 5.0

4s Shift-GCN (ours) 85.9 87.6 10.0
Table 7. Comparisions of the Top-1 accuracy (%) with the state-

of-the-art methods on the NTU-120 RGB+D dataset.

Our adaptive temporal shift graph convolution can adjust

the receptive field adaptively and enjoy high efficiency. On

three datasets for skeleton-based action recognition, the

proposed Shift-GCN notably exceeds the current state-of-

the-art methods with more than 10× less computation cost.
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