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Abstract

The success of deep learning in visual recognition tasks

has driven advancements in multiple fields of research. Par-

ticularly, increasing attention has been drawn towards its

application in agriculture. Nevertheless, while visual pat-

tern recognition on farmlands carries enormous economic

values, little progress has been made to merge computer

vision and crop sciences due to the lack of suitable agricul-

tural image datasets. Meanwhile, problems in agriculture

also pose new challenges in computer vision. For example,

semantic segmentation of aerial farmland images requires

inference over extremely large-size images with extreme an-

notation sparsity. These challenges are not present in most

of the common object datasets, and we show that they are

more challenging than many other aerial image datasets.

To encourage research in computer vision for agriculture,

we present Agriculture-Vision: a large-scale aerial farm-

land image dataset for semantic segmentation of agricul-

tural patterns. We collected 94, 986 high-quality aerial im-

ages from 3, 432 farmlands across the US, where each im-

age consists of RGB and Near-infrared (NIR) channels with

resolution as high as 10 cm per pixel. We annotate nine

types of field anomaly patterns that are most important to

farmers. As a pilot study of aerial agricultural semantic

segmentation, we perform comprehensive experiments us-

ing popular semantic segmentation models; we also pro-

pose an effective model designed for aerial agricultural

pattern recognition. Our experiments demonstrate several

challenges Agriculture-Vision poses to both the computer

vision and agriculture communities. Future versions of this

dataset will include even more aerial images, anomaly pat-

terns and image channels.

∗ indicates joint first author. For more information on our database and

other related efforts in Agriculture-Vision, please visit our CVPR 2020

workshop and challenge website https://www.agriculture-vision.com.

1. Introduction

Since the introduction of ImageNet [14], a large-scale

image classification dataset, research in computer vision

and pattern recognition using deep neural nets has seen

unprecedented development [31, 23, 49, 48, 25]. Deep

neural networks based algorithms have proven to be effec-

tive across multiple domains such as medicine and astron-

omy [34, 2, 59], across multiple datasets [20, 51, 17], across

different computer vision tasks [58, 28, 56, 9, 11, 10, 47, 43,

59] and across different numerical precision and hardware

architectures [57, 61]. However, progress of visual pattern

recognition in agriculture, one of the fundamental aspects

of the human race, has been relatively slow [29]. This is

partially due to the lack of relevant datasets that encourage

the study of agricultural imagery and visual patterns, which

poses many distinctive characteristics.

A major direction of visual recognition in agriculture is

aerial image semantic segmentation. Solving this problem

is important because it has tremendous economic potential.

Specifically, efficient algorithms for detecting field condi-

tions enable timely actions to prevent major losses or to in-

crease potential yield throughout the growing season. How-

ever, this is much more challenging compared to typical se-

mantic segmentation tasks on other aerial image datasets.

For example, to segment weed patterns in aerial farmland

images, the algorithm must be able to identify sparse weed

clusters of vastly different shapes and coverages. In ad-

dition, some of these aerial images have sizes exceeding

20000 × 30000 pixels, these images pose a huge problem

for end-to-end segmentation in terms of computation power

and memory consumption. Agricultural data are also in-

herently multi-modal, where information such as field tem-

perature and near-infrared signal are essential for determin-

ing field conditions. These properties deviate from those

of conventional semantic segmentation tasks, thus reducing

their applicability to this area of research.
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Dataset # Images # Classes # Labels Tasks
Image Size

(pixels)
# Pixels Channels

Resolution

(GSD)

Aerial images

Inria Aerial Image [38] 180 2 180 seg. 5000× 5000 4.5B RGB 30 cm/px

DOTA [54] 2,806 14 188,282 det. ≤ 4000× 4000 44.9B RGB various

iSAID [52] 2,806 15 655,451 seg. ≤ 4000× 4000 44.9B RGB various

AID [55] 10,000 30 10,000 cls. 600× 600 3.6B RGB 50-800 cm/px

DeepGlobe Building [13] 24,586 2 302,701 det. / seg. 650× 650 10.4B 9 bands 31-124 cm/px

EuroSAT [24] 27,000 10 27,000 cls. 256× 256 1.77B 13 Bands 30 cm/px

SAT-4 [3] 500,000 4 500,000 cls. 28× 28 0.39B RGB, NIR 600 cm/px

SAT-6 [3] 405,000 6 405,000 cls. 28× 28 0.32B RGB, NIR 600 cm/px

Agricultural images

Crop/Weed discrimination [22] 60 2 494 seg. 1296× 966 0.08B RGB N/A

Sensefly Crop Field [1] 5,260 N/A N/A N/A N/A N/A NRG, Red edge 12.13 cm/px

DeepWeeds [42] 17,509 1† 17,509 cls. 1920× 1200 40.3B RGB N/A

Agriculture-Vision (ours) 94,986 9 169,086 seg. 512× 512 22.6B RGB, NIR 10/15/20 cm/px

† DeepWeeds has only weed annotations at image-level, but there are 8 sub-categories of weeds.

Table 1: This table shows the statistics from other datasets. All datasets are compared on number of images, categories,

annotations, image size, pixel numbers and color channels. If it is an aerial image dataset, we also provide the ground sample

resolution (GSD). “cls.”, “det.” and “seg.” stand for classification, detection and segmentation respectively.

To encourage research on this challenging task, we

present Agriculture-Vision, a large-scale and high-quality

dataset of aerial farmland images for advancing studies of

agricultural semantic segmentation. We collected images

throughout the growing seasons at numerous farming loca-

tions in the US, where several important field patterns were

annotated by agronomy experts.

Agriculture-Vision differs significantly from other image

datasets in the following aspects: (1) unprecedented aerial

image resolutions up to 10 cm per pixel (cm/px); (2) mul-

tiple aligned image channels beyond RGB; (3) challenging

annotations of multiple agricultural anomaly patterns; (4)

precise annotations from professional agronomists with a

strict quality assurance process; and (5) large size and shape

variations of annotations. These features make Agriculture-

Vision a unique image dataset that poses new challenges for

semantic segmentation in aerial agricultural images.

Our main contributions are summarized as follows:

• We introduce a large-scale and high quality aerial agri-

cultural image database for advancing research in agri-

cultural pattern analysis and semantic segmentation.

• We perform a pilot study with extensive experiments

on the proposed database and provide a baseline for

semantic segmentation using deep learning approaches

to encourage further research.

2. Related Work

Most segmentation datasets primarily focus on common

objects or street views. For example, Pascal VOC [16],

MS-COCO [36] and ADE20K [64] segmentation datasets

respectively consist of 20, 91 and 150 daily object cat-

egories such as airplane, person, computer, etc. The

Cityscapes dataset [12], where dense annotations of street

scenes are available, opened up research directions in street-

view scene parsing and encouraged more research efforts in

this area.

Aerial image visual recognition has also gained increas-

ing attention. Unlike daily scenes, aerial images are often

significantly larger in image sizes. For example, the DOTA

dataset [54] contains images with sizes up to 4000 × 4000
pixels, which are significantly larger than those in common

object datasets at around 500 × 500 pixels. Yet, aerial im-

ages are often of much lower resolutions. Precisely, the

CVPR DeepGlobe2018 Building Extraction Challenge [13]

uses aerial images at a resolution of 31 cm/px or lower. As a

result, finer object details such as shape and texture are lost

and have to be omitted in later studies.

Table 1 summarizes the statistics of the most related

datasets, including those of aerial images and agricultural

images. As can be seen from the table, there has been

an apparent lack of large-scale aerial agricultural image

databases, which, in some sense, hinders agricultural vi-

sual recognition research from rapid growth as evidenced

for common images [41].

Meanwhile, many agricultural studies have proposed so-

lutions to extract meaningful information through images.

These papers cover numerous subtopics, such as spectral

analysis on land and crops [63, 35, 27, 30], aerial device

photogrammetry [21, 32], color indices and low-level image

feature analysis [50, 44, 18, 53, 15], as well as integrated

image processing systems [32, 33]. One popular approach

in analyzing agricultural images is to use geo-color in-

dices such as the Normalized-Difference-Vegetation-Index

(NDVI) and Excess-Green-Index (ExG). These indices have

high correlation with land information such as water [60]

and plantations [39]. Besides, recent papers in computer

vision have been eminently motivated by deep convolu-
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tional neural networks (DCNN) [31]. DCNN is also in

the spotlight in agricultural vision problems such as land

cover classification [37] and weed detection [40]. In a sim-

ilar work [37], Lu et. al. collected aerial images using an

EOS 5D camera at 650m and 500m above ground in Pen-

zhou and Guanghan County, Sichuan, China. They labeled

cultivated land vs. background using a three-layer CNN

model. In another recent work [45], Rebetez et. al. utilized

an experimental farmland dataset conducted by the Swiss

Confederation’s Agroscope research center and proposed a

DCNN-HistNN hybrid model to categorize plant species on

a pixel-level. Nevertheless, since their datasets are limited

in scale and their research models are outdated, both works

fail to fuse state-of-the-art deep learning approaches in agri-

cultural applications in the long run.

3. The Agriculture-Vision Dataset

Agriculture-Vision aims to be a publicly available

large-scale aerial agricultural image dataset that is high-

resolution, multi-band, and with multiple types of patterns

annotated by agronomy experts. In its current stage, we

have captured 3,432 farmland images with nine types of

annotations: double plant, drydown, endrow, nutrient de-

ficiency, planter skip, storm damage, water, waterway and

weed cluster. All of these patterns have substantial impacts

on field conditions and the final yield. These farmland im-

ages were captured between 2017 and 2019 across multiple

growing seasons in numerous farming locations in the US.

The proposed Agriculture-Vision dataset contains 94,986

images sampled from these farmlands. In this section, we

describe the details on how we construct the Agriculture-

Vision dataset, including image acquisition, preprocessing,

pattern annotation, and finally image sample generation.

3.1. Field Image Acquisition

Farmland images in the Agriculture-Vision dataset were

captured by specialized mounted cameras on aerial vehi-

cles flown over numerous fields in the US, which primar-

ily consist of corn and soybean fields around Illinois and

Iowa. All images in the current version of Agriculture-

Vision were collected from the growing seasons between

2017 and 2019. Each field image contains four color chan-

nels: Near-infrared (NIR), Red, Green and Blue.

Year Channel Resolution Description Camera

2017 N, R, G, B 15cm/px Narrow band 2×Canon SLR

2018
N, R, G 10cm/px Narrow band 2×Nikon D850

B 20cm/px Wide band 1×Nikon D800E

2019 N, R, G, B 10cm/px Narrow band WAMS

Table 2: Camera settings for capturing the 4-channel field

images: Near-infrared (N), Red (R), Green (G) and Blue

(B). The Blue channel images captured in 2018 are scaled

up to align with the NRG images.

The camera settings for capturing farmland images are

shown in Table 2. Farmland images in 2017 were taken

with two aligned Canon SLR cameras, where one captures

RGB images and the other captures only the NIR chan-

nel. For farmland images in 2018, the NIR, Red and Green

(NRG) channels were taken using two Nikon D850 cameras

to enable 10 cm/px resolution. Custom filters were used to

capture near-infrared instead of the blue channel. Mean-

while, the separate Blue channel images were captured us-

ing one Nikon D800E at 20 cm/px resolution, which were

then scaled up to align with the corresponding NRG im-

ages. Farmland images in 2019 were captured using a pro-

prietary Wide Area Multi-Spectral System (WAMS) com-

monly used for remote sensing. The WAMS captures all

four channels simultaneously at 10 cm/px resolution. Note

that compared to other aerial image datasets in Table 1, our

dataset contains images in resolutions higher than all others.

3.2. Farmland image preprocessing

Farmland images captured in 2017 were already stored

in regular pixel values between 0 and 255, while those cap-

tured in 2018 and 2019 were initially stored in camera raw

pixel format. Following the conventional method for nor-

malizing agricultural images, for each of the four channels

in one field image, we first compute the 5th and 95th per-

centile pixel values, then clip all pixel values in the image

by a lower bound and an upper bound:

Vlower = max(0, p5 − 0.4× (p95 − p5))

Vupper = min(255, p95 + 0.4× (p95 − p5))
(1)

where Vlower, Vupper stand for lower and upper bound of

pixel values respectively, p5 and p95 stand for the 5th and

95th percentile respectively.

Note that farmland images may contain invalid areas,

which were initially marked with a special pixel value.

Therefore, we exclude these invalid areas when computing

pixel percentiles for images in 2018 and 2019.

To intuitively visualize each field image and prepare for

later experiments, we separate the four channels into a regu-

lar RGB image and an additional single-channel NIR image,

and store them as two JPG images.

3.3. Annotations

All annotations in Agriculture-Vision were labeled by

five annotators trained by expert agronomists through a

commercial software. Annotated patterns were then re-

viewed by the agronomists, where unsatisfactory annota-

tions were improved. The software provides visualizations

of several image channels and vegetation indices, including

RGB, NIR and NDVI, where NDVI can be derived from the

Red and NIR channel by:

NDV I =
NIR−RED

NIR+RED
(2)
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Figure 1: Visualization of an aerial farmland image before sub-sampling. This image (including invalid areas, shown in

black) has a size of 10875 × 3303 pxiels and only contains drydown annotations at the rightmost region. Due to the large

image size and sparse annotation, training semantic segmentation models on entire images is impractical and inefficient.

3.4. Image sample generation

Unprocessed farmland images have extremely large im-

age sizes. For instance, Figure 1 shows one field image with

a size of 10875 × 3303 pixels. In fact, the largest field im-

age we collected is 33571×24351 pixels in size. This poses

significant challenges to deep network training in terms of

computation time and memory consumption. In addition,

Figure 1 also shows the sparsity of some annotations. This

means training a segmentation model on the entire image

for these patterns would be very inefficient, and would very

possibly yield suboptimal results.

On the other hand, unlike common objects, visual ap-

pearances of anomaly patterns in aerial farmland images are

preserved under image sub-sampling methods such as flip-

ping and cropping. This is because these patterns represent

regions of the anomalies instead of individual objects. As a

result, we can sample image patches from these large farm-

land images by cropping around annotated regions in the

image. This simultaneously improves data efficiency, since

the proportion of annotated pixels is increased.

Motivated by the above reasons, we construct the

Agriculture-Vision dataset by cropping annotations with a

window size of 512× 512 pixels. For field patterns smaller

than the window size, we simply crop the region centered

at the annotation. For field patterns larger than the window

size, we employ a non-overlapping sliding window tech-

nique to cover the entirety of the annotation. Note that we

discard images covered by more than 90% of annotations,

such that all images retain sufficient context information.

In many cases, multiple small annotations are located

near each other. Generating one image patch for every an-

notation would lead to severe re-sampling of those field re-

gions, which causes biases in the dataset. To alleviate the

issue, if two image patches have an Intersection-over-Union

of over 30%, we discard the one with fewer pixels annotated

as field patterns. When cropping large annotations using

a sliding window, we also discard any image patches with

only background pixels. A visualization of our sample gen-

eration method is illustrated in Figure 2, and some images in

the final Agriculture-Vision dataset are shown in Figure 3.

Figure 2: This figure illustrates our field image patch gener-

ation method for AgriVision. For annotations smaller than

512 × 512 pixels, we crop the image by a single window

around the annotation center (shown in red). For larger

annotations, we use multiple non-overlapping windows to

cover the entire annotation (shown in purple). Note that the

bottom two polygons are enclosed by just one window.

3.5. Dataset splitting

We first randomly split the 3,432 farmland images with

a 6/2/2 train/val/test ratio. We then assign each sampled

image to the split of the farmland image they are cropped

from. This guarantees that no cropped images from the

same farmland will appear in multiple splits in the final

dataset. The generated Agriculture-Vision dataset thus con-

tains 56,944/18,334/19,708 train/val/test images.
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(a) Double plant (b) Drydown (c) Endrow

(d) Nutrient deficiency (e) Planter skip (f) Storm damage (not evaluated)

(g) Water (h) Waterway (i) Weed cluster

Figure 3: For each annotation, top: RGB image; bottom: NRG image. Invalid regions have been blacked out. Note the

extreme size and shape variations of some annotations. Note that images in our dataset can contain mutiple patterns, the

visualizations above are chosen to best illustrate each pattern. Images best viewed with color and zoomed in.
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