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Abstract

Weakly-supervised object localization (WSOL) has

gained popularity over the last years for its promise to train

localization models with only image-level labels. Since the

seminal WSOL work of class activation mapping (CAM),

the field has focused on how to expand the attention re-

gions to cover objects more broadly and localize them bet-

ter. However, these strategies rely on full localization su-

pervision to validate hyperparameters and for model se-

lection, which is in principle prohibited under the WSOL

setup. In this paper, we argue that WSOL task is ill-posed

with only image-level labels, and propose a new evaluation

protocol where full supervision is limited to only a small

held-out set not overlapping with the test set. We observe

that, under our protocol, the five most recent WSOL meth-

ods have not made a major improvement over the CAM

baseline. Moreover, we report that existing WSOL methods

have not reached the few-shot learning baseline, where the

full-supervision at validation time is used for model train-

ing instead. Based on our findings, we discuss some future

directions for WSOL. Source code and dataset are available

at https://github.com/clovaai/wsolevaluation.

1. Introduction

As human labeling for every object is too costly and

weakly-supervised object localization (WSOL) requires

only image-level labels, the WSOL research has gained sig-

nificant momentum [58, 56, 57, 6, 25, 55] recently.

Among these, class activation mapping (CAM) [58] uses

the intermediate classifier activations focusing on the most

discriminative parts of the objects to localize the objects

of the target class. As the aim in object localization is to

cover the full extent of the object, focusing only on the most

discriminative parts of the objects is a limitation. WSOL
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Figure 1. WSOL 2016-2019. Recent improvements in WSOL

are illusory due to (1) different amount of implicit full supervision

through validation and (2) a fixed score-map threshold (usually

τ = 0.2) to generate object boxes. Under our evaluation protocol

with the same validation set sizes and oracle τ for each method,

CAM is still the best. In fact, our few-shot learning baseline,

i.e. using the validation supervision (10 samples/class) at training

time, outperforms existing WSOL methods. Results on ImageNet.

techniques since CAM have focused on this limitation and

have proposed different architectural [56, 57, 6] and data-

augmentation [25, 55] solutions. The reported state-of-the-

art WSOL performances have made a significant improve-

ment over the CAM baseline, from 49.4% to 62.3% [6]

and 43.6% to 48.7% [6] top-1 localization performances on

Caltech-UCSD Birds-200-2011 [52] and ImageNet [41], re-

spectively. However, these techniques have introduced a set

of hyperparameters for suppressing the discriminative cues

of CAM and different ways for selecting these hyperparam-

eters. One of such hyperparameters is the operating thresh-

old τ for generating object bounding boxes from the score

maps. Among others, the mixed policies for selecting τ has

contributed to the illusory improvement of WSOL perfor-

mances over the years; see Figure 1.

Due to the lack of a unified definition of the WSOL task,

we revisit the problem formulation of WSOL and show that

WSOL problem is ill-posed in general without any localiza-
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tion supervision. Towards a well-posed setup, we propose

a new WSOL setting where a small held-out set with full

supervision is available to the learners.

Our contributions are as follows. (1) Propose new ex-

perimental protocol that uses a fixed amount of full su-

pervision for hyperparameter search and carefully ana-

lyze six WSOL methods on three architectures and three

datasets. (2) Propose new evaluation metrics as well as

data, annotations, and benchmarks for the WSOL task at

https://github.com/clovaai/wsolevaluation. (3) Show that

WSOL has not progressed significantly since CAM, when

the calibration dependency and the different amounts of full

supervision are factored out. Moreover, searching hyperpa-

rameters on a held-out set consisting of 5 to 10 full localiza-

tion supervision per class often leads to significantly lower

performance compared to the few-shot learning (FSL) base-

lines that use the full supervision directly for model train-

ing. Finally, we suggest a shift of focus in future WSOL re-

search: consideration of learning paradigms utilizing both

weak and full supervisions, and other options for resolving

the ill-posedness of WSOL (e.g. background-class images).

2. Related Work

By model output. Given an input image, semantic segmen-

tation models generate pixel-wise class predictions [11, 31],

object detection models [11, 13] output a set of bound-

ing boxes with class predictions, and instance segmentation

models [27, 7, 18] predict a set of disjoint masks with class

and instance labels. Object localization [41], on the other

hand, assumes that the image contains an object of single

class and produces a binary mask or a bounding box around

that object coming from the class of interest.

By type of supervision. Since bounding box and mask la-

bels cost significantly more than image-level labels, e.g. cat-

egories [2], researchers have considered different types of

localization supervision: image-level labels [35], gaze [34],

points [2], scribbles [26], boxes [8], or a mixture of multiple

types [21]. Our work is concerned with the object localiza-

tion task with only image-level category labels [33, 58].

By amount of supervision. Learning from a small amount

of labeled samples per class is referred to as few-shot learn-

ing (FSL) [53]. We recognize the relationship between our

new WSOL setup and the FSL paradigm; we consider FSL

methods as baselines for future WSOL methods.

WSOL works. Class activation mapping (CAM) [58] turns

a fully-convolutional classifier into a score map predictor by

considering the activations before the global average pool-

ing layer. Vanilla CAM has been criticized for its focus on

the small discriminative part of the object. Researchers have

considered dropping regions in inputs at random [25, 55] to

diversify the cues used for recognition. Adversarial eras-

ing techniques [56, 6] drop the most discriminative part at
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Figure 2. WSOL as MIL. WSOL is interpreted as a patch clas-

sification task trained with multiple-instance learning (MIL). The

score map s(X) is thresholded at τ to estimate the mask T.

the current iteration. Self-produced guidance (SPG) [57] is

trained with auxiliary foreground-background masks gener-

ated by its own activations. Other than object classification

in static images, there exists work on localizing informative

video frames for action recognition [37, 28, 54], but they

are beyond the scope of our analysis.

Relation to explainability. WSOL methods share similari-

ties with the model explainability [17], specifically the input

attribution task: analyzing which pixels have led to the im-

age classification results [16]. There are largely two streams

of work on visual input attribution: variants of input gradi-

ents [50, 45, 42, 48, 43, 49, 24, 36] and counterfactual rea-

soning [39, 12, 59, 40, 15, 20]. While they can be viewed as

WSOL methods, we have not included them in our studies

because they are seldom evaluated in WSOL benchmarks.

Analyzing their possibility as WSOL methods is an inter-

esting future study.

Our scope. We study the WSOL task, rather than weakly-

supervised detection, segmentation, or instance segmenta-

tion. The terminologies tend to be mixed in the earlier

works of weakly-supervised learning [44, 14, 9, 47]. Ex-

tending our analysis to other weakly-supervised learning

tasks is valid and will be a good contribution to the respec-

tive communities.

3. Problem Formulation of WSOL

We define and formulate the weakly-supervised object

localization (WSOL) task as an image patch classification

and show the ill-posedness of the problem. We will discuss

possible modifications to resolve the ill-posedness in theory.

3.1. WSOL Task as Multiple Instance Learning

Given an image X ∈ R
H×W , object localization is

the task to identify whether or not the pixel belongs to

the object of interest, represented via dense binary mask

T = (T11, · · · , THW ) where Tij ∈ {0, 1} and (i, j) in-

dicate the pixel indices. When the training set consists of

precise image-mask pairs (X,T), we refer to the task as

fully-supervised object localization (FSOL). In this pa-

per, we consider the case when only an image-level label

Y ∈ {0, 1} for global presence of the object of interest is

provided per training image X. This task is referred to as

the weakly-supervised object localization (WSOL).

One can treat an input image X as a bag of stride-1

sliding window patches of suitable side lengths, h and w:
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Image X M p(Y|M) T

duck’s head 0.8 1

duck’s body 0.7 1

duck’s body 0.7 1

dirt 0.1 0

duck’s feet 0.3 1

water 0.4 0

Evaluation

TP

TP

TP

FP

FN

TN

threshold

    = 0.35τ

Figure 3. Ill-posed WSOL: An example. Even the true posterior

s(M) = p(Y |M) may not lead to the correct prediction of T

if background cues are more associated with the class than the

foreground cues (e.g. p(duck|water) > p(duck|feet)).

(X11, · · · , XHW ) with Xij ∈ R
h×w. The object localiza-

tion task is then the problem of predicting the object pres-

ence Tij at the image patch Xij . The weak supervision

imposes the requirement that each training image X, rep-

resented as (X11, · · · , XHW ), is only collectively labeled

with a single label Y ∈ {0, 1} indicating whether at least

one of the patches represents the object. This formulation is

an example of the multiple-instance learning (MIL) [22], as

observed by many traditional WSOL works [35, 44, 14, 47].

Following the patch classification point of view, we for-

mulate WSOL task as a mapping from patches X to the

binary labels T (indices dropped). We assume that the

patches X , image-level labels Y , and the pixel-wise la-

beling T in our data arise in an i.i.d. fashion from the

joint distribution p(X,Y, T ). See Figure 2 for an overview.

The aim of WSOL is to produce a scoring function s(X)
such that thresholding it at τ closely approximates binary

label T . Many existing approaches for WSOL, including

CAM [58], use the scoring rules based on the posterior

s(X) = p(Y |X). See Appendix §A.1 for the interpreta-

tion of CAM as pixel-wise posterior approximation.

3.2. When is WSOL ill­posed?

We show that if background cues are more strongly asso-

ciated with the target labels T than some foreground cues,

the localization task cannot be solved, even when we know

the exact posterior p(Y |X) for the image-level label Y . We

will make some strong assumptions in favor of the learner,

and then show that WSOL still cannot be perfectly solved.

We assume that there exists a finite set of cue labels M
containing all patch-level concepts in natural images. For

example, patches from a duck image are one of {duck’s

head, duck’s feet, sky, water, · · · } (see Figure 3). We fur-

ther assume that every patch X is equivalently represented

by its cue label M(X) ∈ M. Therefore, from now on, we

write M instead of X in equations and examine the associ-

ation arising in the joint distribution p(M,Y, T ). We write

M fg,M bg ∈ M for foreground and background cues.

We argue that, even with access to the joint distribution

p(Y,M), it may not be possible to make perfect predictions

for the patch-wise labels T (M) (proof in Appendix §A.2).

Lemma 3.1. Assume that the true posterior p(Y |M) with

a continuous pdf is used as the scoring rule s(M) =
p(Y |M). Then, there exists a scalar τ ∈ R such that

s(M) ≥ τ is identical to T if and only if the foreground-

background posterior ratio
p(Y=1|M fg)
p(Y=1|M bf)

≥ 1 almost surely,

conditionally on the event {T (M fg) = 1 and T (M bf) = 0}.

In other words, if the posterior likelihood for the image-

level label Y given a foreground cue M fg is less than the

posterior likelihood given background M bg for some fore-

ground and background cues, no WSOL method can make

a correct prediction. This pathological scenario is described

in Figure 3: Duck’s feet are less seen in duck images than

the water background. Such cases are abundant in user-

collected data (Appendix Figure 1).

This observation implies a data-centric solution towards

well-posed WSOL: we can augment (1) positive samples

(Y = 1) with more less-represented foreground cues (e.g.

duck images with feet) and (2) negative samples (Y = 0)

with more target-correlated background cues (e.g. non-duck

images with water background). Such data-centric ap-

proaches are promising future directions for WSOL.

How have WSOL methods addressed the ill-posedness?

Previous solutions to the WSOL problem have sought ar-

chitectural modifications [56, 57, 6] and data augmenta-

tion [25, 55] schemes that typically require heavy hyperpa-

rameter search and model selection, which are a form of im-

plicit localization supervision. For example, [25] has found

the operating threshold τ via “observing a few qualitative

results”, while others have evaluated their models over the

test set to select reasonable hyperparameter values (Table 1

of [25], Table 6 of [56], and Table 1 of [6]). [57] has per-

formed a “grid search” over possible values. We argue that

certain level of localization labels are inevitable for WSOL.

In the next section, we propose to allow a fixed number of

fully labeled samples for hyperparameter search and model

selection for a more realistic evaluation.

4. Evaluation Protocol for WSOL

We reformulate the WSOL evaluation based on our ob-

servation of the ill-posedness. We define performance met-

rics, benchmarks, and the hyperparameter search procedure.

4.1. Evaluation metrics

The aim of WSOL is to produce score maps, where their

pixel value sij is higher on foreground Tij = 1 and lower

on background Tij = 0 (§3.1). We discuss how to quantify

the above conditions and how prior evaluation metrics have

failed to clearly measure the relevant performance. We then

propose the MaxBoxAcc and PxAP metrics for bounding

box and mask ground truths, respectively.

The localization accuracy [41] metric entangles classifi-

cation and localization performances by counting the num-
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ber of images where both tasks are performed correctly.

We advocate the measurement of localization performance

alone, as the goal of WSOL is to localize objects (§3.1) and

not to classify images correctly. To this end, we only con-

sider the score maps sij corresponding to the ground-truth

classes in our analysis. Metrics based on such are com-

monly referred to as the GT-known metrics [25, 56, 57, 6].

A common practice in WSOL is to normalize the score

maps per image because the score statistics differ vastly

across images. Either max normalization (divide through

by maxij sij) or min-max normalization (additionally map

minij sij to zero) has been used; see Appendix §B.1 for the

full summary. We always use the min-max normalization.

After normalization, WSOL methods threshold the score

map at τ to generate a tight box around the binary mask

{(i, j) | sij ≥ τ}. WSOL metrics then measure the quality

of the boxes. τ is typically treated as a fixed value [58, 56,

55] or a hyperparameter to be tuned [25, 57, 6]. We argue

that the former is misleading because the ideal threshold τ

depends heavily on the data and model architecture and fix-

ing its value may be disadvantageous for certain methods.

To fix the issue, we propose new evaluation metrics that are

independent of the threshold τ .

Masks: PxAP. When masks are available for evaluation,
we measure the pixel-wise precision and recall [1]. Unlike
single-number measures like mask-wise IoU, those met-
rics allow users to choose the preferred operating threshold
τ that provides the best precision-recall trade-off for their
downstream applications. We define the pixel precision
and recall at threshold τ as:

PxPrec(τ) =
|{s

(n)
ij ≥ τ} ∩ {T

(n)
ij = 1}|

|{s
(n)
ij ≥ τ}|

(1)

PxRec(τ) =
|{s

(n)
ij ≥ τ} ∩ {T

(n)
ij = 1}|

|{T
(n)
ij = 1}|

(2)

For threshold independence, we define and use the pixel av-
erage precision, PxAP :=

∑
l PxPrec(τl)(PxRec(τl) −

PxRec(τl−1)), the area under curve of the pixel precision-

recall curve. We use PxAP as the final metric in this paper.

Bounding boxes: MaxBoxAcc. Pixel-wise masks are ex-
pensive to collect; many datasets only provide box annota-
tions. Since it is not possible to measure exact pixel-wise
precision and recall with bounding boxes, we suggest a sur-
rogate in this case. Given the ground truth box B, we de-
fine the box accuracy at score map threshold τ and IoU
threshold δ, BoxAcc (τ, δ) [58, 41], as:

BoxAcc(τ, δ) =
1

N

∑

n

1
IoU(box(s(X(n)),τ),B(n))≥δ

(3)

where box(s(X(n)), τ) is the tightest box around the

largest-area connected component of the mask {(i, j) |

s(X
(n)
ij ) ≥ τ}. In datasets where more than one bound-

ing box are provided (e.g. ImageNet), we count the number

Statistics ImageNet CUB OpenImages

#Classes 1000 200 100
#images/class
train-weaksup ∼1.2K ∼30 ∼300
train-fullsup 10 ∼5 25
test 10 ∼29 50

Table 1. Dataset statistics. “∼” indicates that the number of im-

ages per class varies across classes and the average value is shown.

of images where the box prediction overlaps with at least

one of the ground truth boxes with IoU ≥ δ. When δ is 0.5,

the metric is identical to the commonly-called GT-known

localization accuracy [25] or CorLoc [10], but we suggest a

new naming to more precisely represent what is being mea-

sured. For score map threshold independence, we report the

box accuracy at the optimal threshold τ , the maximal box

accuracy MaxBoxAcc(δ) := maxτ BoxAcc(τ, δ), as the

final performance metric. In this paper, we set δ to 0.5, fol-

lowing the prior works [58, 25, 56, 57, 6, 55].

Better box evaluation: MaxBoxAccV2. After the ac-

ceptance at CVPR 2020, we have developed an improved

version of MaxBoxAcc. It is better in two aspects. (1)

MaxBoxAcc measures the performance at a fixed IoU

threshold (δ = 0.5), only considering a specific level of

fineness of localization outputs. We suggest averaging the

performance across δ ∈ {0.3, 0.5, 0.7} to address diverse

demands for localization fineness. (2) MaxBoxAcc takes

the largest connected component for estimating the box,

assuming that the object of interest is usually large. We

remove this assumption by considering the best match be-

tween the set of all estimated boxes and the set of all ground

truth boxes. We call this new metric as MaxBoxAccV2.

For future WSOL researches, we encourage using the

MaxBoxAccV2 metric. The code is already available in

our repository. We show the evaluation results under the

new metric in the in Appendix §C.7.

4.2. Data splits and hyperparameter search

For a fair comparison of the WSOL methods, we fix

the amount of full supervision for hyperparameter search.

As shown in Table 1 we propose three disjoint splits

for every dataset: train-weaksup, train-fullsup,

and test. The train-weaksup contains images

with weak supervision (the image-level labels). The

train-fullsup contains images with full supervision

(either bounding box or binary mask). It is left as freedom

for the user to utilize it for hyperparameter search, model

selection, ablative studies, or even model fitting. The test

split contains images with full supervision; it must be used

only for the final performance report. For example, check-

ing the test results multiple times with different model

configurations violates the protocol as the learner implicitly

uses more full supervision than allowed.

As WSOL benchmark datasets, ImageNet [41] and
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Caltech-UCSD Birds-200-2011 (CUB) [52] have been ex-

tensively used. For ImageNet, the 1.2M “train” and

10K “validation” images for 1 000 classes are treated

as our train-weaksup and test, respectively. For

train-fullsup, we use the ImageNetV2 [38]. We have

annotated bounding boxes on those images. CUB has 5 994
“train” and 5 794 “test” images for 200 classes. We treat

them as our train-weaksup and test, respectively.

For train-fullsup, we have collected 1 000 extra im-

ages (∼ 5 images per class) from Flickr, on which we have

annotated bounding boxes. For ImageNet and CUB we use

the oracle box accuracy BoxAcc.

We contribute a new WSOL benchmark based on the

OpenImages instance segmentation subset [3]. It provides a

fresh WSOL benchmark to which the models have not yet

overfitted. To balance the original OpenImages dataset, we

have sub-sampled 100 classes and have randomly selected

29 819, 2 500, and 5 000 images from the original “train”,

“validation”, and “test” splits as our train-weaksup,

train-fullsup, and test splits, respectively. We use

the pixel average precision PxAP. A summary of dataset

statistics is in Table 1. Details on data collection and prepa-

ration are in Appendix §B.2.

Hyperparameter search. To make sure that the same

amount of localization supervision is provided for each

WSOL method, we refrain from employing any source of

human prior outside the train-fullsup split. If the op-

timal hyperparameter for an arbitrary dataset and architec-

ture is not available by default, we subject it to the hyper-

parameter search algorithm. For each hyperparameter, its

feasible range, as opposed to sensible range, is used as the

search space, to minimize the impact of human bias.

We employ the random search hyperparameter opti-

mization [4]; it is simple, effective, and parallelizable.

For each WSOL method, we sample 30 hyperparame-

ters to train models on train-weaksup and validate on

train-fullsup. The best hyperparameter combination

is then selected. Since running 30 training sessions is costly

for ImageNet (1.2M training images), we use 10% of im-

ages in each class for fitting models during the search. We

verify in Appendix §B.4 that the ranking of hyperparame-

ters is preserved even if the training set is sub-sampled.

5. Experiments

5.1. Evaluated Methods

We evaluate six widely used WSOL methods published

in peer-reviewed venues. We describe each method in

chronological order and discuss the set of hyperparameters.

The full list of hyperparameters is in Appendix §C.1.

Class activation mapping (CAM) [58] trains a classifier of

fully-convolutional backbone with the global average pool-

ing (GAP) structure. At test time, CAM uses the logit out-

puts before GAP as the score map sij . CAM has the learn-

ing rate and the score-map resolution as hyperparameters

and all five methods below use CAM in the background.

Hide-and-seek (HaS) [25] is a data augmentation tech-

nique that randomly selects grid patches to be dropped. The

hyperparameters are the drop rate and grid size.

Adversarial complementary learning (ACoL) [56] pro-

poses an architectural solution: a two-head architecture

where one adversarially erases the high-scoring activations

in the other. The erasing threshold is a hyperparameter.

Self-produced guidance (SPG) [57] is another architec-

tural solution where internal pseudo-pixel-wise supervision

is synthesized on the fly. Three tertiary pixel-wise masks

(foreground, unsure, background) are generated from three

different layers using two thresholding hyperparameters for

each mask and are used as auxiliary supervisions.

Attention-based dropout layer (ADL) [6] has proposed a

module that, like ACoL, adversarially produces drop masks

at high-scoring regions, while not requiring an additional

head. Drop rate and threshold are the hyperparameters.

CutMix [55] is a data augmentation technique, where

patches in training images are cut and pasted to other im-

ages during training. The target labels are also mixed. The

hyperparameters are the size prior α and the mix rate r.

Few-shot learning (FSL) baseline. The full supervision

in train-fullsup used for validating WSOL hyperpa-

rameters can be used for training a model itself. Since only

a few fully labeled samples per class are available, we refer

to this setting as the few-shot learning (FSL) baseline.

As a simple baseline, we consider a foreground saliency

mask predictor [29]. We alter the last layer of a fully convo-

lutional network (FCN) into a 1×1 convolutional layer with

H × W score map output. Each pixel is trained with the

binary cross-entropy loss against the target mask, as done

in [5, 31, 32]. For OpenImages, the pixel-wise masks are

used as targets; for ImageNet and CUB, we build the mask

targets by labeling pixels inside the ground truth boxes as

foreground [23]. At inference phase, the H×W score maps

are evaluated with the box or mask metrics.

Center-gaussian baseline. The Center-gaussian baseline

generates isotropic Gaussian score maps centered at the im-

ages. We set the standard deviation to 1, but note that it does

not affect the MaxBoxAcc and PxAP measures. This pro-

vides a no-learning baseline for every localization method.

5.2. Comparison of WSOL methods

We evaluate the six WSOL methods over three backbone

architectures, i.e. VGG-GAP [46, 58], InceptionV3 [51],

and ResNet50 [19], and three datasets, i.e. CUB, ImageNet

and OpenImages. For each (method, backbone, dataset) tu-

ple, we have randomly searched the optimal hyperparam-

eters over the train-fullsup with 30 trials, totalling

about 9 000 GPU hours. Since the sessions are paralleliz-
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ImageNet (MaxBoxAcc) CUB (MaxBoxAcc) OpenImages (PxAP) Total

Methods VGG Inception ResNet Mean VGG Inception ResNet Mean VGG Inception ResNet Mean Mean

CAM [58] 61.1 65.3 64.2 63.5 71.1 62.1 73.2 68.8 58.1 61.4 58.0 59.1 63.8

HaS [25] +0.7 +0.1 -1.0 -0.1 +5.2 -4.4 +4.9 +1.9 -1.2 -2.9 +0.2 -1.3 +0.2

ACoL [56] -0.8 -0.7 -2.5 -1.4 +1.2 -2.5 -0.5 -0.6 -3.4 +1.6 -0.2 -0.7 -0.9

SPG [57] +0.5 +0.1 -0.7 +0.0 -7.4 +0.7 -1.8 -2.8 -2.2 +1.0 -0.3 -0.5 -1.1

ADL [6] -0.3 -3.8 +0.0 -1.4 +4.6 +1.3 +0.3 +2.0 +0.2 +0.7 -3.7 -0.9 -0.1

CutMix [55] +1.0 +0.1 -0.3 +0.3 +0.8 +3.4 -5.4 -0.4 +0.1 +0.3 +0.7 +0.4 +0.1

Best WSOL 62.2 65.5 64.2 63.8 76.2 65.5 78.1 70.8 58.3 63.0 58.6 59.5 64.0

FSL baseline 62.8 68.7 67.5 66.3 86.3 94.0 95.8 92.0 61.5 70.3 74.4 68.7 75.7

Center baseline 52.5 52.5 52.5 52.5 59.7 59.7 59.7 59.7 45.8 45.8 45.8 45.8 52.3

Table 2. Re-evaluating WSOL. How much have WSOL methods improved upon the vanilla CAM model? test split results are

shown, relative to the vanilla CAM performance (increase or decrease). Hyperparameters have been optimized over the identical

train-fullsup split for all WSOL methods and the FSL baseline: (10,5,5) full supervision/class for (ImageNet,CUB,OpenImages).

Reported results are in the Appendix Table 5; classification accuracies are in Appendix Table 4.

able, it has taken only about 200 hours over 50 P40 GPUs

to obtain the results. The results are shown in Table 2. We

use the same batch sizes and training epochs to enforce the

same computational budget. The checkpoints that achieves

the best localization performance on train-fullsup are

used for evaluation.

Contrary to the improvements reported in prior work

(Appendix Table 5), recent WSOL methods have not led

to major improvements compared to CAM, when validated

in the same data splits and same evaluation metrics. On Im-

ageNet, methods after CAM are generally struggling: only

CutMix has seen a boost of +0.3pp on average. On CUB,

ADL has attained a +2.0pp gain on average, but ADL fails

to work well on other benchmarks. On the new WSOL

benchmark, OpenImages, no method has improved over

CAM, except for CutMix (+0.4pp on average). The best

overall improvements over CAM (63.8% total mean) is a

mere +0.2pp boost by HaS. In general, we observe a random

mixture of increases and decreases in performance over the

baseline CAM, depending on the architecture and dataset.

An important result in the table to be discussed later is the

comparison against the few-shot learning baseline (§5.5).

Some reasons for the discrepancy between our results

and the reported results include (1) the confounding of the

actual score map improvement and the calibration scheme,

(2) different types and amounts of full supervision em-

ployed under the hood, and (3) the use of different train-

ing settings (e.g. batch size, learning rates, epochs). More

details about the training settings are in Appendix §C.3.

Which checkpoint is suitable for evaluation? After the

acceptance by CVPR 2020, we believe that it is inappropri-

ate to use the best checkpoint for WSOL evaluation. This is

because the best localization performances are achieved be-

fore convergence in many cases (Appendix §C.2. At early

epochs, the localization performance fluctuates a lot, so the

peak performance is noise rather than the real performance.
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Figure 4. Selecting τ . Measuring performance at a fixed threshold

τ can lead to a false sense of improvement. Compared to CAM,

HaS and ACoL expand the score maps, but they do not necessarily

improve the box qualities (IoU) at the optimal τ⋆. Predicted and

ground-truth boxes are shown as green and yellow boxes.
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Figure 5. Performance at varying operating thresholds. Ima-

geNet: BoxAcc(τ) versus τ . OpenImages: PxPrec(τ) versus

PxRec(τ). Both use ResNet.

Hence, we recommend using the final checkpoint for fu-

ture WSOL researchers. The evaluation results are shown

in Appendix Table 6.

5.3. Score calibration and thresholding

WSOL evaluation must focus more on score map eval-

uation, independent of the calibration. As shown in Fig-

ure 4 the min-max normalized score map for CAM predicts
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plots show the estimated distributions (kernel density estimation)
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Figure 7. Impact of hyperparameters for feature erasing. Color

and size of the circles indicate the performance at the correspond-

ing hyperparameters. ✕: non-convergent training sessions. ✖:

hyperparameters suggested by the original papers.

a peaky foreground score on the duck face, While HaS and

ACoL score maps show more distributed scores in body ar-

eas, demonstrating the effects of adversarial erasing during

training. However, the maximal IoU performances do not

differ as much. This is because WSOL methods exhibit

different score distributions (Figure 5 and Appendix §C.4).

Fixing the operating threshold τ at a pre-defined value,

therefore, can lead to an apparent increase in performance

without improving the score maps.

Under our threshold-independent performance measures

(MaxBoxAcc and PxAP) shown in Figure 5, we observe

that (1) the methods have different optimal τ⋆ on ImageNet

and (2) the methods do not exhibit significantly different

MaxBoxAcc or PxAP performances. This provides an ex-

planation of the lack of improvement observed in Table 2.

We advise future WSOL researchers to report the threshold-

independent metrics.

5.4. Hyperparameter analysis

Different types and amounts of full supervision used in

WSOL methods manifest in the form of model hyperparam-

eter selection (§3). Here, we measure the impact of the vali-

dation on train-fullsup by observing the performance

distribution among 30 trials of random hyperparameters.

We then study the effects of feature-erasing hyperparame-

ters, a common hyperparameter type in WSOL methods.

Performance with 30 hyperparameter trials. To measure

the sensitivity of each method to hyperparameter choices,

we plot the performance distribution of the intermediate

models in the 30 random search trials. We say that a train-

ing session is non-convergent if the training loss is larger

than 2.0 at the last epoch. We show the performance dis-

tributions of the converged sessions, and report the ratio of

non-convergent sessions separately.

Our results in Figure 6 indicate the diverse range of

performances depending on the hyperparameter choice.

Vanilla CAM is among the less sensitive, with the small-

est standard deviation σ = 1.5 on OpenImages. This is the

natural consequence of its minimal use of hyperparameters.

We thus suggest to use the vanilla CAM when absolutely no

full supervision is available. ACoL and ADL tend to have

greater variances across benchmarks (σ = 11.9 and 9.8 on

CUB). We conjecture that the drop threshold for adversarial

erasing is a sensitive hyperparameter.

WSOL on CUB are generally struggling: random hyper-

parameters often show worse performance than the center

baseline (66% cases). We conjecture that CUB is a dis-

advantageous setup for WSOL: as all images contain birds,

the models only attend on bird parts for making predictions.

We believe adding more non-bird images can improve the

overall performances (§3.2).

We show the non-convergence statistics in Figure 6d.

Vanilla CAM exhibit a stable training: non-convergence

rates are lowest on OpenImages and second lowest on Ima-

geNet. ACoL and SPG suffer from many training failures,

especially on CUB (43% and 37%, respectively).
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In conclusion, vanilla CAM is stable and robust to hy-

perparameters. Complicated design choices introduced by

later methods only seem to lower the overall performances

rather than providing new avenues for performance boost.

Effects of erasing hyperparameters. Many WSOL meth-

ods since CAM have introduced different forms of erasing

to encourage models to extract cues from broader regions

(§5.1). We study the contribution of such hyperparameters

in ADL, HaS, and ACoL in Figure 7. We observe that

the performance improves with higher erasing thresholds

(ADL drop threshold and ACoL erasing threshold). We also

observe that lower drop rates leads to better performances

(ADL and HaS). The erasing hyperparameters introduced

since CAM only negatively impact the performance.

5.5. Few­shot learning baselines

Given that WSOL methods inevitably utilize some form

of full localization supervision (§3), it is important to com-

pare them against the few-shot learning (FSL) baselines that

use it for model tuning itself.

Performances of the FSL baselines (§4.2) are presented

in Table 2. Our simple FSL method performs better than the

vanilla CAM at 10, 5, and 5 fully labeled samples per class

for ImageNet, CUB, and OpenImages, respectively. The

mean FSL accuracy on CUB is 92.0%, which is far better

than that of the maximal WSOL performance of 70.8%.

We compare FSL against CAM at different sizes of

train-fullsup in Figure 8. We simulate the zero-fully-

labeled WSOL performance with a set of randomly cho-

sen hyperparameters (§5.4); for FSL, we simulate the no-

learning performance through the center-gaussian baseline.

FSL baselines surpass the CAM results already at 1-2

full supervision per class for CUB and OpenImages (92.4

and 70.9% MaxBoxAcc and PxAP). We attribute the high

FSL performance on CUB to the fact that all images are

birds; with 1 sample/class, there are effectively 200 birds

as training samples. For OpenImages, the high FSL perfor-

mance is due to the rich supervision provided by pixel-wise

masks. On ImageNet, FSL results are not as great: they

surpass the CAM result at 8-10 samples per class. Overall,

however, FSL performances are strikingly good, even at a

low data regime. Thus, given a few fully labeled samples, it

is perhaps better to train a model with it than to search hy-

perparameters. Only when there is absolutely no full super-

vision (0 fully labeled sample), CAM is meaningful (better

than the no-learning center-gaussian baseline).

6. Discussion and Conclusion

After years of weakly-supervised object localization

(WSOL) research, we look back on the common practice

and make a critical appraisal. Based on a precise defini-

tion of the task, we have argued that WSOL is ill-posed

and have discussed how previous methods have used differ-

ent types of implicit full supervision (e.g. tuning hyperpa-

rameters with pixel-level annotations) to bypass this issue

(§3). We have then proposed an improved evaluation proto-

col that allows the hyperparameter search over a few labeled

samples (§4). Our empirical studies lead to some strik-

ing conclusions: CAM is still not worse than the follow-

up methods (§5.2) and it is perhaps better to use the full

supervision directly for model fitting, rather than for hyper-

parameter search (§5.5).

We propose the following future research directions for

the field. (1) Resolve the ill-posedness via e.g. adding more

background-class images (§3.2). (2) Define the new task,

semi-weakly-supervised object localization, where methods

incorporating both weak and full supervision are studied.

Our work has implications in other tasks where learners

are not supposed to be given full supervision, but are su-

pervised implicitly via model selection and hyperparameter

fitting. Examples include weakly-supervised vision tasks

(e.g. detection and segmentation), zero-shot learning, and

unsupervised tasks (e.g. disentanglement [30]).
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