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Abstract

Weakly-supervised object localization (WSOL) has
gained popularity over the last years for its promise to train
localization models with only image-level labels. Since the
seminal WSOL work of class activation mapping (CAM),
the field has focused on how to expand the attention re-
gions to cover objects more broadly and localize them bet-
ter. However, these strategies rely on full localization su-
pervision to validate hyperparameters and for model se-
lection, which is in principle prohibited under the WSOL
setup. In this paper, we argue that WSOL task is ill-posed
with only image-level labels, and propose a new evaluation
protocol where full supervision is limited to only a small
held-out set not overlapping with the test set. We observe
that, under our protocol, the five most recent WSOL meth-
ods have not made a major improvement over the CAM
baseline. Moreover, we report that existing WSOL methods
have not reached the few-shot learning baseline, where the
full-supervision at validation time is used for model train-
ing instead. Based on our findings, we discuss some future
directions for WSOL. Source code and dataset are available
at https://github.com/clovaai/wsolevaluation.

1. Introduction

As human labeling for every object is too costly and
weakly-supervised object localization (WSOL) requires
only image-level labels, the WSOL research has gained sig-
nificant momentum [58, 56, 57, 6, 25, 55] recently.

Among these, class activation mapping (CAM) [58] uses
the intermediate classifier activations focusing on the most
discriminative parts of the objects to localize the objects
of the target class. As the aim in object localization is to
cover the full extent of the object, focusing only on the most
discriminative parts of the objects is a limitation. WSOL
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Figure 1. WSOL 2016-2019. Recent improvements in WSOL
are illusory due to (1) different amount of implicit full supervision
through validation and (2) a fixed score-map threshold (usually
7 = 0.2) to generate object boxes. Under our evaluation protocol
with the same validation set sizes and oracle 7 for each method,
CAM is still the best. In fact, our few-shot learning baseline,
i.e. using the validation supervision (10 samples/class) at training
time, outperforms existing WSOL methods. Results on ImageNet.
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techniques since CAM have focused on this limitation and
have proposed different architectural [56, 57, 6] and data-
augmentation [25, 55] solutions. The reported state-of-the-
art WSOL performances have made a significant improve-
ment over the CAM baseline, from 49.4% to 62.3% [6]
and 43.6% to 48.7% [6] top-1 localization performances on
Caltech-UCSD Birds-200-2011 [52] and ImageNet [4 1], re-
spectively. However, these techniques have introduced a set
of hyperparameters for suppressing the discriminative cues
of CAM and different ways for selecting these hyperparam-
eters. One of such hyperparameters is the operating thresh-
old 7 for generating object bounding boxes from the score
maps. Among others, the mixed policies for selecting 7 has
contributed to the illusory improvement of WSOL perfor-
mances over the years; see Figure 1.

Due to the lack of a unified definition of the WSOL task,
we revisit the problem formulation of WSOL and show that
WSOL problem is ill-posed in general without any localiza-
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tion supervision. Towards a well-posed setup, we propose
a new WSOL setting where a small held-out set with full
supervision is available to the learners.

Our contributions are as follows. (1) Propose new ex-
perimental protocol that uses a fixed amount of full su-
pervision for hyperparameter search and carefully ana-
lyze six WSOL methods on three architectures and three
datasets. (2) Propose new evaluation metrics as well as
data, annotations, and benchmarks for the WSOL task at
https://github.com/clovaai/wsolevaluation. (3) Show that
WSOL has not progressed significantly since CAM, when
the calibration dependency and the different amounts of full
supervision are factored out. Moreover, searching hyperpa-
rameters on a held-out set consisting of 5 to 10 full localiza-
tion supervision per class often leads to significantly lower
performance compared to the few-shot learning (FSL) base-
lines that use the full supervision directly for model train-
ing. Finally, we suggest a shift of focus in future WSOL re-
search: consideration of learning paradigms utilizing both
weak and full supervisions, and other options for resolving
the ill-posedness of WSOL (e.g. background-class images).

2. Related Work

By model output. Given an input image, semantic segmen-
tation models generate pixel-wise class predictions [11, 31],
object detection models [11, 13] output a set of bound-
ing boxes with class predictions, and instance segmentation
models [27, 7, 18] predict a set of disjoint masks with class
and instance labels. Object localization [41], on the other
hand, assumes that the image contains an object of single
class and produces a binary mask or a bounding box around
that object coming from the class of interest.

By type of supervision. Since bounding box and mask la-
bels cost significantly more than image-level labels, e.g. cat-
egories [2], researchers have considered different types of
localization supervision: image-level labels [35], gaze [34],
points [2], scribbles [26], boxes [8], or a mixture of multiple
types [21]. Our work is concerned with the object localiza-
tion task with only image-level category labels [33, 58].

By amount of supervision. Learning from a small amount
of labeled samples per class is referred to as few-shot learn-
ing (FSL) [53]. We recognize the relationship between our
new WSOL setup and the FSL paradigm; we consider FSL
methods as baselines for future WSOL methods.

WSOL works. Class activation mapping (CAM) [58] turns
a fully-convolutional classifier into a score map predictor by
considering the activations before the global average pool-
ing layer. Vanilla CAM has been criticized for its focus on
the small discriminative part of the object. Researchers have
considered dropping regions in inputs at random [25, 55] to
diversify the cues used for recognition. Adversarial eras-
ing techniques [56, 6] drop the most discriminative part at
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Figure 2. WSOL as MIL. WSOL is interpreted as a patch clas-
sification task trained with multiple-instance learning (MIL). The
score map s(X) is thresholded at 7 to estimate the mask T.

the current iteration. Self-produced guidance (SPG) [57] is
trained with auxiliary foreground-background masks gener-
ated by its own activations. Other than object classification
in static images, there exists work on localizing informative
video frames for action recognition [37, 28, 54], but they
are beyond the scope of our analysis.

Relation to explainability. WSOL methods share similari-
ties with the model explainability [17], specifically the input
attribution task: analyzing which pixels have led to the im-
age classification results [16]. There are largely two streams
of work on visual input attribution: variants of input gradi-
ents [50, 45, 42, 48, 43, 49, 24, 36] and counterfactual rea-
soning [39, 12, 59, 40, 15, 20]. While they can be viewed as
WSOL methods, we have not included them in our studies
because they are seldom evaluated in WSOL benchmarks.
Analyzing their possibility as WSOL methods is an inter-
esting future study.

Our scope. We study the WSOL task, rather than weakly-
supervised detection, segmentation, or instance segmenta-
tion. The terminologies tend to be mixed in the earlier
works of weakly-supervised learning [44, 14, 9, 47]. Ex-
tending our analysis to other weakly-supervised learning
tasks is valid and will be a good contribution to the respec-
tive communities.

3. Problem Formulation of WSOL

We define and formulate the weakly-supervised object
localization (WSOL) task as an image patch classification
and show the ill-posedness of the problem. We will discuss
possible modifications to resolve the ill-posedness in theory.

3.1. WSOL Task as Multiple Instance Learning

Given an image X € R7*W_ object localization is
the task to identify whether or not the pixel belongs to
the object of interest, represented via dense binary mask
T = (T11, - ,Tyw) where T;; € {0,1} and (4, j) in-
dicate the pixel indices. When the training set consists of
precise image-mask pairs (X, T), we refer to the task as
fully-supervised object localization (FSOL). In this pa-
per, we consider the case when only an image-level label
Y € {0,1} for global presence of the object of interest is
provided per training image X. This task is referred to as
the weakly-supervised object localization (WSOL).

One can treat an input image X as a bag of stride-1
sliding window patches of suitable side lengths, h and w:
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Figure 3. Ill-posed WSOL: An example. Even the true posterior
s(M) = p(Y|M) may not lead to the correct prediction of T
if background cues are more associated with the class than the
foreground cues (e.g. p(duck|water) > p(duck|feet)).

(X11,- -+, Xgw) with X;; € R"@*. The object localiza-
tion task is then the problem of predicting the object pres-
ence T;; at the image patch X;;. The weak supervision
imposes the requirement that each training image X, rep-
resented as (X11,---, Xgw), is only collectively labeled
with a single label Y € {0, 1} indicating whether at least
one of the patches represents the object. This formulation is
an example of the multiple-instance learning (MIL) [22], as
observed by many traditional WSOL works [35, 44, 14, 47].

Following the patch classification point of view, we for-
mulate WSOL task as a mapping from patches X to the
binary labels T (indices dropped). We assume that the
patches X, image-level labels Y, and the pixel-wise la-
beling 7" in our data arise in an i.i.d. fashion from the
joint distribution p(X, Y, T'). See Figure 2 for an overview.
The aim of WSOL is to produce a scoring function s(X)
such that thresholding it at 7 closely approximates binary
label T'. Many existing approaches for WSOL, including
CAM [58], use the scoring rules based on the posterior
s(X) = p(Y]X). See Appendix §A.1 for the interpreta-
tion of CAM as pixel-wise posterior approximation.

3.2. When is WSOL ill-posed?

We show that if background cues are more strongly asso-
ciated with the target labels 7" than some foreground cues,
the localization task cannot be solved, even when we know
the exact posterior p(Y'| X) for the image-level label Y. We
will make some strong assumptions in favor of the learner,
and then show that WSOL still cannot be perfectly solved.

We assume that there exists a finite set of cue labels M
containing all patch-level concepts in natural images. For
example, patches from a duck image are one of {duck’s
head, duck’s feet, sky, water, - - - } (see Figure 3). We fur-
ther assume that every patch X is equivalently represented
by its cue label M (X) € M. Therefore, from now on, we
write M instead of X in equations and examine the associ-
ation arising in the joint distribution p(M,Y,T'). We write
M'e, M2 € M for foreground and background cues.

We argue that, even with access to the joint distribution
p(Y, M), it may not be possible to make perfect predictions
for the patch-wise labels T'(M) (proof in Appendix §A.2).

Lemma 3.1. Assume that the true posterior p(Y|M) with
a continuous pdf is used as the scoring rule s(M) =
p(Y|M). Then, there exists a scalar T € R such that

s(M) > 7 is identical to T if and only if the foreground-

1| M
background posterior ratio %;7% > 1 almost surely,

conditionally on the event {T(M%) = 1 and T(MY) = 0}.

In other words, if the posterior likelihood for the image-
level label Y given a foreground cue M is less than the
posterior likelihood given background M"8 for some fore-
ground and background cues, no WSOL method can make
a correct prediction. This pathological scenario is described
in Figure 3: Duck’s feet are less seen in duck images than
the water background. Such cases are abundant in user-
collected data (Appendix Figure 1).

This observation implies a data-centric solution towards

well-posed WSOL: we can augment (1) positive samples
(Y = 1) with more less-represented foreground cues (e.g.
duck images with feet) and (2) negative samples (Y = 0)
with more target-correlated background cues (e.g. non-duck
images with water background). Such data-centric ap-
proaches are promising future directions for WSOL.
How have WSOL methods addressed the ill-posedness?
Previous solutions to the WSOL problem have sought ar-
chitectural modifications [56, 57, 6] and data augmenta-
tion [25, 55] schemes that typically require heavy hyperpa-
rameter search and model selection, which are a form of im-
plicit localization supervision. For example, [25] has found
the operating threshold 7 via “observing a few qualitative
results”, while others have evaluated their models over the
test set to select reasonable hyperparameter values (Table 1
of [25], Table 6 of [56], and Table 1 of [6]). [57] has per-
formed a “grid search” over possible values. We argue that
certain level of localization labels are inevitable for WSOL.
In the next section, we propose to allow a fixed number of
fully labeled samples for hyperparameter search and model
selection for a more realistic evaluation.

4. Evaluation Protocol for WSOL

We reformulate the WSOL evaluation based on our ob-
servation of the ill-posedness. We define performance met-
rics, benchmarks, and the hyperparameter search procedure.

4.1. Evaluation metrics

The aim of WSOL is to produce score maps, where their
pixel value s;; is higher on foreground 7;; = 1 and lower
on background T;; = 0 (§3.1). We discuss how to quantify
the above conditions and how prior evaluation metrics have
failed to clearly measure the relevant performance. We then
propose the MaxBoxAcc and PxAP metrics for bounding
box and mask ground truths, respectively.

The localization accuracy [41] metric entangles classifi-
cation and localization performances by counting the num-
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ber of images where both tasks are performed correctly.
We advocate the measurement of localization performance
alone, as the goal of WSOL is to localize objects (§3.1) and
not to classify images correctly. To this end, we only con-
sider the score maps s;; corresponding to the ground-truth
classes in our analysis. Metrics based on such are com-
monly referred to as the GT-known metrics [25, 56, 57, 6].
A common practice in WSOL is to normalize the score
maps per image because the score statistics differ vastly
across images. FEither max normalization (divide through
by max;; s;;) or min-max normalization (additionally map
min,; s;; to zero) has been used; see Appendix §B.1 for the
full summary. We always use the min-max normalization.
After normalization, WSOL methods threshold the score
map at 7 to generate a tight box around the binary mask
{(¢,7) | si; > 7}. WSOL metrics then measure the quality
of the boxes. 7 is typically treated as a fixed value [58, 56,
] or a hyperparameter to be tuned [25, 57, 6]. We argue
that the former is misleading because the ideal threshold 7
depends heavily on the data and model architecture and fix-
ing its value may be disadvantageous for certain methods.
To fix the issue, we propose new evaluation metrics that are
independent of the threshold 7.
Masks: PxAP. When masks are available for evaluation,
we measure the pixel-wise precision and recall [1]. Unlike
single-number measures like mask-wise IoU, those met-
rics allow users to choose the preferred operating threshold
T that provides the best precision-recall trade-off for their
downstream applications. We define the pixel precision
and recall at threshold 7 as:

_ s 2o =1y

PxPreC(T) |{S£7) > T}‘ (1)
pxRec(r) = [{s) > 7} n {1 =1} o
HTi =1}

For threshold independence, we define and use the pixel av-
erage precision, PxAP := ), PxPrec(7)(PxRec(r) —
PxRec(7;_1)), the area under curve of the pixel precision-
recall curve. We use PxAP as the final metric in this paper.
Bounding boxes: MaxBoxAcc. Pixel-wise masks are ex-
pensive to collect; many datasets only provide box annota-
tions. Since it is not possible to measure exact pixel-wise
precision and recall with bounding boxes, we suggest a sur-
rogate in this case. Given the ground truth box B, we de-
fine the box accuracy at score map threshold 7 and IoU
threshold 4, BoxAcc (7,0) [58, 41], as:

1
BoxAcc(T,§) = ¥ Z Lot (box(s(x ()7, 525 ()

where box(s(X(™),7) is the tightest box around the
largest-area connected component of the mask {(7,j) |

s(XZ(j" )) > 7}. In datasets where more than one bound-
ing box are provided (e.g. ImageNet), we count the number

Statistics ImageNet CUB Openlmages
#Classes 1000 200 100
#images/class

train-weaksup ~1.2K ~30 ~300
train-fullsup 10 ~b 25
test 10 ~29 50

Table 1. Dataset statistics. “~” indicates that the number of im-
ages per class varies across classes and the average value is shown.

of images where the box prediction overlaps with at least
one of the ground truth boxes with IoU > 6. When ¢ is 0.5,
the metric is identical to the commonly-called GT-known
localization accuracy [25] or CorLoc [10], but we suggest a
new naming to more precisely represent what is being mea-
sured. For score map threshold independence, we report the
box accuracy at the optimal threshold 7, the maximal box
accuracy MaxBoxAcc(d) := max, BoxAcc(T,0), as the
final performance metric. In this paper, we set § to 0.5, fol-
lowing the prior works [58, 25, 56, 57, 6, 55].

Better box evaluation: MaxBoxAccV2. After the ac-
ceptance at CVPR 2020, we have developed an improved
version of MaxBoxAcc. It is better in two aspects. (1)
MaxBoxAcc measures the performance at a fixed IoU
threshold (§ = 0.5), only considering a specific level of
fineness of localization outputs. We suggest averaging the
performance across 6 € {0.3,0.5,0.7} to address diverse
demands for localization fineness. (2) MaxBoxAcc takes
the largest connected component for estimating the box,
assuming that the object of interest is usually large. We
remove this assumption by considering the best match be-
tween the set of all estimated boxes and the set of all ground
truth boxes. We call this new metric as MaxBoxAccV2.
For future WSOL researches, we encourage using the
MaxBoxAccV2 metric. The code is already available in
our repository. We show the evaluation results under the
new metric in the in Appendix §C.7.

4.2. Data splits and hyperparameter search

For a fair comparison of the WSOL methods, we fix
the amount of full supervision for hyperparameter search.
As shown in Table | we propose three disjoint splits
for every dataset: train-weaksup, train-fullsup,
and test. The train-weaksup contains images
with weak supervision (the image-level labels). The
train-fullsup contains images with full supervision
(either bounding box or binary mask). It is left as freedom
for the user to utilize it for hyperparameter search, model
selection, ablative studies, or even model fitting. The test
split contains images with full supervision; it must be used
only for the final performance report. For example, check-
ing the test results multiple times with different model
configurations violates the protocol as the learner implicitly
uses more full supervision than allowed.

As WSOL benchmark datasets, ImageNet [4]1] and
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Caltech-UCSD Birds-200-2011 (CUB) [52] have been ex-
tensively used. For ImageNet, the 1.2M “train” and
10K “validation” images for 1000 classes are treated
as our train-weaksup and test, respectively. For
train-fullsup, we use the ImageNetV2 [38]. We have
annotated bounding boxes on those images. CUB has 5 994
“train” and 5794 “test” images for 200 classes. We treat
them as our train-weaksup and test, respectively.
For train-fullsup, we have collected 1 000 extra im-
ages (~ b images per class) from Flickr, on which we have
annotated bounding boxes. For ImageNet and CUB we use
the oracle box accuracy BoxAcc.

We contribute a new WSOL benchmark based on the
Openlmages instance segmentation subset [3]. It provides a
fresh WSOL benchmark to which the models have not yet
overfitted. To balance the original Openlmages dataset, we
have sub-sampled 100 classes and have randomly selected
29819, 2500, and 5000 images from the original “train”,
“validation”, and “test” splits as our train-weaksup,
train-fullsup, and test splits, respectively. We use
the pixel average precision PxAP. A summary of dataset
statistics is in Table 1. Details on data collection and prepa-
ration are in Appendix §B.2.

Hyperparameter search. To make sure that the same
amount of localization supervision is provided for each
WSOL method, we refrain from employing any source of
human prior outside the t rain—fullsup split. If the op-
timal hyperparameter for an arbitrary dataset and architec-
ture is not available by default, we subject it to the hyper-
parameter search algorithm. For each hyperparameter, its
feasible range, as opposed to sensible range, is used as the
search space, to minimize the impact of human bias.

We employ the random search hyperparameter opti-
mization [4]; it is simple, effective, and parallelizable.
For each WSOL method, we sample 30 hyperparame-
ters to train models on train-weaksup and validate on
train-fullsup. The best hyperparameter combination
is then selected. Since running 30 training sessions is costly
for ImageNet (1.2M training images), we use 10% of im-
ages in each class for fitting models during the search. We
verify in Appendix §B.4 that the ranking of hyperparame-
ters is preserved even if the training set is sub-sampled.

5. Experiments
5.1. Evaluated Methods

We evaluate six widely used WSOL methods published
in peer-reviewed venues. We describe each method in
chronological order and discuss the set of hyperparameters.
The full list of hyperparameters is in Appendix §C.1.

Class activation mapping (CAM) [58] trains a classifier of
fully-convolutional backbone with the global average pool-
ing (GAP) structure. At test time, CAM uses the logit out-

puts before GAP as the score map s;;. CAM has the learn-
ing rate and the score-map resolution as hyperparameters
and all five methods below use CAM in the background.
Hide-and-seek (HaS) [25] is a data augmentation tech-
nique that randomly selects grid patches to be dropped. The
hyperparameters are the drop rate and grid size.
Adversarial complementary learning (ACoL) [56] pro-
poses an architectural solution: a two-head architecture
where one adversarially erases the high-scoring activations
in the other. The erasing threshold is a hyperparameter.
Self-produced guidance (SPG) [57] is another architec-
tural solution where internal pseudo-pixel-wise supervision
is synthesized on the fly. Three tertiary pixel-wise masks
(foreground, unsure, background) are generated from three
different layers using two thresholding hyperparameters for
each mask and are used as auxiliary supervisions.
Attention-based dropout layer (ADL) [6] has proposed a
module that, like ACoL, adversarially produces drop masks
at high-scoring regions, while not requiring an additional
head. Drop rate and threshold are the hyperparameters.
CutMix [55] is a data augmentation technique, where
patches in training images are cut and pasted to other im-
ages during training. The target labels are also mixed. The
hyperparameters are the size prior « and the mix rate .
Few-shot learning (FSL) baseline. The full supervision
in train-fullsup used for validating WSOL hyperpa-
rameters can be used for training a model itself. Since only
a few fully labeled samples per class are available, we refer
to this setting as the few-shot learning (FSL) baseline.

As a simple baseline, we consider a foreground saliency
mask predictor [29]. We alter the last layer of a fully convo-
lutional network (FCN) into a 1 x 1 convolutional layer with
H x W score map output. Each pixel is trained with the
binary cross-entropy loss against the target mask, as done
in [5, 31, 32]. For Openlmages, the pixel-wise masks are
used as targets; for ImageNet and CUB, we build the mask
targets by labeling pixels inside the ground truth boxes as
foreground [23]. Atinference phase, the H X W score maps
are evaluated with the box or mask metrics.
Center-gaussian baseline. The Center-gaussian baseline
generates isotropic Gaussian score maps centered at the im-
ages. We set the standard deviation to 1, but note that it does
not affect the MaxBoxAcc and PxAP measures. This pro-
vides a no-learning baseline for every localization method.

5.2. Comparison of WSOL methods

We evaluate the six WSOL methods over three backbone
architectures, i.e. VGG-GAP [46, 58], InceptionV3 [51],
and ResNet50 [19], and three datasets, i.e. CUB, ImageNet
and Openlmages. For each (method, backbone, dataset) tu-
ple, we have randomly searched the optimal hyperparam-
eters over the train-fullsup with 30 trials, totalling
about 9000 GPU hours. Since the sessions are paralleliz-
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ImageNet (MaxBoxAcc) CUB (MaxBoxAcc) Openlmages (PxAP) Total
Methods VGG Inception ResNet Mean VGG Inception ResNet Mean VGG Inception ResNet Mean Mean
CAM [58] 61.1 65.3 64.2 635 71.1 62.1 73.2  68.8 58.1 61.4 58.0 59.1 63.8
HaS [25] +0.7 +0.1 -1.0 = -0.1 +5.2 -4.4 +49 +1.9 -1.2 -2.9 +0.2  -1.3 +0.2
ACoL [56] -0.8 -0.7 25 -14 +1.2 -2.5 -0.5 0.6 -34 +1.6 -0.2  -0.7 -0.9
SPG [57] +0.5 +0.1 -0.7 | 40.0 -1.4 +0.7 -1.8  -2.8 -2.2 +1.0 -0.3  -0.5 -1.1
ADL [0] -0.3 -3.8 +0.0 | -14 +4.6 +1.3 +0.3 420 +0.2 +0.7 -3.7  -0.9 -0.1
CutMix [55] +1.0 +0.1 -03  +03  +0.8 +3.4 54 0 -04 +0.1 +0.3 +0.7 404 +0.1
Best WSOL 62.2 65.5 642 638 76.2 65.5 78.1  70.8 58.3 63.0 58.6 595 64.0
FSL baseline 62.8 68.7 67.5 663 86.3 94.0 95.8  92.0 61.5 70.3 744 68.7 75.7
Center baseline  52.5 52.5 525 525 59.7 59.7 59.7  59.7 45.8 45.8 458 45.8 523

Table 2. Re-evaluating WSOL. How much have WSOL methods improved upon the vanilla CAM model? test split results are

shown, relative to the vanilla CAM performance (increase or decrease).

Hyperparameters have been optimized over the identical

train-fullsup split for all WSOL methods and the FSL baseline: (10,5,5) full supervision/class for (ImageNet,CUB,Openlmages).
Reported results are in the Appendix Table 5; classification accuracies are in Appendix Table 4.

able, it has taken only about 200 hours over 50 P40 GPUs
to obtain the results. The results are shown in Table 2. We
use the same batch sizes and training epochs to enforce the
same computational budget. The checkpoints that achieves
the best localization performance on t rain-fullsup are
used for evaluation.

Contrary to the improvements reported in prior work
(Appendix Table 5), recent WSOL methods have not led
to major improvements compared to CAM, when validated
in the same data splits and same evaluation metrics. On Im-
ageNet, methods after CAM are generally struggling: only
CutMix has seen a boost of +0.3pp on average. On CUB,
ADL has attained a +2.0pp gain on average, but ADL fails
to work well on other benchmarks. On the new WSOL
benchmark, Openlmages, no method has improved over
CAM, except for CutMix (+0.4pp on average). The best
overall improvements over CAM (63.8% total mean) is a
mere +0.2pp boost by HaS. In general, we observe a random
mixture of increases and decreases in performance over the
baseline CAM, depending on the architecture and dataset.
An important result in the table to be discussed later is the
comparison against the few-shot learning baseline (§5.5).

Some reasons for the discrepancy between our results
and the reported results include (1) the confounding of the
actual score map improvement and the calibration scheme,
(2) different types and amounts of full supervision em-
ployed under the hood, and (3) the use of different train-
ing settings (e.g. batch size, learning rates, epochs). More
details about the training settings are in Appendix §C.3.

Which checkpoint is suitable for evaluation? After the
acceptance by CVPR 2020, we believe that it is inappropri-
ate to use the best checkpoint for WSOL evaluation. This is
because the best localization performances are achieved be-
fore convergence in many cases (Appendix §C.2. At early
epochs, the localization performance fluctuates a lot, so the
peak performance is noise rather than the real performance.

Score maps

Mask and box
@ optimal 7

CAM (CVPR'16)  HaS (ICCV'17)  ACoL (CVPR'18)
T*=0.15 T*=0.25 T*=0.35
loU = 0.73 loU = 0.86 loU = 0.66

Figure 4. Selecting 7. Measuring performance at a fixed threshold
7 can lead to a false sense of improvement. Compared to CAM,
HaS and ACoL expand the score maps, but they do not necessarily
improve the box qualities (IoU) at the optimal 7*. Predicted and
ground-truth boxes are shown as green and yellow boxes.
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Figure 5. Performance at varying operating thresholds. Ima-
geNet: BoxAcc(T) versus 7. Openlmages: PxPrec(T) versus
PxRec(7). Both use ResNet.

Hence, we recommend using the final checkpoint for fu-
ture WSOL researchers. The evaluation results are shown
in Appendix Table 6.

5.3. Score calibration and thresholding

WSOL evaluation must focus more on score map eval-
uation, independent of the calibration. As shown in Fig-
ure 4 the min-max normalized score map for CAM predicts
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Figure 6. Results of the 30 hyperparameter trials. ImageNet
performances of all 30 randomly chosen hyperparameter combi-
nations for each method, with ResNet50 backbone. The violin
plots show the estimated distributions (kernel density estimation)
of performances. o are the sample standard deviations.
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Figure 7. Impact of hyperparameters for feature erasing. Color
and size of the circles indicate the performance at the correspond-
ing hyperparameters. X: non-convergent training sessions. %:
hyperparameters suggested by the original papers.

a peaky foreground score on the duck face, While HaS and
ACoL score maps show more distributed scores in body ar-
eas, demonstrating the effects of adversarial erasing during

training. However, the maximal IoU performances do not
differ as much. This is because WSOL methods exhibit
different score distributions (Figure 5 and Appendix §C.4).
Fixing the operating threshold 7 at a pre-defined value,
therefore, can lead to an apparent increase in performance
without improving the score maps.

Under our threshold-independent performance measures
(MaxBoxAcc and PxAP) shown in Figure 5, we observe
that (1) the methods have different optimal 7* on ImageNet
and (2) the methods do not exhibit significantly different
MaxBoxAcc or PxAP performances. This provides an ex-
planation of the lack of improvement observed in Table 2.
We advise future WSOL researchers to report the threshold-
independent metrics.

5.4. Hyperparameter analysis

Different types and amounts of full supervision used in
WSOL methods manifest in the form of model hyperparam-
eter selection (§3). Here, we measure the impact of the vali-
dation on t rain-fullsup by observing the performance
distribution among 30 trials of random hyperparameters.
We then study the effects of feature-erasing hyperparame-
ters, a common hyperparameter type in WSOL methods.

Performance with 30 hyperparameter trials. To measure
the sensitivity of each method to hyperparameter choices,
we plot the performance distribution of the intermediate
models in the 30 random search trials. We say that a train-
ing session is non-convergent if the training loss is larger
than 2.0 at the last epoch. We show the performance dis-
tributions of the converged sessions, and report the ratio of
non-convergent sessions separately.

Our results in Figure 6 indicate the diverse range of
performances depending on the hyperparameter choice.
Vanilla CAM is among the less sensitive, with the small-
est standard deviation o = 1.5 on Openlmages. This is the
natural consequence of its minimal use of hyperparameters.
We thus suggest to use the vanilla CAM when absolutely no
full supervision is available. ACoL and ADL tend to have
greater variances across benchmarks (o = 11.9 and 9.8 on
CUB). We conjecture that the drop threshold for adversarial
erasing is a sensitive hyperparameter.

WSOL on CUB are generally struggling: random hyper-
parameters often show worse performance than the center
baseline (66% cases). We conjecture that CUB is a dis-
advantageous setup for WSOL.: as all images contain birds,
the models only attend on bird parts for making predictions.
We believe adding more non-bird images can improve the
overall performances (§3.2).

We show the non-convergence statistics in Figure 6d.
Vanilla CAM exhibit a stable training: non-convergence
rates are lowest on Openlmages and second lowest on Ima-
geNet. ACoL and SPG suffer from many training failures,
especially on CUB (43% and 37%, respectively).
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In conclusion, vanilla CAM is stable and robust to hy-
perparameters. Complicated design choices introduced by
later methods only seem to lower the overall performances
rather than providing new avenues for performance boost.

Effects of erasing hyperparameters. Many WSOL meth-
ods since CAM have introduced different forms of erasing
to encourage models to extract cues from broader regions
(§5.1). We study the contribution of such hyperparameters
in ADL, HaS, and ACoL in Figure 7. We observe that
the performance improves with higher erasing thresholds
(ADL drop threshold and ACoL erasing threshold). We also
observe that lower drop rates leads to better performances
(ADL and HaS). The erasing hyperparameters introduced
since CAM only negatively impact the performance.

5.5. Few-shot learning baselines

Given that WSOL methods inevitably utilize some form
of full localization supervision (§3), it is important to com-
pare them against the few-shot learning (FSL) baselines that
use it for model tuning itself.

Performances of the FSL baselines (§4.2) are presented
in Table 2. Our simple FSL method performs better than the
vanilla CAM at 10, 5, and 5 fully labeled samples per class
for ImageNet, CUB, and Openlmages, respectively. The
mean FSL accuracy on CUB is 92.0%, which is far better
than that of the maximal WSOL performance of 70.8%.

We compare FSL against CAM at different sizes of
train-fullsup in Figure 8. We simulate the zero-fully-
labeled WSOL performance with a set of randomly cho-
sen hyperparameters (§5.4); for FSL, we simulate the no-
learning performance through the center-gaussian baseline.

FSL baselines surpass the CAM results already at 1-2
full supervision per class for CUB and Openlmages (92.4
and 70.9% MaxBoxAcc and PxAP). We attribute the high
FSL performance on CUB to the fact that all images are
birds; with 1 sample/class, there are effectively 200 birds
as training samples. For Openlmages, the high FSL perfor-
mance is due to the rich supervision provided by pixel-wise
masks. On ImageNet, FSL results are not as great: they
surpass the CAM result at 8-10 samples per class. Overall,
however, FSL performances are strikingly good, even at a
low data regime. Thus, given a few fully labeled samples, it

is perhaps better to train a model with it than to search hy-
perparameters. Only when there is absolutely no full super-
vision (0 fully labeled sample), CAM is meaningful (better
than the no-learning center-gaussian baseline).

6. Discussion and Conclusion

After years of weakly-supervised object localization
(WSOL) research, we look back on the common practice
and make a critical appraisal. Based on a precise defini-
tion of the task, we have argued that WSOL is ill-posed
and have discussed how previous methods have used differ-
ent types of implicit full supervision (e.g. tuning hyperpa-
rameters with pixel-level annotations) to bypass this issue
(§3). We have then proposed an improved evaluation proto-
col that allows the hyperparameter search over a few labeled
samples (§4). Our empirical studies lead to some strik-
ing conclusions: CAM is still not worse than the follow-
up methods (§5.2) and it is perhaps better to use the full
supervision directly for model fitting, rather than for hyper-
parameter search (§5.5).

We propose the following future research directions for
the field. (1) Resolve the ill-posedness via e.g. adding more
background-class images (§3.2). (2) Define the new task,
semi-weakly-supervised object localization, where methods
incorporating both weak and full supervision are studied.

Our work has implications in other tasks where learners
are not supposed to be given full supervision, but are su-
pervised implicitly via model selection and hyperparameter
fitting. Examples include weakly-supervised vision tasks
(e.g. detection and segmentation), zero-shot learning, and
unsupervised tasks (e.g. disentanglement [30]).
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