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Abstract

Visible-infrared person re-identification (VI-ReID) is

an important task in night-time surveillance applications,

since visible cameras are difficult to capture valid appear-

ance information under poor illumination conditions. Com-

pared to traditional person re-identification that handles

only the intra-modality discrepancy, VI-ReID suffers from

additional cross-modality discrepancy caused by different

types of imaging systems. To reduce both intra- and cross-

modality discrepancies, we propose a Hierarchical Cross-

Modality Disentanglement (Hi-CMD) method, which au-

tomatically disentangles ID-discriminative factors and ID-

excluded factors from visible-thermal images. We only use

ID-discriminative factors for robust cross-modality match-

ing without ID-excluded factors such as pose or illumina-

tion. To implement our approach, we introduce an ID-

preserving person image generation network and a hier-

archical feature learning module. Our generation network

learns the disentangled representation by generating a new

cross-modality image with different poses and illuminations

while preserving a person’s identity. At the same time,

the feature learning module enables our model to explic-

itly extract the common ID-discriminative characteristic be-

tween visible-infrared images. Extensive experimental re-

sults demonstrate that our method outperforms the state-of-

the-art methods on two VI-ReID datasets. The source code

is available at: https://github.com/bismex/HiCMD.

1. Introduction

Person re-identification (ReID) aims to match a specific

person across multiple non-overlapping camera views. Due

to its usefulness in security and surveillance systems, per-

son ReID has been of great research interest in recent years.

Existing ReID methods mainly treat visible images cap-

tured by single-modality cameras, and depend on human

appearance for RGB-RGB matching [35, 42, 45, 25, 36, 26].

However, visible light cameras can not capture all the ap-
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Figure 1. (a) Illustration of our Hierarchical Cross-Modality Dis-

entanglement (Hi-CMD) concept. Our Hi-CMD method aims

to hierarchically disentangle ID-discriminative factors (e.g. body

shape and clothes pattern) and ID-excluded factors (e.g. pose

and illumination) from RGB-IR images. (b) Examples of ID-

preserving Person Image Generation (ID-PIG). The images in each

row show that pose and illumination attributes can be changed

while maintaining the identity information. Best viewed in color.

pearance characteristics of a person under poor illumination

conditions. For these conditions, most surveillance cam-

eras automatically switch from visible to the infrared mode

in dark environments [33, 34]. After all, it becomes es-

sential to consider visible-infrared person re-identification

(VI-ReID). The goal of VI-ReID is to match pedestrians

observed from visible and infrared cameras with different

spectra.

Compared to the traditional ReID task that only has the

intra-modality discrepancy problem, VI-ReID encounters

the additional cross-modality discrepancy problem result-

ing from the natural difference between the reflectivity of
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the visible spectrum and the emissivity of the thermal spec-

trum [23]. Eventually, the coexistence of intra- and cross-

modality discrepancies leads to a critical situation where

the intra-class distance is larger than the inter-class dis-

tance in VI-ReID [38, 31]. In this situation, most studies

[33, 37, 39, 2, 38, 9] have attempted to reduce both dis-

crepancies with feature-level constraints like the traditional

ReID methods [28, 27]. It is difficult to eliminate the in-

tractable discrepancies successfully using only feature-level

constraints, since the illumination and pose attributes are

entangled in a single image. More recent research [31] has

attempted to bridge the cross-modality gap using an image-

level constraint. However, they only translate an infrared

(or visible) image into its visible (or infrared) counterpart

without considering intra-modality discrepancy, despite the

insufficient amount of cross-view paired training data.

To mitigate the coexisting intra- and cross-modality dis-

crepancies at the same time, we propose a novel Hierarchi-

cal Cross-Modality Disentanglement (Hi-CMD) method,

as shown in Fig. 1 (a). The goal of our approach is

to hierarchically disentangle ID-excluded factors (i.e. pose

and illumination) and ID-discriminative factors (i.e. body

shape and clothes pattern) from cross-modality images us-

ing image-level constraints. To this end, we introduce the

ID-preserving Person Image Generation (ID-PIG) network.

The ID-PIG network focuses on learning the ID-excluded

feature representation by replacing some latent vectors in

a pair of cross-modality images. As a result, ID-PIG can

transform pose and illumination attributes while preserving

the identity information of a person as visualized in Fig. 1

(b). The visualization results of the ID-PIG network show

that unnecessary information (i.e. pose or illumination at-

tribute) can be separated from entangled representations.

Besides, we introduce the Hierarchical Feature Learn-

ing (HFL) module coupled with the ID-PIG network. This

module enables the encoders in the generator to extract the

common ID-discriminative factors explicitly, which is ro-

bust to pose and illumination variations. It also implic-

itly helps our model separate pose and illumination from

RGB-IR images, which improves image generation qual-

ity. Finally, the ID-discriminative feature is used for solv-

ing the cross-modality image retrieval problem in VI-ReID.

Note that we train a whole network in an end-to-end man-

ner without pose-related supervision (e.g. 3D skeletal pose,

keypoint heatmaps, and pose-guided parsing) compared to

the existing pose generation methods [18, 22, 6, 45, 26].

Our main contributions can be summarized as follows:

• We propose a Hierarchical Cross-Modality Disentan-

glement (Hi-CMD) method. It is an efficient learning

structure that extracts pose- and illumination-invariant

features for cross-modality matching. To the best of

our knowledge, this is the first work to disentangle ID-

discriminative factors and ID-excluded factors simul-

taneously from cross-modality images in VI-ReID.

• The proposed ID-preserving Person Image Generation

(ID-PIG) network makes it possible to change the pose

and illumination attributes while maintaining the iden-

tity characteristic of a specific person. Exploring per-

son attributes through ID-PIG demonstrates the effec-

tiveness of our disentanglement approach.

• Extensive experimental results show that our novel

framework outperforms the state-of-the-art methods

on two VI-ReID datasets. The visualization results

of the ID-PIG network demonstrate the overwhelming

performance of our proposed method.

2. Related Work

Visible-infrared person re-identification. The visible-

infrared person re-identification (VI-ReID) is about match-

ing cross-modality images under different illumination con-

ditions. The VI-ReID task is challenging due to cross-

modality variation in addition to intra-modality variation.

At the beginning of the study, most of the work has fo-

cused on how to design a feature embedding network such

as a deep zero-padding network [33] and a two-stream CNN

network [37]. Recently, adversarial learning [2] or metric

learning methods [39, 9, 38] are applied to learn the feature

representation of heterogeneous person images involving

intra-modality and cross-modality variations. However, it is

difficult to overcome pixel-level differences resulting from

illumination or pose variations by feature-level constraints

alone because of the insufficient data. In contrast to most

existing feature-level approaches, our Hi-CMD method fo-

cuses on an image-level approach by combining an image

generation technique with the VI-ReID task to effectively

bridge both cross-modality and intra-modality gaps.

Person re-identification based on image generation.

Recently, image generation methods by Generative Adver-

sarial Networks (GANs) [8] have drawn a lot of attention

in person ReID. Most of the existing work is categorized

in two ways as follows: pose transfer [18, 22, 6] and style

transfer [32, 19, 5, 31]. The work of the former approach

points out that the existing datasets do not provide suffi-

cient pose coverage to learn a pose-invariant representation.

Accordingly, it addresses this issue by using pose-rich data

augmentation. However, since this work is designed for

a single-modality environment, it is difficult to apply the

pose-guided methods directly to the VI-ReID task.

Another image generation approach in ReID is to reduce

the domain gap between different camera domains based on

unsupervised domain adaptation [32, 19, 5]. Most methods

focus on transforming styles while maintaining the struc-

tural information of the person. In a similar approach, Wang

et al. [31] translate an infrared (or visible) image into its vis-

ible (or infrared) counterpart to reduce the cross-modality
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Figure 2. The framework of our Hi-CMD method. The entire framework includes two important components: the ID-preserving Person

Image Generation (ID-PIG) network and the Hierarchical Feature Learning (HFL) module. Our goal is to disentangle ID-discriminative

factors and ID-excluded factors from cross-modality images. Reconstruction losses are shown in Fig. 3. Best viewed in color.

discrepancy in the VI-ReID task. However, since most style

transfer methods in ReID do not care about the lack of

cross-view paired training data, view-invariant representa-

tions are hardly exploited.

In short, the above image generation methods in ReID

handle only structural information or only convert the im-

age style at the image-level. Unlike single-modality per-

son re-identification, it is more important to consider intra-

modality and cross-modality characteristics simultaneously

in VI-ReID. To this end, we attempt to alleviate the cross-

modality and intra-modality discrepancies at the same time

by applying a novel hierarchical disentanglement approach

even without pose supervision.

Disentangled representation learning for recognition.

The goal of disentangled representation learning is to ex-

tract explanatory factors from diverse data variation for gen-

erating a meaningful representation. Recently, considerable

attention has been focused on learning disentangled rep-

resentations in various fields [12, 7, 13, 24]. Also in the

recognition task, several studies have tried to disentangle

the identity-related information and the identity-irrelevant

information from an image (e.g. pose, viewpoint, age, and

other attributes) [41, 29, 1, 30]. Among them, some pre-

vious works in the single-modality person re-identification

task have been conducted with a purpose of disentangling

foreground, background, and pose factors [20], or extract-

ing illumination-invariant features [40]. Note that the VI-

ReID task is particularly challenging to disentangle the

common identity information and the remaining attributes

from RGB-ID images due to the coexistence of cross-

modality and intra-modality discrepancies. To deal with

both pose and illumination attributes simultaneously, we in-

troduce a novel hierarchical disentanglement approach. To

the best of our knowledge, this is the first work to disentan-

gle ID-discriminative factors and ID-excluding factors (i.e.

pose and illumination attributes) from RGB-IR images in

the VI-ReID task.

3. Proposed Method

3.1. Problem Definition and Overview

Problem definition. We denote the visible image and

the infrared image as x1 ∈ R
H×W×3 and x2 ∈ R

H×W×3

respectively, where H and W are the height and the width

of images. Each of images x1 and x2 corresponds to an

identity label y ∈ {1, 2, ..., N}, where N is the number

of person identities. In the training stage, a feature extrac-

tion network φ(·) is trained with the cross-modality image

sets X1 and X2. In the testing stage, given a query image

with one modality, a ranking list within the gallery set of

the other modality is calculated. The distance between two

feature vectors φ(x1) and φ(x2) is computed by the Eu-

clidean distance.
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Framework overview. In the VI-ReID task, the most

challenging issue is that both cross- and intra-modality dis-

crepancies coexist between visible and infrared images. To

address this issue effectively, we propose a novel Hierarchi-

cal Cross-Modality Disentanglement (Hi-CMD) method.

Our Hi-CMD method aims to disentangle ID-discriminative

factors and ID-excluded factors from cross-modality images

to reduce the cross-modality and intra-modality discrepan-

cies at the same time. To achieve this goal, we introduce two

key components, the ID-preserving Person Image Genera-

tion (ID-PIG) network and the Hierarchical Feature Learn-

ing (HFL) module, as shown in Fig. 2.

3.2. Identity Preserving Person Image Generation

Hierarchical representation. We present the hierarchi-

cal representation of person images for VI-ReID. As illus-

trated in Fig. 2, our ID-PIG network consists of two disen-

tanglement stages. In the first stage, we design a prototype

encoder E
p
i and an attribute encoder Ea

i for each modality

(i = 1 for visible images and i = 2 for infrared images).

These encoders E
p
i and Ea

i map xi to the corresponding

prototype code pi and attribute code ai, respectively. The

prototype code pi is a tensor containing the underlying form

of a person appearance such as clothes pattern and body

shape. On the other hand, the attribute code ai is a vector

including clothes style and changeable attributes depending

on the situation such as pose and illumination. In the second

stage, the attribute code is divided into three types of codes

once more as ai = [as
i ;a

c
i ;a

p
i ], which includes a style

attribute code as
i , an illumination attribute code ac

i , and a

pose attribute code a
p
i . The illumination and pose attribute

codes ac
i and a

p
i correspond to the cross-modality variation

and the intra-modality variation, respectively. Note that we

refer to the visual difference caused by different RGB and

IR cameras as the illumination attribute. For clarity, both

codes ac
i and a

p
i can be integrated into an ID-excluded at-

tribute code as aex
i = [ac

i ;a
p
i ]. In summary, ID-excluded

factors involves the illumination attribute code ac
i and the

pose attribute code a
p
i , while ID-discriminative factors cor-

responds to the style attribute code as
i and the prototype

code pi. This assumption is different from the case of

single-modality re-identification where color information is

the key clue as discussed in [43].

Disentangling ID-excluded factors. In the image gen-

eration process, our primary strategy is to synthesize a pair

of cross-modality images by swapping the ID-excluded fac-

tors of two images with the same ID. Since two cross-

modality images share the same ID characteristic, we can

apply the image reconstruction loss between the translated

image and the cross-modality image. Formally, this cross-

modality reconstruction loss is formulated as follows:

Lcross
recon1 = Ex1∼pdata(x1),

x2∼pdata(x2)
[‖x1 −G(p2,a

s
2,a

ex
1 )‖1] , (1)
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where pi = E
p
i (xi), [a

s
i ;a

ex
i ] = Ea

i (xi), and G denotes

a decoder. The l1 loss encourages the generator to cre-

ate sharp images. From this cross-modality reconstruction

loss, the generator learns how to encode and decode the ID-

excluded factors. To be clear, we only represent the loss for

one modality as Lcross
recon1. Another loss Lcross

recon2 is defined

by changing the index of modalities.

Reconstruction loss. We propose three additional re-

construction losses to improve the generation quality fur-

ther, as expressed in Fig. 3. In addition to the loss of

reconstructing images of different modalities, we apply a

loss to reconstruct images of the same modality. This same-

modality reconstruction loss plays a key role in regulariza-

tion in the generation network, which is formulated as

Lsame
recon1 = Ex1∼pdata(x1)[‖x1 −G(p1,a

s
1,a

ex
1 )‖1] , (2)

where pi = E
p
i (xi) and [as

i ;a
ex
i ] = Ea

i (xi).
We also apply the cycle consistency to regularize the

ill-posed unsupervised image-to-image translation problem

[44]. The cycle reconstruction loss is formulated as follows:

Lcycle
recon1 = Ex1∼pdata(x1),

x2∼pdata(x2)
[‖x1 −G(p̂1, â

s
1, â

ex
1 )‖1] , (3)

where p̂1, âs
1, and âex

1 denote the reconstructed pro-

totype code, the reconstructed style attribute code, and

the reconstructed ID-excluded attribute code, respectively.

p̂1, âs
1, and âex

1 are obtained from E
p
2 (G(p1,a

s
1,a

ex
2 )),

Ea
2 (G(p1,a

s
1,a

ex
2 )), and Ea

1 (G(p2,a
s
2,a

ex
1 )) respectively,

where pi = E
p
i (xi) and [as

i ;a
ex
i ] = Ea

i (xi).
Besides, we apply a code reconstruction loss as follows:

Lcode
recon1 =Ex1∼pdata(x1),

x2∼pdata(x2)
[‖as

1 − âs
1‖1]

+Ex1∼pdata(x1),
x2∼pdata(x2)

[‖aex
1 − âex

1 ‖1] .
(4)

âs
1 and âex

1 are obtained from Ea
2 (G(p1,a

s
1,a

ex
2 )) and

Ea
1 (G(p2,a

s
2,a

ex
1 )), where pi = E

p
i (xi) and [as

i ;a
ex
i ] =
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Ea
i (xi). This loss includes both assumptions that ID-

discriminative factors should be preserved during the cross-

modality reconstruction process as well as ID-excluded fac-

tors should be maintained during the same modality recon-

struction process. The overall losses for reconstruction are

expressed as follows:

Lrecon = λ1L
cross
recon + λ2L

same
recon + λ3L

cycle
recon + λ4L

code
recon,

(5)

where λt, t ∈ {1, 2, 3, 4} controls the relative importance

of four losses. Lcross
recon indicates the sum of Lcross

recon1 and

Lcross
recon2. Other losses Lsame

recon, Lcycle
recon, Lcode

recon are calculated

in the same manner.

KL divergence loss. To help the attribute encoder

Ea learn more informative representations, we utilize the

Kullback-Leibler (KL) divergence loss. This loss encour-

ages the ID-excluded attribute representation to be as close

to a prior Gaussian distribution as follows:

Lkl
1 = Ex1∼p(x1) [DKL(a

ex
1 ‖N(0, 1))] , (6)

where DKL(p‖q) = −
∫

p(z) log p(z)
q(z)dz and [as

1 ;a
ex
1 ] =

Ea
1 (x1). By limiting the distribution range of the cross-

modality and intra-modality characteristics, this KL diver-

gence loss enables ID-excluded attribute codes to change

continuously in the latent space. Lkl
2 is defined in a similar

manner and Lkl = Lkl
1 + Lkl

2 .

Adversarial loss. Since generating realistic images is

crucial for image-to-image translation, we apply an ad-

versarial loss [8] by using the cross-reconstructed images

with different modalities. Two discriminators D1, D2 cor-

responding visible and infrared domains are employed for

adversarial training. In the case of modality 1, the RGB

discriminator D1 distinguishes the real image x1 and the

fake image G(p2,a
s
2,a

ex
1 ) used for cross-modality recon-

struction. The generator tries to synthesize a more realistic

RGB image to fool the discriminator. Accordingly, the ID-

excluded attribute code aex
1 is encouraged to include the

modality characteristic of RGB.

Furthermore, we introduce a new strategy to distin-

guish the cross-modality characteristic (i.e. illumination)

and the intra-modality characteristic (i.e. pose). As men-

tioned above, the ID-excluded attribute code can be divided

into two attribute codes as aex
1 = [ac

1 ;a
p
1]. Our idea is

to swap only the illumination attribute leaving the pose at-

tribute unchanged as G(p2,a
s
2,a

c
1,a

p
2). By feeding this im-

age to the RGB discriminator, the modality characteristic

is concentrated only on the illumination attribute code ac
1.

The remaining intra-modality characteristic across RGB-IR

images is collected in the pose attribute code a
p
2. Adversar-

ial losses are employed to play the minimax game, which is

formulated as follows:

Ladv
1 =Ex1∼pdata(x1),

x2∼pdata(x2)
[log (1−D1(G(p2,a

s
2,a

c
1,a

p
1)))]

+Ex1∼pdata(x1),
x2∼pdata(x2)

[log (1−D1(G(p2,a
s
2,a

c
1,a

p
2)))]

+Ex1∼p(x1) [logD1(x1)] ,

(7)

where pi = E
p
i (xi) and [as

i ;a
c
i ;a

p
i ] = Ea

i (xi). The

generator is trained to minimize (7) while the discrimina-

tor attempts to maximize it. Especially, the parameters of

the discriminator are updated when the parameters of the

generator are fixed. Ladv
2 is defined in a similar way and

Ladv = Ladv
1 + Ladv

2 .

3.3. Hierarchical Feature Learning

As illustrated in Fig. 2, our Hierarchical Feature Learn-

ing (HFL) module is coupled with ID-PIG by sharing the

prototype and attribute encoders. This module enables both

encoders to extract the common ID-discriminative factors

between RGB-IR images. At the same time, this feature

learning process implicitly assists in separating intra- and

cross-modality characteristics from cross-modality images

and enhances the quality of image generation.

Re-entangling ID-discriminative factors. We intro-

duce the ID-discriminative feature by concatenating the

style attribute code and the prototype code to distinguish

person identities. Compared to using one of the two

codes, the combination of both codes with different char-

acteristics encourages the network to learn rich represen-

tations of a person’s identity. Given the prototype tensor

pi from the prototype encoder E
p
i , the feature embedding

network H projects it to the ID-discriminative prototype

code pd
i , where pd

i = H(pi). We then concatenate the

ID-discriminative prototype code pd
i and the style attribute

code as
i with a learnable parameter α ∈ [0, 1], which is

expressed as dcomb
i =

[

α·pd
i ; (1− α)·as

i

]

. Then, the com-

bined code dcomb
i is feed into a fully connected layer. In the

testing phase, we use the output f of the fully connected

layer for cross-modality retrieval with the Euclidean dis-

tance.

Alternate sampling strategy. We form a set of training

feature vectors f ∈ F by selecting various types of style

attribute codes and prototype codes alternately. This alter-

nate sampling strategy improves the discrimination ability

by overcoming the lack of diversity in the training dataset.

We alternately combine style attribute codes as and proto-

type codes pd extracted from the original images x1, x2 and

the cross-reconstructed images x1→2 = G(p1,a
s
1,a

c
2,a

p
2),

x2→1 = G(p2,a
s
2,a

c
1,a

p
1). Note that the attribute and pro-

totype codes for combination must be of the same person.

Cross-entropy loss. Given a set of training feature vec-

tors with the identity annotation {fi, yi}, we use the cross-

entropy loss for ID-discriminative learning, which is ex-

pressed as follows:

Lce = Ef∈F,y∼Y [− log(p(y|f))] , (8)
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where p(y|f) indicates the predicted probability of a sam-

pled feature vector f belonging to the identity y.

Triplet loss. For similarity learning, we also employ the

triplet loss. The triplet loss is expressed as follows:

Ltrip =
∑

fa,fp,fn∈F

[d(fa,fp)− d(fa,fn) +m]+ , (9)

where fa, fp, and fn indicate anchor, positive, and nega-

tive samples. d(·, ·) is the Euclidean distance, m is a mar-

gin parameter, and [z]+ = max(z, 0). For each sample

fa in the set F , we select the hardest positive sample fp

and the hardest negative samples fn within the batch in the

same way as [11]. The triplet loss forces intra-class sam-

ples closer and inter-class samples farther. As a result, the

cross-entropy and triplet losses help the encoder to clearly

disentangle ID-discriminative factors and ID-excluded fac-

tors from RGB-IR images.

End-to-end training. As a summary, the overall loss for

our Hi-CMD method is expressed as follows:

L = Lrecon + λklL
kl + λadvL

adv + λceL
ce + λtripL

trip,

(10)
where λkl, λadv , λce, and λtrip are hyperparameters to con-

trol the relative importance of loss terms. We train the

whole network to optimize the total loss in an end-to-end

manner. For adversarial learning, we alternatively train the

parameters of discriminators and the remaining parameters.

3.4. Discussion

We compare Hi-CMD with the most related disentangle-

ment approach DG-Net [43]. DG-Net is similar to our pro-

posed Hi-CMD in that both methods combine an image gen-

eration network with a discriminative learning module in

an end-to-end manner. However, the disentangled elements

and the feature vectors used for person ReID are entirely

different. While DG-Net decomposes each RGB image into

appearance and structure codes, our Hi-CMD hierarchically

disentangles ID-discriminative factors and ID-excluded fac-

tors including pose and illumination attributes from RGB-

IR images. In addition, DG-Net only uses an appearance

code where color information is vital to distinguish people.

However, since this factor is not feasible in the VI-ReID

task, we manage the ID-discriminative information between

RGB-IR images by hierarchical disentanglement. This hier-

archical approach is more useful for extracting the common

ID-discriminative feature.

4. Experiments

4.1. Datasets and Settings

Datasets. Extensive experiments were conducted on two

widely used VI-ReID datasets, RegDB [21] and SYSU-

MM01 [33]. We followed the RegDB evaluation proto-

col in [37, 39] and the SYSU-MM01 evaluation protocol

Datasets RegDB [21] SYSU-MM01 [33]

Methods R=1 R=10 mAP R=1 R=10 mAP

HOG [3] 13.49 33.22 10.31 2.76 18.25 4.24

LOMO [15] 0.85 2.47 2.28 1.75 14.14 3.48

MLBP [16] 2.02 7.33 6.77 2.12 16.23 3.86

GSM [17] 17.28 34.47 15.06 5.29 33.71 8.00

SVDNet [27] 17.24 34.12 19.04 14.64 53.28 15.17

PCB [28] 18.32 36.42 20.13 16.43 54.06 16.26

One stream [33] 13.11 32.98 14.02 12.04 49.68 13.67

Two stream [33] 12.43 30.36 13.42 11.65 47.99 12.85

Zero padding [33] 17.75 34.21 18.90 14.80 54.12 15.95

TONE [37] 16.87 34.03 14.92 12.52 50.72 14.42

TONE+HCML[37] 24.44 47.53 20.80 14.32 53.16 16.16

BCTR [39] 32.67 57.64 30.99 16.12 54.90 19.15

BDTR [39] 33.47 58.42 31.83 17.01 55.43 19.66

eBDTR(alex) [38] 34.62 58.96 33.46 22.42 64.61 24.11

eBDTR(resnet) [38] 31.83 56.12 33.18 27.82 67.34 28.42

cmGAN [2] - - - 26.97 67.51 27.80

D2RL [31] 43.40 66.10 44.10 28.90 70.60 29.20

HSME [9] 41.34 65.21 38.82 18.03 58.31 19.98

D-HSME [9] 50.85 73.36 47.00 20.68 62.74 23.12

Ours (Hi-CMD) 70.93 86.39 66.04 34.94 77.58 35.94

Table 1. Comparison with the state-of-the-arts on RegDB and

SYSU-MM01 datasets. Re-identification rates (%) at rank R and

mAP (%). 1st and 2
nd best results are indicated by red and blue

color, respectively.

in [33]. The RegDB dataset consists of 2,060 visible im-

ages and 2,060 far-infrared images with 206 identities for

training. The testing set contains 206 identities with 2,060

visible images for the query and 2,060 far-infrared images

for the gallery. We repeated 10 trials with a random split to

achieve statistically stable results. The SYSU dataset con-

tains 22,258 visible images and 11,909 near-infrared images

of 395 identities for training. The testing set includes 96

identities with 3,803 near-infrared images for the query and

301 visible images as the gallery set. The SYSU dataset

is collected by six cameras (four visible and two near-

infrared), including indoor and outdoor environments. We

adopted the most challenging single-shot all-search mode

and repeated the above evaluation 10 trials with a random

split of the gallery and probe set.

Evaluation metrics. Two popular evaluation metrics are

adopted: Cumulative Matching Characteristic (CMC) and

mean Average Precision (mAP). The rank-k identification

rate in the CMC curve indicates the cumulative rate of true

matches in the top-k position. The other evaluation metric

is the mean average precision (mAP), considering person

re-identification as a retrieval task.

Implementation details. Our method is implemented

with the Pytorch framework on an NVIDIA Titan Xp GPU.

Visible and infrared images are resized to 256 × 128 × 3.

Each mini-batch contains 4 pairs of visible and infrared im-

ages with different identities. The reconstruction parame-

ters λ1, λ2, λ3, λ4 in (5) were set to 50, 50, 50, 10, respec-

tively. The parameters λkl, λadv, λce, λtrip in (10) were set

to 1, 20, 1, 1, respectively. We used Stochastic Gradient
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Figure 4. Qualitative comparison between image generation net-

works for various loss combinations on RegDB and SYSU-MM01.

Zoom in for best view.

Descent with the learning rate 0.001 and momentum 0.9 to

optimize the HFL module. We adopted the Adam optimizer

[14] with the learning rate 0.0001 for the ID-PIG network.

The ID-PIG framework is modified based on MUNIT [12]

and the feature embedding network H is based on ResNet-

50 [10] pretrained on ImageNet [4]. For more details, please

refer to the supplementary material.

4.2. Comparison with Stateoftheart Methods

Comparison with conventional methods. We compare

our method with conventional methods, which are not de-

signed for VI-ReID. Feature extraction (HOG [3], LOMO

[15], MLBP [16]), cross-domain matching (GSM [17]), and

RGB-based person ReID (SVDNET [27], PCB [28]) meth-

ods are included for comparison. Table 1 shows that all

methods have relatively poor performance. Although the

PCB method achieves high performance in single-modality

person ReID, a significant performance drop is inevitable

in the VI-ReID task. Note that a pixel-level difference be-

tween visible and infrared images is challenging to deal

with at the feature-level representation.

Comparison with state-of-the-arts. We compare our

method with the state-of-the-art methods in VI-ReID. The

competing methods include feature learning frameworks

(one-stream, two-stream, zero-padding [33], and TONE

[37]), ranking losses (BCTR [39], BDTR [39], eBDTR

[38]), metric learning (HCML [37], HSME [9], D-HSME

[9]), reducing distribution divergence (cmGAN [2]), and

image generation (D2RL [31]) methods. Our model

achieves 70.93% rank-1 identification rate and 66.04%

mAP score on the RegDB dataset [21], and 34.94% rank-

1 identification rate and 35.94% mAP score on the SYSU-

MM01 dataset [33]. Our method significantly outperforms

the state-of-the-art VI-ReID methods on both the RegDB

and SYSU-MM01 datasets. This comparison indicates the

effectiveness of our disentanglement approach for bridging

the cross-modality and intra-modality gaps. Moreover, this

improvement in performance can be analyzed by the visu-

alization of ID-discriminative factors, which is discussed in

Section 4.4.

R
eg

D
B

S
Y

S
U

-M
M

01

Initial

: Inter-class
: Intra-class

Only CE
(original set)

CE + TRIP
 (original set)

Feature distance

F
re

qu
en

cy

CE + TRIP
 (alternate set)

Figure 5. The distribution of the Euclidean distance between cross-

modality (RGB-IR) features. The intra-class and inter-class dis-

tances are indicated by red and green color, respectively.

Methods RegDB SYSU-MM01

Input set Loss Feature R=1 mAP R=1 mAP

Original CE A+P 36.36 33.47 18.65 19.49

Original CE+TRIP A 15.33 15.37 6.05 7.74

Original CE+TRIP P 49.02 45.75 22.51 23.73

Original CE+TRIP A+P 53.25 49.53 29.19 30.53

Alternate CE+TRIP A+P 70.93 66.04 34.94 35.94

Table 2. Component analysis of our HFL module on RegDB and

SYSU-MM01 datasets. A and P represent the style attribute code

and the prototype code respectively, which are used to train HFL.

4.3. Further Evaluations and Analysis

Impact of image generation losses. We performed an

ablation study of our ID-preserving Person Image Genera-

tion (ID-PIG) network. To evaluate image generation losses

qualitatively, we compare four variations of ID-PIG: 1) our

best model with all components; 2) removing the recon-

struction loss Lsame
recon; 3) removing the disentanglement loss

Lcross
recon; 4) removing the adversarial loss Ladv . The network

structure and training strategy remain the same for all set-

tings. Figure 4 shows the results of this image translation

experiment. The samples are randomly selected from the

testing set. We observe that the generated images can con-

tain unpleasant artifacts such as blurriness or color shifts

if one kind of loss is excluded from the training process.

On the other hand, the results generated by our ID-PIG net-

work with all components show more a realistic and sharp

appearance regardless of the modalities are changed or not.

Effectiveness of hierarchical feature learning. We

study the several variants of the Hierarchical Feature Learn-

ing (HFL) module on both datasets to demonstrate the ef-

fectiveness of our hierarchical disentanglement approach.

Figure 5 shows the distribution of the Euclidean distances

between RGB-IR images from the testing set. Compared to

the initial state, the HFL module based on an alternate sam-

pling strategy minimizes the intra-class distance and maxi-

mizes the inter-class distance simultaneously. Moreover, as

shown in Table 2, the use of the alternate sampling strategy
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