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Abstract

Image composition is an important operation in image

processing, but the inconsistency between foreground and

background significantly degrades the quality of compos-

ite image. Image harmonization, aiming to make the fore-

ground compatible with the background, is a promising

yet challenging task. However, the lack of high-quality

publicly available dataset for image harmonization greatly

hinders the development of image harmonization tech-

niques. In this work, we contribute an image harmonization

dataset iHarmony4 by generating synthesized composite

images based on COCO (resp., Adobe5k, Flickr, day2night)

dataset, leading to our HCOCO (resp., HAdobe5k, HFlickr,

Hday2night) sub-dataset. Moreover, we propose a new

deep image harmonization method DoveNet using a novel

domain verification discriminator, with the insight that

the foreground needs to be translated to the same do-

main as background. Extensive experiments on our con-

structed dataset demonstrate the effectiveness of our pro-

posed method. Our dataset and code are available at

https://github.com/bcmi/Image Harmonization Datasets.

1. Introduction

Image composition targets at generating a composite im-

age by extracting the foreground of one image and pasting

it on the background of another image. However, since

the foreground is usually not compatible with the back-

ground, the quality of composite image would be signifi-

cantly downgraded. To address this issue, image harmo-

nization aims to adjust the foreground to make it compat-

ible with the background in the composite image. Both

traditional methods [20, 47, 54] and deep learning based

method [43, 45] have been explored for image harmoniza-

tion, in which deep learning based method [43, 45] could

achieve promising results.

As a data-hungry approach, deep learning calls for a
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large number of training pairs of composite image and har-

monized image as input image and its ground-truth output.

However, given a composite image, manually creating its

harmonized image, i.e., adjusting the foreground to be com-

patible with background, is in high demand for extensive

efforts of skilled expertise. So this strategy of construct-

ing datasets is very time-consuming and expensive, making

it infeasible to generate large-scale training data. Alterna-

tively, as proposed in [43], we can treat a real image as

harmonized image, segment a foreground region, and ad-

just this foreground region to be inconsistent with the back-

ground, yielding a synthesized composite image. Then,

pairs of synthesized composite image and real image can

be used to supersede pairs of composite image and harmo-

nized image. Because foreground adjustment can be done

automatically (e.g., color transfer methods) without time-

consuming expertise editing, it becomes feasible to collect

large-scale training data. Despite this inspiring strategy

proposed in [43], Tsai et al. [43] did not make the con-

structed datasets publicly available. Besides, the proposed

dataset has several shortcomings, such as inadequate diver-

sity/realism of synthesized composite images and lack of

real composite images.

Considering the unavailability and shortcomings of the

dataset built in [43], we tend to build our own stronger

dataset. Overall, we adopt the strategy in [43] to gener-

ate pairs of synthesized composite image and real image.

Similar to [43], we generate synthesized composite im-

ages based on Microsoft COCO dataset [24], MIT-Adobe5k

dataset [2], and our self-collected Flickr dataset. For Flickr

dataset, we crawl images from Flickr image website by us-

ing the category names in ImageNet dataset [5] as queries

in order to increase the diversity of crawled images. Nev-

ertheless, not all crawled images are suitable for the image

harmonization task. So we manually filter out the images

with pure-color or blurry background, the cluttered images

with no obvious foreground objects, and the images which

appear apparently unrealistic due to artistic editing.

Besides COCO, Adobe5k, and Flickr suggested in [43],

we additionally consider datasets which contain multiple
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images captured in different conditions for the same scene.

Such datasets are naturally beneficial for image harmoniza-

tion task because composite images can be easily generated

by replacing the foreground region in one image with the

same foreground region in another image. More impor-

tantly, two foreground regions are both from real images

and thus the composite image is actually a real compos-

ite image. However, to the best of our knowledge, there

are only a few available datasets [40, 53, 18] within this

scope. Finally, we choose day2night dataset [18], because

day2night provides a collection of aligned images captured

in a variety of conditions (e.g., weather, season, time of

day) for each scene. According to the names of origi-

nal datasets, we refer to our constructed sub-datasets as

HCOCO, HAdobe5k, HFlickr, and Hday2night, with “H”

standing for “Harmonization”. All four sub-datasets com-

prise a large-scale image harmonization dataset. The details

of constructing four sub-datasets and the difference from

[43] will be fully described in Section 3.

As another contribution, we propose DoveNet, a new

deep image harmonization method with a novel domain ver-

ification discriminator. Given a composite image, its fore-

ground and background are likely to be captured in dif-

ferent conditions (e.g., weather, season, time of day), and

thus have distinctive color and illumination characteristics,

which make them look incompatible. Following the ter-

minology in domain adaptation [32, 29] and domain gen-

eralization [31, 30], we refer to each capture condition as

one domain and there could be numerous possible domains.

In this case, the foreground and background of a compos-

ite image belong to two different domains, while the fore-

ground and background of a real image belong to the same

domain. Therefore, the goal of image harmonization, i.e.,

adjusting the foreground to be consistent with background,

can be deemed as translating the domain of foreground to

the same one as background without knowing the domain

labels of foreground and background. Inspired by adver-

sarial learning [9, 11], we propose a domain verification

discriminator to pull close the domains of foreground and

background in a harmonized image. Specifically, we treat

the paired foreground and background representations of a

real (resp., composite) image as a positive (resp., negative)

pair. On the one hand, we train the discriminator to dis-

tinguish positive pairs from negative pairs. On the other

hand, the generator is expected to produce a harmonized

image, which can fool the discriminator into perceiving its

foreground-background pair as positive. To verify the effec-

tiveness of our proposed domain verification discriminator,

we conduct comprehensive experiments on our constructed

dataset. Our main contributions are summarized as follows:

• We release the first large-scale image harmonization

dataset iHarmony4 consisting of four sub-datasets:

HCOCO, HAdobe5K, HFlickr, and Hday2night.

• We are the first to introduce the concept of domain

verification, and propose a new image harmonization

method DoveNet equipped with a novel domain verifi-

cation discriminator.

2. Related Work

In this section, we review the development of image har-

monization. Besides, as image harmonization is a special

case of image-to-image translation, we discuss other related

applications in this realm.

Image Harmonization: Traditional image harmoniza-

tion methods concentrated on better matching low-level ap-

pearance statistics, such as matching global and local color

distributions [35, 37], mapping to predefined perceptually

harmonious color templates [4], applying gradient-domain

compositing [34, 14, 42], and transferring multi-scale vari-

ous statistics [41]. To link lower-level image statistics with

higher-level properties, visual realism of composite images

is further considered in [20, 47].

Recently, Zhu et al. [54] trained a CNN model to per-

form realism assessment of composite images and applied

the model to improve realism. Tsai et al. [43] proposed

the first end-to-end CNN network to directly produce har-

monized images, in which an extra segmentation branch is

used to incorporate semantic information. In [45], an atten-

tion module was proposed to learn the attended foreground

and background features separately. Different from these

existing methods, our proposed method aims to translate

the foreground domain to the background domain by using

a domain verification discriminator.

Image-to-Image Translation: A variety of tasks that

map an input image to a corresponding output image are

collectively named image-to-image translation, such as im-

age super-resolution [15, 16, 22], inpainting [33, 50], col-

orization [51, 21], denoising [26], de-blurring [46], dehaz-

ing [38, 3], demo-saicking [8], decompression [6], and few-

shot image generation [10]. However, there are still limited

deep-learning based research in image harmonization field.

Moreover, several general frameworks of image-to-

image translation have also been proposed [11, 27, 49]. For

the tasks with paired training data, Among them, paired

GANs like [11] designed for paired training data can be ap-

plied to image harmonization, but they do not consider the

uniqueness of image harmonization problem. Our model

extends paired GAN with a domain verification discrimina-

tor, which goes beyond conventional paired GAN.

3. Dataset Construction

In this section, we will fully describe the data acquisition

process to build our dataset iHarmony4. Based on real im-

ages, we first generate composite images and then filter out

the unqualified composite images.
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(a) Microsoft COCO & Flickr (b) MIT-Adobe Fivek & day2night

Figure 1: The illustration of our data acquisition process. (a) On Miscrosoft COCO and Flickr datasets, given a target image

It with foreground object Ot, we find a reference image Ir with foreground object Or from the same category as Ot, and

then transfer color information from Or to Ot. (b) On MIT-Adobe5k and day2night datasets, given a target image It with

foreground object Ot, we find its another version Ir (edited to present a different style or captured in a different condition)

and overlay Ot with the corresponding Or at the same location in Ir.

3.1. Composite Image Generation

The process of generating synthesized composite image

from a real image has two steps: foreground segmentation

and foreground adjustment, as illustrated in Figure 1.

Foreground Segmentation: For COCO dataset, we use the

provided segmentation masks for 80 categories. The other

datasets (i.e., Adobe5k, Flickr, and day2night) are not asso-

ciated with segmentation masks, so we manually segment

one or more foreground regions for each image.

On all four sub-datasets, we ensure that each foreground

region occupies a reasonable area of the whole image and

also attempt to make the foreground objects cover a wide

range of categories.

Foreground Adjustment: After segmenting a foreground

region Ot in one image It, we need to adjust the appearance

of Ot. For ease of description, It is dubbed as target image.

As suggested in [43], another image Ir containing the fore-

ground region Or is chosen as reference image. Then, color

information is transferred from Or to Ot, leading to a syn-

thesized composite image Ĩt.

For Adobe5k dataset, each real image is retouched by

five professional photographers, so one real target image It
is accompanied by five edited images {Ii|

5

i=1
} in different

styles. We could randomly select Ir from {Ii|
5

i=1
} and over-

lay Ot in It with the corresponding region Or at the same

location in Ir.

For day2night dataset, each scene is captured in different

conditions, resulting in a series of aligned images {Ii|
n
i=1

}.

Similar to Adobe5k, a target image It and a reference image

Ir could be randomly selected from {Ii|
n
i=1

}, followed by

overlaying Ot in It with the corresponding region Or in Ir.

However, different from Adobe5k, we need to make sure

that Ot and Or are the same object without essential change.

For example, moving objects (e.g., person, animal, car) in

It may move or disappear in Ir. Besides, even the static

objects (e.g. building, mountain) in It may be different from

those in Ir, like building with lights on in It while lights off

in Ir. The above foreground changes come from the objects

themselves instead of the capture condition, and thus we

exclude those pairs from our dataset.

For COCO and Flickr datasets, since they do not have

aligned images, given a target image It with foreground

Ot, we randomly select a reference image Ir with fore-

ground Or belonging to the same category as Ot. For

COCO dataset with segmentation annotations for 80 cate-

gories, given It in COCO, we retrieve Ir from COCO it-

self. For Flickr dataset without segmentation annotations,

we use ADE20K pretrained scene-parsing model [52] to ob-

tain the dominant category label of Ot and retrieve Ir from

ADE20K dataset [52]. Then, as suggested in [43], we apply

color transfer method to transfer color information from Or

to Ot. Nevertheless, the work [43] only utilizes one color

transfer method [23], which limits the diversity of gener-

ated images. Considering that color transfer methods can

be categorized into four groups based on parametric/non-

parametric and correlated/decorrelated color space, we se-

lect one representative method from each group, i.e., para-

metric method [37] (resp., [44]) in decorrelated (resp., cor-

related) color space and non-parametric method [7] (resp.,

[36]) in decorrelated (resp., correlated) color space. Given a

pair of Ot and Or, we randomly choose one from the above

four color transfer methods.

3.2. Composite Image Filtering

Through foreground segmentation and adjustment, we

can obtain a large amount of synthesized composite images.

However, some of the synthesized foreground objects look

unrealistic, so we use aesthetics prediction model [17] to

remove unrealistic composite images. To further remove

8396



Figure 2: Illustration of DoveNet architecture, which consists of (a) attention enhanced U-Net generator, (b) global discrimi-

nator, and (c) our proposed domain verification discriminator.

unrealistic composite images, we train a binary CNN clas-

sifier by using the real images as positive samples and the

unrealistic composite images identified by [17] as negative

samples. When training the classifier, we also feed fore-

ground masks into CNN for better performance.

After two steps of automatic filtering, there are still some

remaining unrealistic images. Thus, we ask human anno-

tators to remove the remaining unrealistic images manu-

ally. During manual filtering, we also consider another two

critical issues: 1) for COCO dataset, some selected fore-

ground regions are not very reasonable such as highly oc-

cluded objects, so we remove these images; 2) for COCO

and Flickr datasets, the hue of some foreground objects are

vastly changed after color transfer, which generally happens

to the categories with large intra-class variance. For exam-

ple, a red car is transformed into a blue car, or a man in red

T-shirt is transformed into a man in green T-shirt. This type

of color transfer is not very meaningful for image harmo-

nization task, so we also remove these images.

3.3. Differences between Our Dataset and [43]

Our dataset iHarmony4 is an augmented and enhanced

version of the dataset in [43]: 1) Our dataset contains an

additional sub-dataset Hday2night, which is not considered

in [43]. Unlike the other three sub-datasets, Hday2night

consists of real composite images, which is closer to real-

world application; 2) Besides, we also attempt to address

some issues not considered in [43], such as the diversity

and quality issues of synthesized composite images; 3) We

apply both well-designed automatic filtering and deliberate

manual filtering to guarantee the high quality of our dataset.

4. Our Method

Given a real image I , we have a corresponding com-

posite image Ĩ , where the foreground mask M indicates

the region to be harmonized and the background mask is

M̄ = 1−M . Our goal is to train a model that reconstructs

I with a harmonized image Î , which is expected to be as

close to I as possible.

We leverage the GAN [9] framework to generate plau-

sible and harmonious images. As demonstrated in Figure

2, in DoveNet, we use an attention enhanced U-Net gener-

ator G, which takes (Ĩ ,M) as inputs and outputs a harmo-

nized image Î . Besides, we use two different discriminators

Dg and Dv to guide G for generating more realistic and

harmonious images. The first discriminator Dg is a tradi-

tional global discriminator, which discriminates real images

and generated images. The second discriminator Dv is our

proposed domain verification discriminator, which verifies

whether the foreground and background of a given image

come from the same domain.
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4.1. Attention Enhanced Generator

Our generator G is based on U-Net [39] with skip links

from encoders to decoders. Inspired by [45], we leverage at-

tention blocks to enhance U-Net. Specifically, we first con-

catenate encoder and decoder features, based on which full

attention [48] (integration of spatial attention and channel

attention) is learnt for encoder feature and decoder feature

separately. Then, we concatenate the attended encoder and

decoder features. In total, we insert three attention blocks

into U-Net as depicted in Figure 2 and the details of atten-

tion block can be found in Supplementary. We enforce the

generated image Î = G(Ĩ ,M) to be close to ground-truth

real image I by Lrec = ‖Î − I‖1.

4.2. Global Discriminator

The global discriminator Dg is designed to help G gener-

ate plausible images, which takes I as real images and Î as

fake images. Following [28], we apply spectral normaliza-

tion after each convolutional layer and leverage hinge loss

for stabilizing training, which is given by

LDg
= E[max(0, 1−Dg(I))] + E[max(0, 1 +Dg(Î))],

LGg
= −E[Dg(G(Ĩ ,M))].

(1)

When training Dg by minimizing LDg
, Dg is encouraged

to produce large (resp., small) scores for real (resp., gen-

erated) images. While training G by minimizing LGg
, the

generated images are expected to fool Dg and obtain large

scores.

4.3. Domain Verification Discriminator

Besides the global discriminator, we also design a do-

main verification discriminator to verify whether the fore-

ground and background of a given image belong to the

same domain. As discussed in Section 1, the foreground

and background of a real (resp., composite) image are cap-

tured in the same condition (resp., different conditions), and

thus belong to the same domain (resp., different domains),

which is dubbed as a positive (resp., negative) foreground-

background pair.

To extract domain representation for foreground and

background, we adopt partial convolution [25], which is

well-tailored for image harmonization task. Partial convo-

lution only aggregates the features from masked regions,

which can avoid information leakage from unmasked re-

gions or invalid information corruption like zero padding.

Our domain representation extractor F is formed by stack-

ing partial convolutional layers, which leverages the advan-

tage of partial convolution to extract domain information for

foreground and background separately.

Formally, given a real image I , let If = I ◦ M (resp.,

Ib = I ◦ M̄ ) be the masked foreground (resp., background)

image, in which ◦ means element-wise product. Domain

representation extractor F (If ,M) (resp., F (Ib, M̄)) ex-

tracts the foreground representation lf (resp., lb) based on

If (resp., Ib) and M (resp., M̄ ). Similarly, given a harmo-

nized image Î , we apply the same domain representation

extractor F to extract its foreground representation l̂f and

background representation l̂b.

After obtaining domain representations, we calculate the

domain similarity Dv(I,M) = lf · lb (resp., Dv(Î ,M) =

l̂f · l̂b) as the verification score for the real (resp., generated)

images, where · means inner product. In analogy to (1), the

loss functions w.r.t. the domain verification discriminator

can be written as

LDv
= E[max(0, 1−Dv(I,M))]

+ E[max(0, 1 +Dv(Î ,M))],

LGv
= −E[Dv(G(Ĩ ,M),M)].

(2)

When training Dv by minimizing LDv
, Dv is encour-

aged to produce large (resp., small) scores for positive

(resp., negative) foreground-background pairs. While train-

ing G by minimizing LGv
, the generated images are ex-

pected to fool Dv and obtain large scores. By matching the

foreground domain with the background domain, the gen-

erated images are expected to have compatible foreground

and background. So far, the total loss function for training

generator G is

LG = Lrec + λ(LGg
+ LGv

), (3)

in which the trade-off parameter λ is set as 0.01 in our ex-

periments. Similar to GAN [9], we update generator G and

two discriminators Dg, Dv alternatingly. Due to the usage

of DOmain VErification (DOVE) discriminator, we name

our method as DoveNet.

5. Experiments

In this section, we analyze the statistics of our con-

structed iHarmony4 dataset. Then, we evaluate baselines

and our proposed DoveNet on our constructed dataset.

5.1. Dataset Statistics

HCOCO: Microsoft COCO dataset [24] contains 118k im-

ages for training and 41k for testing. It provides the ob-

ject segmentation masks for each image with 80 object cat-

egories annotated in total. To generate more convincing

composites, training set and test set are merged together

to guarantee a wider range of available references. Based

on COCO dataset, we build our HCOCO sub-dataset with

42828 pairs of synthesized composite image and real image.

HAdobe5k: MIT-Adobe5k dataset [2] covers a wide range

of scenes, objects, and lighting conditions. For all the 5000

photos, each of them is retouched by five photographers,
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Sub-dataset HCOCO HAdobe5k HFlickr Hday2night All

Evaluation metric MSE↓ PSNR↑ MSE↓ PSNR↑ MSE↓ PSNR↑ MSE↓ PSNR↑ MSE↓ PSNR↑
input composite 69.37 33.94 345.54 28.16 264.35 28.32 109.65 34.01 172.47 31.63

Lalonde and Efros[20] 110.10 31.14 158.90 29.66 329.87 26.43 199.93 29.80 150.53 30.16

Xue et al.[47] 77.04 33.32 274.15 28.79 249.54 28.32 190.51 31.24 155.87 31.40

Zhu et al.[54] 79.82 33.04 414.31 27.26 315.42 27.52 136.71 32.32 204.77 30.72

DIH [43] 51.85 34.69 92.65 32.28 163.38 29.55 82.34 34.62 76.77 33.41

S2AM [45] 41.07 35.47 63.40 33.77 143.45 30.03 76.61 34.50 59.67 34.35

DoveNet 36.72 35.83 52.32 34.34 133.14 30.21 54.05 35.18 52.36 34.75

Table 1: Results of different methods on our four sub-datasets. The best results are denoted in boldface.

Sub-dataset HCOCO HAdobe5k HFlickr Hday2night

#Training 38545 19437 7449 311

#Test 4283 2160 828 133

Table 2: The numbers of training and test images on our

four sub-datasets.

producing five different renditions. We use 4329 images

with one segmented foreground object in each image to

build our HAdobe5k sub-dataset, resulting in 21597 pairs

of synthesized composite image and real image.

HFlickr: Flickr website is a public platform for upload-

ing images by amateur photographers. We construct our

HFlickr sub-dataset based on crawled 4833 Flickr images

with one or two segmented foreground object in each image.

Our HFlickr sub-dataset contains 8277 pairs of synthesized

composite image and real image.

Hday2night: Day2night dataset [53] collected from

AMOS dataset [13] contains images taken at different times

of the day with fixed webcams. There are 8571 images of

101 different scenes in total. We select 106 target images

from 80 scenes with one segmented foreground object in

each image to generate composites. Due to the stringent

requirement mentioned in Section 3.1, we only obtain 444

pairs of synthesized composite image and real image, with-

out degrading the dataset quality.

For each sub-dataset (i.e., HCOCO, HAdobe5k, HFlickr,

and Hday2night), all pairs are split into training set and test

set. We ensure that the same target image does not appear

in the training set and test set simultaneously, to avoid that

the trained model simply memorize the target image. The

numbers of training and test images in four sub-datasets are

summarized in Table 2. The sample images and other statis-

tics are left to Supplementary due to space limitation.

5.2. Implementation Details

Following the network architecture in [12], we apply

eight downsample blocks inside the generator, in which

each block contains a convolution with a kernel size of four

and stride of two. After the convolution layers, we ap-

ply LeakyReLU activation and instance normalization layer.

We use eight deconvolution layers to upsample the feature

to generate images. For global (resp., verification) discrim-

inator, we use seven convolutional (resp., partial convolu-

tional) layers and LeakyReLU is applied after all the con-

volutional layers before the last one in both discriminators.

We use Adam optimizer with learning rate 0.002. Follow-

ing [43], we use Mean-Squared Errors (MSE) and PSNR

scores on RGB channels as the evaluation metric. We re-

port the average of MSE and PSNR over the test set. We

resize the input images as 256 × 256 during both training

and testing. MSE and PSNR are also calculated based on

256× 256 images.

5.3. Comparison with Existing Methods

We compare with both traditional methods [20, 47] and

deep learning based methods [54, 43, 45]. Although Zhu

et al. [54] is a deep learning based method, it relies on the

pretrained aesthetic model and does not require our train-

ing set. DIH [43] originally requires training images with

segmentation masks, which are not available in our prob-

lem. Therefore, we compare with DIH by removing its

semantic segmentation branch, because we focus on pure

image harmonization task without using any auxiliary in-

formation. For all baselines, we conduct experiments with

their released code if available, and otherwise based on our

own implementation.

Following [43], we merge the training sets of all four

sub-datasets as a whole training set to learn the model,

which is evaluated on the test set of each sub-dataset and

the whole test set. The results of different methods are

summarized in Table 1, from which we can observe that

deep learning based methods using our training set [43, 45]

are generally better than traditional methods [20, 47], which

demonstrates the effectiveness of learning to harmonize im-

ages from paired training data. We also observe that S2AM

is better than DIH, which shows the benefit of its proposed

attention block. Our DoveNet outperforms all the baselines

by a large margin and achieves the best results on all four

sub-datasets, which indicates the advantage of our domain

verification discriminator.
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Sub-dataset HCOCO HAdobe5k HFlickr Hday2night All

Evaluation metric MSE↓ PSNR↑ MSE↓ PSNR↑ MSE↓ PSNR↑ MSE↓ PSNR↑ MSE↓ PSNR↑
U-Net 46.87 34.30 77.16 32.34 160.17 29.25 57.60 34.25 68.57 33.16

U-Net+att 43.13 35.15 57.52 33.83 159.99 29.56 56.40 34.89 61.15 34.13

U-Net+att+adv 38.44 35.54 54.56 34.08 143.03 29.99 55.68 34.72 55.15 34.48

U-Net+att+ver 39.79 35.33 53.84 34.19 136.60 30.04 55.64 34.94 55.00 34.40

U-Net+att+adv+ver 36.72 35.83 52.32 34.34 133.14 30.21 54.05 35.18 52.36 34.75

Table 3: Results of our special cases on our four sub-datasets. U-Net is the backbone generator. “att” stands for our used

attention block, “adv” stands for the adversarial loss of global discriminator. “ver” stands for the verification loss of our

proposed verification discriminator. The best results are denoted in boldface.

Foreground ratios 0% ∼ 5% 5% ∼ 15% 15% ∼ 100% 0% ∼ 100%
Evaluation metric MSE↓ fMSE↓ MSE↓ fMSE↓ MSE↓ fMSE↓ MSE↓ fMSE↓
Input composite 28.51 1208.86 119.19 1323.23 577.58 1887.05 172.47 1387.30

Lalonde and Efros[20] 41.52 1481.59 120.62 1309.79 444.65 1467.98 150.53 1433.21

Xue et al.[47] 31.24 1325.96 132.12 1459.28 479.53 1555.69 155.87 1411.40

Zhu et al.[54] 33.30 1297.65 145.14 1577.70 682.69 2251.76 204.77 1580.17

DIH [43] 18.92 799.17 64.23 725.86 228.86 768.89 76.77 773.18

S2AM [45] 15.09 623.11 48.33 540.54 177.62 592.83 59.67 594.67

DoveNet 14.03 591.88 44.90 504.42 152.07 505.82 52.36 549.96

Table 4: MSE and foreground MSE (fMSE) of different methods in each foreground ratio range based on the whole test set.

The best results are denoted in boldface.

Method B-T score↑
Input composite 0.624

Lalonde and Efros [20] 0.260

Xue et al. [47] 0.567

Zhu et al. [54] 0.337

DIH [43] 0.948

S2AM [45] 1.229

DoveNet 1.437

Table 5: B-T scores of different methods on 99 real com-

posite images provided in [43].

5.4. Ablation Studies

In this section, we first investigate the effectiveness of

each component in our DoveNet, and then study the impact

of foreground ratio on the harmonization performance.

First, the results of ablating each component are reported

in Table 3. By comparing “U-Net” with DIH in Table 1, we

find that our backbone generator is better than that used in

DIH [43]. We also observe that “U-Net+att” outperforms

“U-Net”, which shows the benefit of using attention block.

Another observation is that “U-Net+att+adv” (resp., “U-

Net+att+ver”) performs more favorably than “U-Net+att”,

which indicates the advantage of employing global discrim-

inator (resp., our domain verification discriminator). Fi-

nally, our full method, i.e., “U-Net+att+adv+ver”, achieves

the best results on all four sub-datasets.

Second, our dataset has a wide range of foreground ra-

tios (the area of foreground over the area of whole image)

in which the foreground ratios of most images are in the

range of [1%, 90%] (see Supplementary). Here, we study

the impact of different foreground ratios on the harmoniza-

tion performance. Especially when the foreground ratio

is very small, the reconstruction error of background may

overwhelm the harmonization error of foreground. There-

fore, besides MSE on the whole image, we introduce an-

other evaluation metric: foreground MSE (fMSE), which

only calculates the MSE in the foreground region. We di-

vide foreground ratios into three ranges, i.e., 0% ∼ 5%,

5% ∼ 15%, and 15% ∼ 100%. We adopt such a partition

because more images have relatively small foreground ra-

tios. Then, we report MSE and fMSE of different methods

for each range on the whole test set in Table 4. Obviously,

MSE increases as the foreground ratio increases. Based on

Table 4, DoveNet outperforms all the baselines w.r.t. MSE

and fMSE in each range of foreground ratios, especially

when the foreground ratio is large, which demonstrates the

robustness of our method.

5.5. Qualitative Analyses

In Figure 3, we show the ground-truth real image, in-

put composite image, as well as the harmonized images

generated by DIH [43], S2AM[45], DoveNet (w/o ver),
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Figure 3: Example results of different methods on our four sub-datasets. From top to bottom, we show one example from our

HAdobe5k, HCOCO, Hday2night, and HFlickr sub-dataset respectively. From left to right, we show the ground-truth real

image, input composite image, DIH [43], S2AM[45], our special case DoveNet (w/o ver) and our full method DoveNet.

and DoveNet. DoveNet (w/o ver) corresponds to “U-

Net+att+adv” in Table 3, which removes domain verifi-

cation discriminator from our method. We observe that

our proposed method could produce the harmonized im-

ages which are more harmonious and closer to the ground-

truth real images. By comparing DoveNet (w/o ver) and

DoveNet, it can be seen that our proposed verification dis-

criminator is able to push the foreground domain close to

the background domain, leading to better-harmonized im-

ages.

5.6. User Study on Real Composite Images

We further compare our proposed DoveNet with base-

lines on 99 real composited images used in [43]. Because

the provided 99 real composited images do not have ground-

truth images, it is impossible to compare different methods

quantitatively using MSE and PSNR. Following the same

procedure in [43], we conduct user study on the 99 real

composited images for subjective evaluation. Specifically,

for each real composite image, we can obtain 7 outputs, in-

cluding the original composite image and the harmonized

images of 6 methods (see Table 1). For each real composite

image, we can construct pairs of outputs by selecting from

7 outputs. Then, we invite 50 human raters to see a pair of

outputs at a time and ask him/her to choose the more real-

istic and harmonious one. A total of 51975 pairwise results

are collected for all 99 real composite images, in which 25

results are obtained for each pair of outputs on average. Fi-

nally, we use the Bradley-Terry model (B-T model) [1, 19]

to calculate the global ranking score for each method and

report the results in Table 5.

From Table 5, we have similar observation as in Table 1.

In particular, deep learning based methods using our train-

ing set are generally better than traditional methods, among

which DoveNet achieves the highest B-T score. To visual-

ize the comparison, we put the results of different methods

on all 99 real composite images in Supplementary.

6. Conclusions

In this work, we have contributed an image harmoniza-

tion dataset iHarmony4 with four sub-datasets: HCOCO,

HAdobe5k, HFlickr, and Hday2night. We have also pro-

posed DoveNet, a novel deep image harmonization method

with domain verification discriminator. Extensive experi-

ments on our dataset have demonstrated the effectiveness of

our proposed method.
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Durand. Deep joint demosaicking and denoising. ACM

Transactions on Graphics, 35(6):191, 2016. 2

[9] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing

Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and

Yoshua Bengio. Generative adversarial nets. In NeurIPS,

2014. 2, 4, 5

[10] Yan Hong, Li Niu, Jianfu Zhang, and Liqing Zhang. Match-

ingGAN: Matching-based few-shot image generation. In

ICME, 2020. 2

[11] P. Isola, J. Zhu, T. Zhou, and A. A. Efros. Image-to-image

translation with conditional adversarial networks. In CVPR,

2017. 2

[12] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A

Efros. Image-to-image translation with conditional adver-

sarial networks. In CVPR, 2017. 6

[13] N. Jacobs, N. Roman, and R. Pless. Consistent temporal

variations in many outdoor scenes. In CVPR, 2007. 6

[14] Jiaya Jia, Jian Sun, Chi-Keung Tang, and Heung-Yeung

Shum. Drag-and-drop pasting. ACM Transactions on Graph-

ics, 25(3):631–637, 2006. 2

[15] Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Accurate

image super-resolution using very deep convolutional net-

works. In CVPR, 2016. 2

[16] Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Deeply-

recursive convolutional network for image super-resolution.

In CVPR, 2016. 2

[17] Shu Kong, Xiaohui Shen, Zhe Lin, Radomir Mech, and

Charless Fowlkes. Photo aesthetics ranking network with

attributes and content adaptation. In ECCV, 2016. 3, 4

[18] Pierre-Yves Laffont, Zhile Ren, Xiaofeng Tao, Chao Qian,

and James Hays. Transient attributes for high-level under-

standing and editing of outdoor scenes. ACM Transactions

on Graphics, 33(4), 2014. 2

[19] Wei-Sheng Lai, Jia-Bin Huang, Zhe Hu, Narendra Ahuja,

and Ming-Hsuan Yang. A comparative study for single im-

age blind deblurring. In CVPR, 2016. 8

[20] Jean-Francois Lalonde and Alexei A Efros. Using color com-

patibility for assessing image realism. In ICCV, 2007. 1, 2,

6, 7

[21] Gustav Larsson, Michael Maire, and Gregory

Shakhnarovich. Learning representations for automatic

colorization. In ECCV, 2016. 2

[22] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero,

Andrew Cunningham, Alejandro Acosta, Andrew Aitken,

Alykhan Tejani, Johannes Totz, Zehan Wang, et al. Photo-

realistic single image super-resolution using a generative ad-

versarial network. In CVPR, 2017. 2

[23] Joon-Young Lee, Kalyan Sunkavalli, Zhe Lin, Xiaohui Shen,

and In So Kweon. Automatic content-aware color and tone

stylization. In CVPR, 2016. 3

[24] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,

Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence

Zitnick. Microsoft coco: Common objects in context. In

ECCV, 2014. 1, 5

[25] Guilin Liu, Fitsum A Reda, Kevin J Shih, Ting-Chun Wang,

Andrew Tao, and Bryan Catanzaro. Image inpainting for ir-

regular holes using partial convolutions. In ECCV, 2018. 5

[26] Xiaojiao Mao, Chunhua Shen, and Yu-Bin Yang. Image

restoration using very deep convolutional encoder-decoder

networks with symmetric skip connections. In NeurIPS,

2016. 2

[27] Mehdi Mirza and Simon Osindero. Conditional generative

adversarial nets. arXiv preprint arXiv:1411.1784, 2014. 2

[28] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and

Yuichi Yoshida. Spectral normalization for generative ad-

versarial networks. arXiv preprint arXiv:1802.05957, 2018.

5

[29] Li Niu, Jianfei Cai, and Dong Xu. Domain adaptive fisher

vector for visual recognition. In ECCV, 2016. 2

[30] Li Niu, Wen Li, and Dong Xu. Multi-view domain general-

ization for visual recognition. In ICCV, 2015. 2

[31] Li Niu, Wen Li, and Dong Xu. Visual recognition by learning

from web data: A weakly supervised domain generalization

approach. In CVPR, 2015. 2

[32] Vishal M Patel, Raghuraman Gopalan, Ruonan Li, and Rama

Chellappa. Visual domain adaptation: A survey of recent

advances. IEEE signal processing magazine, 32(3):53–69,

2015. 2
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