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Abstract

Situation Recognition (SR) is a fine-grained action

recognition task where the model is expected to not only

predict the salient action of the image, but also predict val-

ues of all associated semantic roles of the action. Predict-

ing semantic roles is very challenging: a vast variety of

possibilities can be the match for a semantic role. Exist-

ing work has focused on dependency modelling architec-

tures to solve this issue. Inspired by the success achieved

by query-based visual reasoning (e.g., Visual Question An-

swering), we propose to address semantic role prediction as

a query-based visual reasoning problem. However, existing

query-based reasoning methods have not considered han-

dling of inter-dependent queries which is a unique require-

ment of semantic role prediction in SR. Therefore, to the best

of our knowledge, we propose the first set of methods to ad-

dress inter-dependent queries in query-based visual reason-

ing. Extensive experiments demonstrate the effectiveness of

our proposed method which achieves outstanding perfor-

mance on Situation Recognition task. Furthermore, lever-

aging query inter-dependency, our methods improve upon

a state-of-the-art method that answers queries separately.

Our code: https://github.com/thilinicooray/context-aware-

reasoning-for-sr

1. Introduction

Visual reasoning is the process of analyzing visual in-

formation in order to achieve a final conclusion. There are

a variety of visual reasoning tasks being researched in the

computer vision domain beginning with the basic building

blocks of object [14, 24, 22, 8] and action [4, 23, 25] clas-

sification. Scene Graph Generation [11, 17, 28] was intro-

duced in order to expand the visual reasoning capabilities

of computer vision models beyond mere object and action

classification and brought visual reasoning to the next level

by combining all the predicted visual relations in an image

and constructing a knowledge graph out of it.
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Figure 1. Situation recognition (SR) [30]: Two different situations

for the same action (verb). The SR task is to predict the action

(verb) and the values of all the associated semantic roles.

However, these relations in scene graphs were captured

in a triplet (subject-predicate-object) manner which limits

the expressibility when it comes to describe actions, as the

objects participate in an action expand beyond subject and

object elements. In order to address this limitation, Yatskar

et al. [30] introduced Situation Recognition (SR). In SR, the

model is expected to not only predict the salient action of

the image, but also predict all the objects that participate in

the action. Relationships between individual objects and the

action are indicated by a concept called semantic roles. A

situation is a structure which comprises of an action along

with its semantic roles making this a structured prediction

task.

Figure 1 shows two instances of action “Brushing” in

the imSitu dataset [30], the prime dataset for SR. Seman-

tic roles of “Brushing” are agent (person who is brushing),

target (entity or object the agent is brushing), tool (the tool

being used for brushing), substance (any substance being

used for brushing). Note that place is also a semantic role

for brushing, but we omit it in this example for clarity as it

is not significant here. Also note that different actions may

have different semantic roles. For example, action “eating”
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has roles: food, place, container, agent, tool. SR is a very

challenging reasoning task, as the number of different role

types and possible values are very large [20, 16]. Further-

more, even for the same action (verb), the possible values

for individual roles can be very different as illustrated in

Figure 1.

Semantic role prediction has drawn the most attention

compared to action prediction due to its more challenging

requirement of capturing all action related objects in the im-

age, regardless of its visible salience. Existing work has fo-

cused on modelling inter-dependency among semantic roles

using Recurrent Neural Networks [20] and Graph Neural

Networks [16].

In this work, we take a radically different approach

for SR. Inspired by query-based visual reasoning models

[7, 10, 33, 13] which have proven to be successful in an-

alyzing an image conditioned on a given query (natural

language question, object name etc.) to obtain an answer,

we propose to model SR as a query-based visual reason-

ing task. In particular, we propose a novel visual reason-

ing model which focuses on reasoning the image based on

given queries rather than emphasizing object co-occurrence

patterns during training. However, one major challenge that

SR introduces (which does not exist for conventional query-

based visual reasoning tasks) is that, while other tasks re-

quire single output answer (e.g. Visual Question Answering

[7, 10, 9, 1, 12, 3]), SR expects answers to multiple inter-

dependent queries which finally forms a structure.

To fill this gap of handling inter-dependent queries, we

make the first effort by proposing a novel contextualization

module to incorporate information from related queries to

address inter-query relational reasoning. Our contextualiza-

tion mechanism explicitly allows both multi-modal reason-

ing and neighbour information integration together. This

enables the model to dynamically combine the information

for optimal predictions. We propose a method to generate

the context using attention, and propose different mecha-

nisms to incorporate the generated context to improve rea-

soning. Our contributions are:

• We propose to address SR via query-based visual rea-

soning.

• We propose novel methods to handle inter-dependent

queries that arise in semantic role prediction in SR

• We perform extensive experiments to validate our

methods.

2. Related Work

Yatskar et al. introduced the SR task along with the

imSitu dataset whose actions and frames are based on

FrameNet [2]. They proposed a baseline model which con-

sists of a Convolutional Neural Network (CNN) [15] for im-

age encoding followed by a Conditional Random Field to

predict actions and labels for semantic roles. As mentioned

by Yatskar et al. [30], this dataset suffers from huge spar-

sity issues in both object labels as well as situations because

some objects can participate in many roles while other ob-

jects can only be seen few times. To address this sparsity is-

sue, Yatskar et al. [29] later proposed another model which

maps roles and labels to a lower dimensional vector space

and have also used additional images to reduce data sparsity.

Then two models were presented by Mallya and Lazebnik

[20] and Li et al. [16] focusing on improving role predic-

tions by explicitly modelling dependency among semantic

roles. Mallya and Lazebnik [20] use a Recurrent Neural Net

to model role dependencies and predict labels as a sequence

labelling problem while using a Fusion Network [19] for ac-

tion prediction. Li et al. [16] argue that all roles in a frame

should depend on each other without manually assigning

any priority to roles like in sequence labelling. Therefore

they propose a Gated Graph Neural Network (GGNN) [18]

based role modelling method. These two models achieve

the highest results for frame prediction emphasizing the im-

portance of modelling role inter-dependency for this task.

On the subject of improving multi-modal reasoning for

independent query predictions, Visual Question Answering

(VQA) [7, 10, 9, 1, 12, 3] task leads the way with numerous

highly capable multi-modal reasoning methods. Inspired by

these, we utilize a very simple, but effective VQA method

by Anderson et al. [1] to fill the lack of sophisticated multi-

modal reasoning application in SR. However, existing VQA

tasks only require answering questions independently or use

answers from previous questions to answer the current ques-

tion (ex: Visual Dialog [6] and Visual Commonsense Rea-

soning (VCR) [32] ). SR stands out from these as mentioned

earlier that each role (the query to which we try to find an

answer) depends on all other roles of its action without any

defined order like in Visual Dialog or VCR.

Inter-dependent question answering is a novel require-

ment in SR which has not been raised before. We believe

this has the potential to be useful for other tasks such as

Embodied Question Answering [5] in multi-agent environ-

ments where agents can utilize information from each-other

along with its own surrounding to answer questions. There-

fore in this work, we propose several models which are ca-

pable of inter-dependent VQA, aiming to solve semantic

role prediction in SR.

3. Context Aware Visual Reasoning for Situa-

tion Recognition

3.1. Task Definition

Situation Recognition defines a space which consists of

a discrete set of verbs V , nouns N , roles R and frames F .

Each verb v ∈ {1, . . . , |V |} is mapped with a frame f ∈ F
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which consists of semantic roles Rv ⊂ R. Each semantic

role is paired with a noun value n ∈ N∪{∅}. An instance of

an action v in an image I forms a realized frame F(I,v) =
{(ri, ni) : ri ∈ Rv, ni ∈ N ∪ {∅}, i = 1, . . . , | Rv |}.
Given an image, the full task of SR is to predict the pair

of action and its associated realized frame which is called

a situation S = {v, F(I,v)}. Action prediction is consid-

ered as a separate classification task independent from role

prediction in existing work [20, 16]. As our focus is on

inter-dependent query answering, we only aim at predicting

the realized frame F(I,v) when the action v is given as ac-

tion classification is not inter-dependent with roles. There-

fore we call our task of role prediction formally as Frame

Recognition (FR) from here onwards.

3.2. Frame Recognition and Backbone Model

We formulate FR as a Visual Question Answering

(VQA) problem; Given an image I and query q, we want

to find the most relevant information from the image to an-

swer q. We formulate queries for each semantic role of the

frame as the joint embedding of current frame’s verb name

and semantic role name. The model needs to answer all of

them to retrieve the final realized frame.

We adopt the Top-Down Attention (TDA) model pro-

posed by Anderson et al. [1] as our backbone VQA mecha-

nism due to its simplicity and effectiveness as well as its

less dependency towards the structure of the query com-

pared to other state-of-the-art VQA models such as BAN

[12], which relies on multiple channel query representa-

tions. Hence TDA allows us to use VQA with simple single

channel queries which is sufficient for FR.

Given a set of region features of an image and a query

embedding, TDA calculates the relevancy score for each

image region feature with respect to query embedding.

Then all image region features are weighted according to

relevancy scores and summed together and fused with the

query embedding. This creates the feature representation of

the answer to the current query which then be sent through

the classifier to obtain the final answer label.

3.3. TopDown Attention for Frame Recognition

Figure 2 visualizes how we utilize TDA model for se-

mantic role prediction to obtain the final frame F(I,v). First

we consider each semantic role in the current frame as a

separate query to our TDA model (handling inter-dependent

queries will be discussed next). In the model, first we obtain

image region features EI = {en}Ne

n=1 by encoding the im-

age I using a CNN and obtaining the grid features just after

the last pooling layer. Ne is the number of regions of the

image. We use word embeddings for semantic role r and

verb v of the current frame to generate the query encoding

q.

Figure 2. Top-Down Attention (TDA) model for Frame Recogni-

tion in SR. Each role of the verb “Brushing” forms a query, re-

ceives the image encoding and goes through the TDA network and

the classifier as an independent query to obtain the final noun pre-

diction. Nodes with the same colour indicates the same network

which shares parameters.

EI = CNN(I), (1)

q = fq([wv,wr]), (2)

where EI ∈ R
Ne×d img and fq is a non-linear layer. [·] is

used to denote the concatenation. q ∈ R
d q and embedding

vectors for verb and role are wv,wr ∈ R
d wemb. These em-

beddings are randomly initialized and learnt during model

training. (Details of all networks (e.g., fq) are provided in

Supplementary).

Then we calculate the image region-level attention

weights based on the query encoding, and derive updated

image encoding,

sn = wafa([en,q])
T , (3)

αn =
exp(sn)

∑Ne

i=1 exp(si)
, Ẽ =

Ne
∑

n=1

αnen, (4)

sn denotes un-normalized region-level attention weights

obtained for current query q. αn denotes the normalized

attention weight for region n, and Ẽ is the aggregated im-
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age encoding for the query. wa ∈ R
d hidden are model

parameters and fa is a non-linear layer.

Then updated image encoding Ẽ and query encoding q

are fused together to obtain the un-normalized hidden rep-

resentation hu ∈ R
d hidden,

hu = fpq(q) ◦ fpi(Ẽ), (5)

where fpq and fpi non-linear layers are used to project

query and image encoding to a different space and ◦ de-

notes element-wise multiplication.

Element-wise multiplication can cause model conver-

gence to an unsatisfactory local minimum [31]. In order to

avoid this Yu et al. [31] have used the power normalization

(z ← sign(z)|z|0.5) and ℓ2 normalization (z ← z/‖z‖) lay-

ers. Following their approach, we also modified the original

TDA model by adding a Dropout [26] layer and normaliza-

tion after element-wise multiplication to produce the nor-

malised hidden representation h:

h = ℓ2Norm(PowerNorm(Dropout(hu))), (6)

Classifier Finally the normalized hidden representation is

sent through a non linear network fclassifier followed by a

SoftMax function to obtain final probability distributions of

each role label prediction.

p = SoftMax(fclassifier(h)), (7)

Learning and Inference We use cross entropy loss to

train the model as follows:

Loss =

FI
∑

j=1



−
|N |
∑

i=1

y(j,i) log(pi)



 (8)

y(j,i) ∈ {0, 1} is the ground truth encoding from the jth re-

alized frame for the noun i, where we can have FI realized

frames for each image. Also note that pi ∈ p. This Situa-

tion Recognition dataset imSitu [30] contains three realized

frame annotations for each image.

For the complete frame prediction, first we obtain the

required role list Rv for the given verb v to be queried in the

model to retrieve noun label predictions î = argmaxi p
r
i

for each role r ∈ Rv .

4. Handling Inter-dependent Semantic Roles

As we mentioned, the above system answers role queries

independently. However, a semantic role not only depends

on its action but also on its fellow semantic roles of the cur-

rent frame, which we refer as its neighbor roles. For exam-

ple in Figure 1, for the action “Brushing”, neighbor roles

for semantic role Tool are Agent, Target and Substance.

Existing query-based visual reasoning approaches [7, 1,

12] aim at answering questions individually. It has not been

investigated how to incorporate information from inter-

dependent queries to improve single query performance.

Hence our backbone TDA model also suffers from this lim-

itation. However, for structured prediction tasks like FR,

modelling inter-dependency is important. Therefore, to ad-

dress the gap between existing query-based visual reasoning

approaches and inter-dependency models, we propose three

different novel methods: (i) Context Aware Query (CAQ),

(ii) Context Aware Image (CAI), and (iii) Context Aware

Image Reconstruction (CAIR).

4.1. Context Aware Query (CAQ) for Inter
dependent Semantic Role Prediction

CAQ proposes to update the original query encoding

with information from neighbour roles as a mechanism to

incorporate structure to the existing TDA model. We call

the aggregated information retrieved from neighbour roles

as context. Figure 3 depicts the system.

Context Generation We use hidden representations of all

the roles of current verb v, hr, where r = {r1, . . . , r|Rv|}
from TDA model, for the context generation. When gener-

ating context for role r, we calculate attention for all other

roles in the current frame based on the hidden representation

of r to decide how much each neighbour role is important

to the current role. Then we weigh hidden representation of

each neighbour role and aggregate all of them to generate

the context for r.

dbk =
hWb

Q(h
rkWb

K)T√
d hidden

, rk ∈ Rv \ {r}, (9)

αb
k =

exp(dbk)
∑|Rv|

i;ri 6=r exp(d
b
i )
, cb =

∑

rk∈Rv\{r}

αb
kh

rkWb
V ,

(10)

c = [c1, . . . , cb, . . . , cB ]WO, b ∈ {1 . . . B} (11)

We use multi-head attention [27] for this to calculate the

context in different representation sub-spaces and join them

together to obtain the final context c (for the current role r).

B is the number of heads. Wb
K ∈ R

d hidden×d head, Wb
Q ∈

R
d hidden×d head and Wb

V ∈ R
d hidden×d head are model

parameters to project hidden representations of key, query

and value to a smaller B different subspaces. In our case,

key and value are equal and they represent neighbour roles

while query is the current role. d head = d hidden/B.

Context Aware Query Generation and Reasoning Now

we incorporate the obtained context to query as follows and

get the context aware query encoding qc.

qc = fcq([c,wv,wr]) (12)
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Figure 3. Context Aware Query (CAQ) based reasoning. In this example, the context is generated for the query of semantic role “tool”,

using its neighbour roles “agent”, “target” and “substance”, in the frame of verb “brushing”. The context generator is discussed in Sec. 4.1.

Diagram best viewed in colored version. Inputs to original TDA components (depicted in purple) are same as Figure 2.

Comparing with Equation 2, Equation 12 can be seen as

adapting the query encoding using context c which is de-

rived from hidden representations hrk of neighbor roles of

current role r.

Then we input updated query encoding qc and original

image encoding EI to Equation 3. Similar reasoning pro-

cess to TDA is carried out until Equation 6 to obtain the

new hidden representation hc. Finally hc will be sent to the

classifier for final prediction.

4.2. Context aware image (CAI)

In CAI, we add context c obtained in Equation 11 by

adding it to the image instead of the question. This allows

us to only extract information from image directly related

to the context. This approach provides a way to highlight

information now seems important at the presence of context

prior to the reasoning. We use the following Equation 13 to

incorporate context information generated in Equation 11 to

image region encoding:

ecn = σ([c, en]Wic) ◦ en, en ∈ EI (13)

First, we concatenate the context with all the en, n ∈ Ne

regions of the original image EI and do a linear transforma-

tion using Wic ∈ R
(d hidden+d img)×d img . Finally, this is

passed through a sigmoid gate to determine how much in-

formation of each region needs to be sent for the reasoning

step based on the context. Once we obtained the updated

image regions, we input it to Equation 3 instead of origi-

nal image regions along with original query encoding q and

continue the TDA mechanism.

4.3. Context Aware Image Reconstruction (CAIR)

CAIR aims at improving inter-role agreement in the

frame by encouraging the model to reconstruct the origi-

nal image using hidden state h of all roles. If at least one

of the role label representations is incorrect, the image re-

constructed by the predicted realized frame differs from the

original image. Therefore to construct an image similar to

the original, the entire frame needs to be accurate. We use

a non-linear layer frecon to generate the reconstructed im-

age from hidden representations h output from Equation

6 for all the roles of the current frame and send the origi-

nal grid features EI of the image through a linear network

fflatten img to obtain the vector representation of the origi-

nal image.

Ê = frecon([h1, . . . ,h|Rv|]) (14)

Eorg = fflatten img(EI) (15)

We add an auxiliary ℓ2 loss to the original cross entropy

loss in Equation 8 to encourage the model to make role la-

bel predictions which the combined frame prediction can

reconstruct the original image as correctly as possible.

Lossrecon =
∥

∥

∥Eorg − Ê

∥

∥

∥

2
(16)

When using this approach, the final loss for training the

model is as following. β is a hyperparameter.

L = Loss+ βLossrecon (17)

Verb Model Top 1 Verb Top 5 Verb

VGG Classifier [20, 16] 36.83 63.48

Predicted Query Model 35.70 62.19

RE-VGG Classifier 37.96 64.99

Table 1. Verb only prediction performance in accuracy %. For

model using gold queries, Top-1: 43.21, Top-5: 68.83.
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FR Model Value Value-all

TDA 72.96 37.60

CAQ 73.62 38.71

CAI 73.17 37.95

CAIR 73.30 38.17

Table 2. Frame recognition only performance in accuracy % of

proposed context aware methods.

5. Evaluation

5.1. Dataset and Implementation Details

We use imSitu [30] dataset for our experiments and we

follow the experiment setup and evaluation criteria from

Yatskar et al. [30]. Here we report results for three metrics.

Verb: verb prediction, Value: role-label tuple is considered

correct given the verb, if it matches any of the FI anno-

tations, Value-all: when the entire frame is correct, mean-

ing all role-value tuples of the predicted frame matches at

least one ground truth annotation. Accuracy % of each of

the three metrics is used to compare performance. imSitu

dataset contains 75K train, 25K development and 25K test

set samples which spreads across V = 504 verbs, R = 190
roles and N = 2001 nouns including UNK token for un-

knowns. Each image has FI = 3 realized frames.

We implemented our models using PyTorch [21] frame-

work. We use VGG-16 [24] as our backbone CNN architec-

ture to encode images following all existing work [30, 29,

20, 16] for SR. We extract grid features of size 7× 7× 512
after the final max pooling layer as our image regions where

Ne = 49. Complete details of the entire implementation

and all network architectures are provided in the supple-

mentary materials.

5.2. Reasoning Enhanced Verb Prediction

In this section, we discuss experiments for verb predic-

tion only. Main experiments on FR using our proposed

context-aware reasoning will be discussed in the next sec-

tion.

We analyse the performance of verb prediction when vi-

sual reasoning is expanded beyond CNN. Table 1 shows

performance of multiple approaches we followed. First we

report results for the CNN [15] verb classifier, the model

which was used by many of the existing work [30, 20, 16]

as the baseline. For reasoning enhanced predictions, we

use the same TDA architecture explained in Section 3.3 and

use Agent and Place role labels as the query in Equation 2

to reason the image for verb. We use ground truth Agent

and Place label annotations to form gold queries in our ref-

erence gold query model. In the Predicted Query Model

model, predicted queries are formulated using Agent and

Place label predictions from our TDA based pre-trained FR

model. Due to FR model’s prediction errors, we observe a

considerable performance drop in results. Finally, we have

our Reasoning Enhanced verb prediction model (RE-VGG)

in which we incorporate visual reasoning capabilities of the

predicted-role based TDA verb model to the VGG classifier

by summing verb wise scores output from the last FC layer

of both models to obtain our best verb model.

5.3. Context Aware Reasoning for Frame Recogni
tion

In this section we discuss results for the main contri-

bution of this work on how well the context incorporation

helps to improve Frame Recognition and results are shown

in Table 2.

Our TDA model answers queries independently with-

out considering its neighbour roles of the current frame.

Next we have performance of our three proposed models for

handling inter-dependent queries. CAQ has outperformed

both CAI and CAIR becoming the best approach for inter-

dependent query answering. The reason is that it only uses

context information as a guidance for the reasoning and if

the model feels original image’s features are more impor-

tant to answer query than the context, CAQ allows that too.

But in CAI, as the original image is altered using the con-

text, it does not have the opportunity to use original image

information at all. CAIR only distantly encourages for role

inter-dependency and does not explicitly force like CAQ,

hence it cannot perform as good as CAQ.

5.4. Comparison with Existing Work

Table 3 and Table 4 show the performance comparison of

our models against existing work. The results of different

methods are obtained by either running the authors’ pro-

vided implementation if they are available, or taking from

their papers if the implementations are not available. How-

ever, for GGNN based model [16], the authors’ provided

implementation could not converge. After communicating

with the authors, we have re-implemented the model our-

selves, and our results are similar to the reported ones by

the authors except for “value-all”, which we observed lower

accuracy than what was reported in [16].

We report results for both TDA model and our best inter-

dependent query handling CAQ model. Our TDA model

which handles role predictions independently has already

outperformed all existing work including models which ex-

plicitly model role dependencies [20, 16]. This not only

proves the effectiveness of sophisticated multi-modal rea-

soning but also shows how visual reasoning tasks other than

VQA can benefit from adopting to query-based reasoning

methods. We further improve our performance with CAQ

and achieves the new state-of-the-art results for FR. We re-

port verb prediction results for both our CNN based verb

classifier VGG Verb as well as our reasoning enhanced RE-
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top-1 predicted verb top-5 predicted verbs ground truth verbs
mean

verb value value-all verb value value-all value value-all

CNN + CRF [30] 32.25 24.56 14.28 58.64 42.68 22.75 65.90 29.50 36.32

Tensor Composition [29] 32.91 25.39 14.87 59.92 44.50 24.04 69.39 33.17 38.02

Above + DataAug [29] 34.2 26.56 15.61 62.21 46.72 25.66 70.80 34.82 39.57

RNN [20] 36.11 27.74 16.60 63.11 47.09 26.48 70.48 35.56 40.40

VGG Verb, GGNN † [16] 36.83 28.31 16.55 63.48 47.27 25.77 69.63 33.58 40.18

VGG Verb, TDA (Ours) 36.83 29.01 17.52 63.48 48.82 27.91 72.96 37.60 41.77

VGG Verb, CAQ (Ours) 36.83 29.24 18.02 63.48 49.22 28.62 73.62 38.71 42.22

RE-VGG, CAQ (Ours) 37.96 30.15 18.58 64.99 50.30 29.17 73.62 38.71 42.94

Table 3. Situation prediction results on imSitu development set. † denotes results of our implementation. Best performance in each column

is highlighted in bold and second best is underlined.

top-1 predicted verb top-5 predicted verbs ground truth verbs
mean

verb value value-all verb value value-all value value-all

CNN + CRF [30] 32.34 24.64 14.19 58.88 42.76 22.55 65.66 28.96 36.25

Tensor Composition [29] 32.96 25.32 14.57 60.12 44.64 24.00 69.20 32.97 37.97

Above + DataAug [29] 34.12 26.45 15.51 62.59 46.88 25.46 70.44 34.38 39.48

RNN [20] 35.90 27.45 16.36 63.08 46.88 26.06 70.27 35.25 40.16

VGG Verb, GGNN † [16] 36.97 28.21 16.27 63.62 47.16 25.32 69.34 33.29 40.02

VGG Verb, TDA (Ours) 36.97 29.04 17.56 63.62 48.81 27.80 72.80 37.46 41.75

VGG Verb, CAQ (Ours) 36.97 29.29 17.98 63.62 49.22 28.45 73.41 38.52 42.18

RE-VGG, CAQ (Ours) 38.19 30.23 18.47 65.05 50.21 28.93 73.41 38.52 42.88

Table 4. Situation prediction results on imSitu test set. Best performance in each column is highlighted in bold and second best is underlined.

VGG models and we achieve new state-of-the-art results for

verb prediction as well.

5.5. Qualitative Analysis

Figure 4 shows two sample predictions from the im-

Situ development set for verbs “Assembling” and “Ignit-

ing” with predicted attention heat maps output from Equa-

tion 4 for all roles in both TDA and CAQ models. Role

dependency matrices were generated by combining un-

normalized neighbour role weights generated for all roles

from Equation 9. For verb “Assembling”, TDA model has

predicted role Tool incorrectly. When CAQ model generates

the context for role Tool, roles Component and Goal Item

provide the most impact according to the second row of the

matrix. We can see the correct predictions of those roles

have guided Tool in the CAQ model to correct its predic-

tion by adjusting the attention directly to the “Drill”. In the

second sample also the correct prediction of role Item (most

important neighbour for Tool in verb “Igniting”) has guided

to correct the attention error of Tool happened in TDA via

the context information in CAQ. These results show both

the effectiveness of our model as well as its interpretability.

5.6. Ablation Study

We discuss our analysis on combining proposed context

incorporation approaches in this section and results are re-

CAQ CAI CAIR Value Value-all

Proposed approach - - 73.62 38.71

X - X 73.62 38.63

- X X 73.17 37.99

X X - 72.94 37.38

X X X 73.41 38.21

Table 5. Model performance after combining Context Incorpora-

tion Methods. First row contains our final proposed CAQ only

model as the reference.

ported in Table 5. Even-though TDA was able to benefit

from CAIR according to Table 2, CAQ and CAI were un-

able to achieve improvement from combining with CAIR.

This is because the generated context in these models al-

ready implicitly facilitates inter-role agreement in order to

maintain the stability of predictions across the frame. Hence

CAIR is just an ineffective repetition. Performance has de-

graded when CAQ combined with CAI. The reason for this

is that, when both image and query are incorporated with

context, there is no room left for individual reasoning to

incorporate important information from the original image

which might be particularly important for the current role.

This result shows an important message on how important it

is to allow models some space for independent reasoning as
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Figure 4. Visualization of attention maps for multi-modal reasoning and role dependency matrices for two verbs. In both attention maps

and matrices, lighter the colour represents higher the value. Diagonal elements of the matrix are indicated in the darkest color to show that

own value of current role is not considered as a neighbour role in context generation. Predicted nouns for each role is indicted after each

attention map and coloured in green if its correct, red otherwise. Note the improved attention in “Tool” prediction using context from

neighbor roles. We have removed attention maps for the least important Agent role of verb “Assembling” due to the space limitation. Best

viewed in colored version.

well without completely relying on role inter-dependency,

which can cause bias for object co-occurrences in training

set. However, this particular issue has been solved for a cer-

tain extend after adding CAIR to this model. This is because

the Lossrecon in Equation 16 pushes all predicted objects in

the frame to generate an image representation closer to the

original image regulating the model from biasing to training

set object co-occurrences.

6. Conclusion

We address the task of Situation Recognition as a query-

based visual reasoning problem. We further extend our

work by proposing novel mechanisms to enable query-

based visual reasoning models to handle inter-dependent

queries which is a unique requirement of Situation Recogni-

tion. For the best of our knowledge, this is the first attempt

in incorporating inter-dependent query handling capabili-

ties to query-based visual reasoning models. Our methods

achieve new state-of-the-art results for Situation Recogni-

tion.
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