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Figure 1: (a) We compute the test performance1of any Deep Neural Network (DNN) on any computer vision problem using no testing

samples (top); neither labelled nor unlabelled samples are necessary. This in sharp contrast to the classical computer vision approach,

where model performance is calculated using a curated test dataset (bottom). (b) The persistent algebraic topological summary (λ∗, µ∗)
given by our algorithm (x-axis) against the performance gap ∆ρ between training and testing performance (y-axis).

Abstract

Deep Neural Networks (DNNs) have revolutionized com-

puter vision. We now have DNNs that achieve top (perfor-

mance) results in many problems, including object recogni-

tion, facial expression analysis, and semantic segmentation,

to name but a few. The design of the DNNs that achieve

top results is, however, non-trivial and mostly done by trail-

and-error. That is, typically, researchers will derive many

DNN architectures (i.e., topologies) and then test them on

multiple datasets. However, there are no guarantees that the

selected DNN will perform well in the real world. One can

use a testing set to estimate the performance gap between

the training and testing sets, but avoiding overfitting-to-the-

testing-data is almost impossible. Using a sequestered test-

ing dataset may address this problem, but this requires a

constant update of the dataset, a very expensive venture.

Here, we derive an algorithm to estimate the performance

gap between training and testing that does not require any

testing dataset. Specifically, we derive a number of persis-

tent topology measures that identify when a DNN is learn-

ing to generalize to unseen samples. This allows us to com-

pute the DNN’s testing error on unseen samples, even when

we do not have access to them. We provide extensive ex-

perimental validation on multiple networks and datasets to

demonstrate the feasibility of the proposed approach.

1. Introduction

Deep Neural Networks (DNNs) are algorithms capable

of identifying complex, non-linear mappings, f(.), between

an input variable x and and output variable y, i.e., f(x) =
y [19]. Each DNN is defined by its unique topology and

loss function. Some well-known models are [25, 15, 18], to

name but a few.

Given a well-curated dataset with n samples, X =
{xi,yi}

n
i=1, we can use DNNs to find an estimate of the

functional mapping f(xi) = yi. Let us refer to the esti-

mated mapping function as f̂(.). Distinct estimates, f̂j(.),
will be obtained when using different DNNs and datasets.

Example datasets we can use to this end are [10, 13, 11],

among many others.

1Let ρtrain and test be the performance of an algorithm computed

using a training and testing set, respectively; ρ̂test is the estimated testing

error computed without any testing data. The performance metric may be

classification accuracy, F1-score, Intersection-over-Union (IoU), etc.
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Using datasets such as these to train DNNs has been very

fruitful. DNNs have achieved considerable improvements

in a myriad of, until recently, very challenging tasks, e.g.,

[18, 27].

Unfortunately, we do not generally know how the es-

timated mapping functions f̂j(.) will perform in the real

world, when using independent, unseen images.

The classical way to address this problem is to use a test-

ing dataset, Figure 1(a, bottom). The problem with this ap-

proach is that, in many instances, the testing set is visible to

us, and, hence, we keep modifying the DNN topology until

it works on this testing dataset. This means that we overfit

to the testing data and, generally, our algorithm may not be

the best for truly unseen samples.

To resolve this issue, we can use a sequestered dataset.

This means that a third-party has a testing dataset we have

never seen and we are only able to know how well we per-

form on that dataset once every several months. While this

does tell us how well our algorithm performs on previously

unseen samples, we can only get this estimate sporadically.

And, importantly, we need to rely on someone else main-

taining and updating this sequestered testing set. Many such

sequestered datasets do not last long, because maintaining

and updating them is a very costly endeavour.

In the present paper, we introduce an approach that re-

solves these problems. Specifically, we derive an algorithm

that gives an accurate estimate of the performance gap be-

tween our training and testing error, without the need of any

testing dataset, Figure 1(a, top). That means we do not need

to have access to any labelled or unlabelled data. Rather, our

algorithm will give you an accurate estimate of the perfor-

mance of your DNN on independent, unseen sample.

Our key idea is to derive a set of topological summaries

measuring persistent topological maps of the behavior of

DNNs across computer vision problems. Persistent topol-

ogy has been shown to correlate with generalization error

in classification [9], and as a method to theoretically study

and explain DNNs’ behavior [6, 9, 28]. The hypothesis we

are advancing is that the generalization gap is a function

of the inner-workings of the network, here represented by

its functional topology and described through topological

summaries. We propose to regress this function and use it

to estimate test performance based only on training data.

Figure 1(b) shows an example. In this plot, the x-axis

shows a linear combination of persistent topology measures

of DNNs. The y-axis in this plot is the value of the perfor-

mance gap when using these DNNs on multiple computer

vision problems. As can be seen in this figure, there is a

linear relationship between our proposed topological sum-

maries and the DNN’s performance gap. This means that

knowing the value of our topological summaries is as good

as knowing the performance of the DNN on a sequestered

dataset, but without any of the drawbacks mentioned above

– no need to depend on an independent group to collect,

curate, and update a testing set.

We start with a set of derivations of the persistent topol-

ogy measures we perform on DNNs (Section 2), before us-

ing this to derive our algorithm (Section 3). We provide a

discussion of related work (Section 4) and extensive exper-

imental evaluations on a variety of DNNs and computer vi-

sion problems, including object recognition, facial expres-

sion analysis, and semantic segmentation (Sections 5 and

6).

2. Topological Summaries

A DNN is characterized by its structure (i.e., the way its

computational graph is defined and trained), and its function

(i.e, the actual values its components take in response to

specific inputs). We focus here on the latter.

To do this, we define DNNs on a topological space. A

set of compact descriptors of this space, called topological

summaries, are then calculated. They measure important

properties of the network’s behaviour. For example, a sum-

mary of the functional topology of a network can be used to

detect overfitting and perform early-stopping [9].

LetA be a set. An abstract simplicial complex S is a col-

lection of vertices denoted V (A), and a collection of sub-

sets of V (A) called simplices that is closed under the subset

operation, i.e., if σ ∈ ψ and ψ ∈ A, then σ ∈ A.

The dimension of a simplex σ is |σ|−1, where |·| denotes

cardinality. A simplex of dimension n is called a n-simplex.

A 0-simplex is realized by a single vertex, a 1-simplex by

a line segment (i.e., an edge) connecting two vertices, a 2-

simplex is the filled triangle that connects three vertices, etc.

Let M = (A, ν) be a metric space – the association of

the set A with a metric ν. Given a distance ǫ, the Vietoris-

Rips complex [26] is an abstract simplicial complex that

contains all the simplices formed by all pairs of elements

ai, aj ∈ A with

ν(ai, aj) < ǫ, (1)

for some small ǫ > 0, and i 6= j.

By considering a range of possible distances, E =
{ǫ0, ǫ1, . . . ǫk, . . . ǫn}, where 0 < ǫ0 ≤ ǫ1 ≤ · · · ≤ ǫk ≤
· · · ≤ ǫn, a Vietoris-Rips filtration yields a collection of

simplicial complexes, S = {S0, S1, . . . , Sk, . . . , Sn}, at

multiple scales, Figure 2 [14].

We are interested in the persistent topology properties

of these complexes across different scales. For this, we

compute the pth− persistent homology groups and the Betti

numbers βp, which gives us the ranks of those groups [14].

This means that the Betti numbers compute the number of

cavities of a topological object.2

2Two objects are topologically equivalent if they have the same number

of cavities (holes) at each of their dimensions. For example, a donut and

a coffee mug are topologically equivalent, because each has a single 2D
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Figure 2: Given a metric space, the Vietoris-Rips filtration creates

a nested sequence of simplicial complexes by connecting points

situated closer than a predefined distance ǫ. Varying ǫ, we com-

pute persistent properties (cavities) in these simplices. We define a

DNN in one such topological space to compute informative data of

its behaviour that correlates with its performance on testing data.

In DNNs, we can, for example, study how its functional

topology varies during training as follows (Fig. 3). First, we

compute the correlation of every node in our DNN to every

other node at each epoch. Nodes that are highly correlated

(i.e., their correlation is above a threshold) are defined as

connected, even if there is no actual edge or path connecting

them in the network’s computational graph. These connec-

tions define a simplicial complex, with a number of cavities.

These cavities are given by the Betti numbers. We know that

the dynamics of low-dimension Betti numbers (i.e., β1 and

β2) is informative over the bias-variance problem (i.e., the

generalization vs. memorization problem) [9]. Similarly, it

has been shown that these persistence homology measures

can be used to study and interpret the data as points in a

functional space, making it possible to learn and optimize

the estimates fj(.) defined on the data [6].

3. Algorithm

Recall X = {xi,yi}
n

i=1 is the set of labeled training

samples, with n the number of samples.

Let ai be the activation value of a particular node in our

DNN for a particular input xi. Passing the sample vectors

xi through the network (i = 1, . . . , n), allows us to compute

the correlation between the activation (ap, aq) of each pair

of nodes which defines the metric ν of our Vietoris-Rips

complex. Formally,

νpq =

n∑

i=1

(api − ap)(aqi − aq)

ςap
ςaq

, (2)

where a and ςa indicate the mean and standard deviation

over X .

We represent the results of our persistent homology us-

ing a persistence diagram. In our persistence diagram, each

cavity, the whole in the donut and in the handle of the mug. On the other

hand, a torus (defined as the product of two circles, S1
× S1) has two

holes because it is hollow. Hence, a torus is topologically different to a

donut and a coffee mug.

(X,µ)
ε1

(X, τ1)
ε0

(X,µ) (X, τ0) (X,µ)
ε2

(X, τ2)

 TOPOLOGY MEASURES

DEEP NEURAL NETWORK

f̂(.)

METRIC SPACE

TOPOLOGICAL SPACE

(A, τ1) (A, τk) (A, τn)

(A, ν)

... ...

λ, µ

......S0 Sk Sn

Figure 3: An overview of computing topological summaries from

DNNs. We first define a set of nodes A in the network. By com-

puting the correlations between these nodes we project the net-

work into a metric space (A, ν) from which we obtain a set of

simplicial complexes in a topological space through Vietoris-Rips

filtration. Persistent homology on this set of simplicial complexes

results in a persistence diagram from which topological measures

can be computed directly.

point has as coordinates a set of pairs of real positive num-

bers P = {(ǫid, ǫ
i
b)|(ǫ

i
d, ǫ

i
b) ∈ R × R, i = 1, . . . C}, where

the subscripts b and d in ǫ indicate the birth and death dis-

tances of a cavity i in the Vietoris-Rips filtration, and C is

the total number of cavities.

A filtration of a metric space (A, ν) is a nested sub-

sequence of complexes that abide by the following rule:

S0 ⊆ S1 ⊆ · · · ⊆ Sn = S [30]. Thus, this filtra-

tion is in fact what defines the persistence diagram of a

k-dimensional homology group. This is done by comput-

ing the creation and deletion of k-dimensional homology

features. This, in turn, allows us to compute the lifespan

homological feature [7].

Based on this persistence diagram, we define the life of a

cavity as the average time (i.e., persistence) in this diagram.
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Algorithm 1 Computes the function g(λk, µk; c) that maps the topological summaries to the estimated testing error.

Input: train dataset X = {xi, yi}
n
i=1, test dataset Z = {xi, yi}

m
i=n+1.

Output: parametrized function g.

Parameters:K = #trainings.

for k=1 . . . K do

ω ← argminωL(f̂(x;ω), y). ⊲ Train DNN and estimate f by optimizing loss L over X .

∆ρk = ρtrain − ρtest ⊲ Compute performance gap.

for all pairs of nodes (ap, aq) ∈ A, p 6= q do

νpq ←
∑n

i=1
(api−ap)(aqi−aq)

ςap ςaq
⊲ Compute correlations. (Eq. 2).

end for

S ← V R(A, ν) ⊲ Perform Vietoris-Rips filtration and get set of simplicial complexes S .

P ← PH(S) ⊲ Compute persistent homology PH over S and get persistent diagram P .

λk ←
1
C

∑C

i=1(ǫ
i
d − ǫib) ⊲ Compute topological summary (Eq. 3).

µk ←
1
C

∑C

i=1
ǫid+ǫib

2 ⊲ Compute topological summary (Eq. 4).

end for

c← argminc

∑K

i=1(∆ρk − g(λk, µk; c))
2 ⊲ Compute g· by regression of {λk, µk,∆ρk}

K
k=1

Formally,

λ =
1

C

C∑

i=1

(ǫid − ǫib). (3)

Similarly, we define its midlife as the average density of

its persistence. Formally,

µ =
1

C

C∑

i=1

ǫid + ǫib
2

. (4)

Finally, we define the linear functional mapping from

these topological summaries to the gap between the training

and testing error as,

g (λ, µ; c) = ∆̂ρ, (5)

where ∆̂ρ is our estimate of the gap between the training

and testing errors, and g (λ, µ; c) = c1λ + c2µ + c3, with

ci ∈ R
+, and c = (c1, c2, c3)

T , Figure 1(b).

With the above result we can estimate the testing error

without the need of any testing data as,

ρ̂test = ρtrain − ∆̂ρ, (6)

where ρtrain is the training error computed during training

with X .

Given an actual testing datasetZ = {xi,yi}
m
n+1, we can

compute the accuracy of our estimated testing error as,

Error = |ρtest − ρ̂test|, (7)

where ρtest is the testing error computed on Z .

The pseudo-code of our proposed approach is shown in

Alg. 1.3

3Code available at https://github.com/cipriancorneanu/dnn-topology.

3.1. Computational Complexity

Let the binomial coefficient p =
(
N+1
n+1

)
be the number

of n-simplices of a simplicial complex S (as, for example,

would be generated during the Vietoris-Rips filtration illus-

trated in Fig. 2). In order to compute persistent homol-

ogy of order n on S, one has to compute rank(∂n+1), with

∂n+1 ∈ R
p×q , p the number of n-simplices, and q the num-

ber of (n + 1)-simplices. This has polynomial complexity

O(qa), a > 1.

Fortunately, in Alg. 1, we only need to compute per-

sistent homology of the first order. Additionally, the sim-

plicial complexes generated by the Vietoris-Rips filtration

are generally extremely sparse. This means that for typ-

ical DNNs, the number of n-simplices is way lower than

the binomial coefficient defined above. In practice, we have

found 10,000 to be a reasonable upper bound for the car-

dinality of A. This is because we define nodes by taking

into account structural constraints on the topology of DNNs.

Specifically, a node ai is a random variable with value equal

to the mean output of the filter in its corresponding convo-

lutional layer. Having random variables allows us to define

correlations and metric spaces in Alg. 1. Empirically, we

have found that defining nodes in this way is robust, and

similar characteristics, e.g. high correlation, can be found

even if a subset of filters is randomly selected. For smaller,

toy networks there is previous evidence [9] that supports

that functional topology defined in this way is informative

for determining overfitting in DNNs.

Finally, the time it takes to compute persistent homol-

ogy, and consequently, the topological summaries, λ and µ,

is 5 minutes and 15 seconds for VGG16, one of the most

extended networks in our analysis. This corresponds to a

single iteration of Alg. 1 (the for-loop that iterates over k),
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excluding training, on a single 2.2 GHz Intel Xeon CPU.

4. Related Work

Topology measures have been previously used to iden-

tify over-fitting in DNNs. For example, using lower di-

mensional Betti curves (which calculates the cavities) of

the functional (binary) graph of a network [9], which can

be used to perform early stopping in training and detect ad-

versarial attacks. Other topological measures, this time for

characterizing and monitoring structural properties, have

been used for the same purpose [24].

Other works tried to address the crucial question of how

the generalization gap can be predicted from training data

and network parameters [3, 2, 23, 16]. For example, a met-

ric based on the ratio of the margin distribution at the output

layer of the network and a spectral complexity measure re-

lated to the network’s Lipschitz constant has been proposed

[4]. In [23], the authors developed bounds on the general-

ization gap based on the product of norms of the weights

across layers. In [2], the authors developed bounds based

on noise stability properties of networks showing that more

stability implies better generalization. And, in [16], the au-

thors used the notion of margin in support vector machines

to show that the normalized margin distribution across a

DNN’s layers is a predictor of the generalization gap.

5. Experimental Settings

We have derived an algorithm to compute the testing ac-

curacy of a DNN that does not require access to any testing

dataset. This section provides extensive validation of this

algorithm. We apply our algorithm in three fundamental

problems in computer vision: object recognition, facial ac-

tion unit recognition, and semantic segmentation, Figure 4.

5.1. Object Recognition

Object recognition is one of the most fundamental and

studied problems in computer vision. Many large scale

databases exist, allowing us to provide multiple evaluations

of the proposed approach.

To give an extensive evaluation of our algorithm, we

use four datasets: CIFAR10 [17], CIFAR100 [17], Street

View House Numbers (SVHN) [22], and ImageNet [10]. In

the case of ImageNet, we have used a subset with roughly

120, 000 images split in 200 object classes [1].

We evaluate the performance of several DNNs by com-

puting the classification accuracy, namely the number of

predictions the model got right divided by the total number

of predictions, Figure 5 and Tables 1 & 2.

5.2. Facial Action Unit Recognition

Facial Action Unit (AU) recognition is one of the most

difficult tasks for DNNs, with humans significantly over-

Figure 4: We evaluate the proposed method on three different

vision problems. (a) Object recognition is a standard classifi-

cation problem consisting in categorizing objects. We evaluate

on datasets of increasing difficulty, starting with real world digit

recognition and continuing towards increasingly challenging cate-

gory recognition. (b) AU recognition involves recognizing local,

sometimes subtle patterns of facial muscular articulations. Sev-

eral AUs can be present at the same time, making it a multi-label

classification problem. (c) In semantic segmentation, one has to

output a dense pixel categorization that properly captures complex

semantic structure of an image.

performing even the best algorithms [3, 5].

Here, we use BP4D [29], DISFA [21], and EmotionNet

[13], of which, in this paper, we use a subset of 100,000

images. And, since this is a binary classification problem,

we are most interested in computing precision and recall,

Figure 6 and Tables 3 & 4.

5.3. Semantic Segmentation

Semantic segmentation is another challenging prob-

lem in computer vision. We use Pascal-VOC [12] and

Cityscapes [8]. The version of Pascal-VOC used consists of

2,913 images, with pixel based annotations for 20 classes.

The Cityscapes dataset focuses on semantic understanding

of urban street scenes [8]. It provides 5,000 images with

dense pixel annotations for 30 classes.

Semantic segmentation is evaluated using union-over-

intersection (IoU4), Figure 7 and Table 5.

4Also known as the Jaccard Index., which counts the number of pix-

els common between the ground truth and prediction segmentation masks

divided by the total number of pixels present across both masks.
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