
Computing the Testing Error without a Testing Set

Ciprian A. Corneanu

Univ. Barcelona, Tawny

Sergio Escalera

Univ. Barcelona, CVC

Aleix M. Martinez

OSU, Amazon

f̂(.)

DEEP NEURAL NETWORK

CLASSICAL APPROACH

∆ρ

ρtrain

ρtest

ρ

PERFORMANCE GAP

f̂(.)

DEEP NEURAL NETWORK

|ρtest − ρ̂test|
ESTIMATION ERROR

TOPOLOGICAL
SUMMARY

λ, µ

TOPOLOGICAL SPACE

ρ

PROPOSED APPROACH

ρtrain

∆̂ρ

ρ̂test

ESTIMATED PERFORMANCE GAP

TESTING DATA

X = {xi, yi}
n
i=1

TRAINING DATA

Z = { xi, yi}
m
i=n+1

iteration

iteration

(a) (b)

λ, µ

g(λ, µ)

λ∗, µ∗

(λk, µk,∆ρk)

ρ̂test = ρtrain − ∆̂ρ

∆̂ρ

Figure 1: (a) We compute the test performance1of any Deep Neural Network (DNN) on any computer vision problem using no testing

samples (top); neither labelled nor unlabelled samples are necessary. This in sharp contrast to the classical computer vision approach,

where model performance is calculated using a curated test dataset (bottom). (b) The persistent algebraic topological summary (λ∗, µ∗)
given by our algorithm (x-axis) against the performance gap ∆ρ between training and testing performance (y-axis).

Abstract

Deep Neural Networks (DNNs) have revolutionized com-

puter vision. We now have DNNs that achieve top (perfor-

mance) results in many problems, including object recogni-

tion, facial expression analysis, and semantic segmentation,

to name but a few. The design of the DNNs that achieve

top results is, however, non-trivial and mostly done by trail-

and-error. That is, typically, researchers will derive many

DNN architectures (i.e., topologies) and then test them on

multiple datasets. However, there are no guarantees that the

selected DNN will perform well in the real world. One can

use a testing set to estimate the performance gap between

the training and testing sets, but avoiding overfitting-to-the-

testing-data is almost impossible. Using a sequestered test-

ing dataset may address this problem, but this requires a

constant update of the dataset, a very expensive venture.

Here, we derive an algorithm to estimate the performance

gap between training and testing that does not require any

testing dataset. Specifically, we derive a number of persis-

tent topology measures that identify when a DNN is learn-

ing to generalize to unseen samples. This allows us to com-

pute the DNN’s testing error on unseen samples, even when

we do not have access to them. We provide extensive ex-

perimental validation on multiple networks and datasets to

demonstrate the feasibility of the proposed approach.

1. Introduction

Deep Neural Networks (DNNs) are algorithms capable

of identifying complex, non-linear mappings, f(.), between

an input variable x and and output variable y, i.e., f(x) =
y [19]. Each DNN is defined by its unique topology and

loss function. Some well-known models are [25, 15, 18], to

name but a few.

Given a well-curated dataset with n samples, X =
{xi,yi}

n
i=1, we can use DNNs to find an estimate of the

functional mapping f(xi) = yi. Let us refer to the esti-

mated mapping function as f̂(.). Distinct estimates, f̂j(.),
will be obtained when using different DNNs and datasets.

Example datasets we can use to this end are [10, 13, 11],

among many others.

1Let ρtrain and test be the performance of an algorithm computed

using a training and testing set, respectively; ρ̂test is the estimated testing

error computed without any testing data. The performance metric may be

classification accuracy, F1-score, Intersection-over-Union (IoU), etc.

12677

Using datasets such as these to train DNNs has been very

fruitful. DNNs have achieved considerable improvements

in a myriad of, until recently, very challenging tasks, e.g.,

[18, 27].

Unfortunately, we do not generally know how the es-

timated mapping functions f̂j(.) will perform in the real

world, when using independent, unseen images.

The classical way to address this problem is to use a test-

ing dataset, Figure 1(a, bottom). The problem with this ap-

proach is that, in many instances, the testing set is visible to

us, and, hence, we keep modifying the DNN topology until

it works on this testing dataset. This means that we overfit

to the testing data and, generally, our algorithm may not be

the best for truly unseen samples.

To resolve this issue, we can use a sequestered dataset.

This means that a third-party has a testing dataset we have

never seen and we are only able to know how well we per-

form on that dataset once every several months. While this

does tell us how well our algorithm performs on previously

unseen samples, we can only get this estimate sporadically.

And, importantly, we need to rely on someone else main-

taining and updating this sequestered testing set. Many such

sequestered datasets do not last long, because maintaining

and updating them is a very costly endeavour.

In the present paper, we introduce an approach that re-

solves these problems. Specifically, we derive an algorithm

that gives an accurate estimate of the performance gap be-

tween our training and testing error, without the need of any

testing dataset, Figure 1(a, top). That means we do not need

to have access to any labelled or unlabelled data. Rather, our

algorithm will give you an accurate estimate of the perfor-

mance of your DNN on independent, unseen sample.

Our key idea is to derive a set of topological summaries

measuring persistent topological maps of the behavior of

DNNs across computer vision problems. Persistent topol-

ogy has been shown to correlate with generalization error

in classification [9], and as a method to theoretically study

and explain DNNs’ behavior [6, 9, 28]. The hypothesis we

are advancing is that the generalization gap is a function

of the inner-workings of the network, here represented by

its functional topology and described through topological

summaries. We propose to regress this function and use it

to estimate test performance based only on training data.

Figure 1(b) shows an example. In this plot, the x-axis

shows a linear combination of persistent topology measures

of DNNs. The y-axis in this plot is the value of the perfor-

mance gap when using these DNNs on multiple computer

vision problems. As can be seen in this figure, there is a

linear relationship between our proposed topological sum-

maries and the DNN’s performance gap. This means that

knowing the value of our topological summaries is as good

as knowing the performance of the DNN on a sequestered

dataset, but without any of the drawbacks mentioned above

– no need to depend on an independent group to collect,

curate, and update a testing set.

We start with a set of derivations of the persistent topol-

ogy measures we perform on DNNs (Section 2), before us-

ing this to derive our algorithm (Section 3). We provide a

discussion of related work (Section 4) and extensive exper-

imental evaluations on a variety of DNNs and computer vi-

sion problems, including object recognition, facial expres-

sion analysis, and semantic segmentation (Sections 5 and

6).

2. Topological Summaries

A DNN is characterized by its structure (i.e., the way its

computational graph is defined and trained), and its function

(i.e, the actual values its components take in response to

specific inputs). We focus here on the latter.

To do this, we define DNNs on a topological space. A

set of compact descriptors of this space, called topological

summaries, are then calculated. They measure important

properties of the network’s behaviour. For example, a sum-

mary of the functional topology of a network can be used to

detect overfitting and perform early-stopping [9].

LetA be a set. An abstract simplicial complex S is a col-

lection of vertices denoted V (A), and a collection of sub-

sets of V (A) called simplices that is closed under the subset

operation, i.e., if σ ∈ ψ and ψ ∈ A, then σ ∈ A.

The dimension of a simplex σ is |σ|−1, where |·| denotes

cardinality. A simplex of dimension n is called a n-simplex.

A 0-simplex is realized by a single vertex, a 1-simplex by

a line segment (i.e., an edge) connecting two vertices, a 2-

simplex is the filled triangle that connects three vertices, etc.

Let M = (A, ν) be a metric space – the association of

the set A with a metric ν. Given a distance ǫ, the Vietoris-

Rips complex [26] is an abstract simplicial complex that

contains all the simplices formed by all pairs of elements

ai, aj ∈ A with

ν(ai, aj) < ǫ, (1)

for some small ǫ > 0, and i 6= j.

By considering a range of possible distances, E =
{ǫ0, ǫ1, . . . ǫk, . . . ǫn}, where 0 < ǫ0 ≤ ǫ1 ≤ · · · ≤ ǫk ≤
· · · ≤ ǫn, a Vietoris-Rips filtration yields a collection of

simplicial complexes, S = {S0, S1, . . . , Sk, . . . , Sn}, at

multiple scales, Figure 2 [14].

We are interested in the persistent topology properties

of these complexes across different scales. For this, we

compute the pth− persistent homology groups and the Betti

numbers βp, which gives us the ranks of those groups [14].

This means that the Betti numbers compute the number of

cavities of a topological object.2

2Two objects are topologically equivalent if they have the same number

of cavities (holes) at each of their dimensions. For example, a donut and

a coffee mug are topologically equivalent, because each has a single 2D

2678

(X,µ)
ε1

(X, τ1)
ε0

(X,µ) (X, τ0) (X,µ)
ε2

(X, τ2)(A, ν)! S0
<latexit sha1_base64="J6QcF6fRgo1RPRbx1ENPQXSlGOM=">AAACAHicbVBNS8NAEN3Ur1q/ol4EL4tFqCAlEUG9Vb14rGhtoQlhs920Sze7YXejlFAv/hUvHlS8+jO8+W/ctjlo64OBx3szzMwLE0aVdpxvqzA3v7C4VFwurayurW/Ym1t3SqQSkwYWTMhWiBRhlJOGppqRViIJikNGmmH/cuQ374lUVPBbPUiIH6MupxHFSBspsHcq54fQ4+kB9CTt9jSSUjzAm8AJ7LJTdcaAs8TNSRnkqAf2l9cROI0J15ghpdquk2g/Q1JTzMiw5KWKJAj3UZe0DeUoJsrPxh8M4b5ROjAS0hTXcKz+nshQrNQgDk1njHRPTXsj8T+vnero1M8oT1JNOJ4silIGtYCjOGCHSoI1GxiCsKTmVoh7SCKsTWglE4I7/fIsaRxVz6rO9XG5dpGnUQS7YA9UgAtOQA1cgTpoAAwewTN4BW/Wk/VivVsfk9aClc9sgz+wPn8ArRqVUg==</latexit><latexit sha1_base64="J6QcF6fRgo1RPRbx1ENPQXSlGOM=">AAACAHicbVBNS8NAEN3Ur1q/ol4EL4tFqCAlEUG9Vb14rGhtoQlhs920Sze7YXejlFAv/hUvHlS8+jO8+W/ctjlo64OBx3szzMwLE0aVdpxvqzA3v7C4VFwurayurW/Ym1t3SqQSkwYWTMhWiBRhlJOGppqRViIJikNGmmH/cuQ374lUVPBbPUiIH6MupxHFSBspsHcq54fQ4+kB9CTt9jSSUjzAm8AJ7LJTdcaAs8TNSRnkqAf2l9cROI0J15ghpdquk2g/Q1JTzMiw5KWKJAj3UZe0DeUoJsrPxh8M4b5ROjAS0hTXcKz+nshQrNQgDk1njHRPTXsj8T+vnero1M8oT1JNOJ4silIGtYCjOGCHSoI1GxiCsKTmVoh7SCKsTWglE4I7/fIsaRxVz6rO9XG5dpGnUQS7YA9UgAtOQA1cgTpoAAwewTN4BW/Wk/VivVsfk9aClc9sgz+wPn8ArRqVUg==</latexit>

ε0
<latexit sha1_base64="6zwqFj3lw+2OwTaNpnlkn77rlyg=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGFtsQ9lsJ+3SzSbsboQS+i+8eFDx6s/x5r9x2+agrQ8GHu/NMDMvTAXXxnW/ndLK6tr6RnmzsrW9s7tX3T940EmmGPosEYlqh1Sj4BJ9w43AdqqQxqHAVji6mfqtJ1SaJ/LejFMMYjqQPOKMGis9djHVXCSy5/aqNbfuzkCWiVeQGhRo9qpf3X7CshilYYJq3fHc1AQ5VYYzgZNKN9OYUjaiA+xYKmmMOshnF0/IiVX6JEqULWnITP09kdNY63Ec2s6YmqFe9Kbif14nM9FlkHOZZgYlmy+KMkFMQqbvkz5XyIwYW0KZ4vZWwoZUUWZsSBUbgrf48jLxz+pXdffuvNa4LtIowxEcwyl4cAENuIUm+MBAwjO8wpujnRfn3fmYt5acYuYQ/sD5/AHhHJCW</latexit><latexit sha1_base64="6zwqFj3lw+2OwTaNpnlkn77rlyg=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGFtsQ9lsJ+3SzSbsboQS+i+8eFDx6s/x5r9x2+agrQ8GHu/NMDMvTAXXxnW/ndLK6tr6RnmzsrW9s7tX3T940EmmGPosEYlqh1Sj4BJ9w43AdqqQxqHAVji6mfqtJ1SaJ/LejFMMYjqQPOKMGis9djHVXCSy5/aqNbfuzkCWiVeQGhRo9qpf3X7CshilYYJq3fHc1AQ5VYYzgZNKN9OYUjaiA+xYKmmMOshnF0/IiVX6JEqULWnITP09kdNY63Ec2s6YmqFe9Kbif14nM9FlkHOZZgYlmy+KMkFMQqbvkz5XyIwYW0KZ4vZWwoZUUWZsSBUbgrf48jLxz+pXdffuvNa4LtIowxEcwyl4cAENuIUm+MBAwjO8wpujnRfn3fmYt5acYuYQ/sD5/AHhHJCW</latexit>

(A, ν)! Sk
<latexit sha1_base64="PdvcEAvNPt4hhjiw/ankO5XBifQ=">AAACAHicbVBNS8NAEN3Ur1q/ol4EL4tFqCAlEUG9Vb14rGhtoQlhs920Sze7YXejlFAv/hUvHlS8+jO8+W/ctjlo64OBx3szzMwLE0aVdpxvqzA3v7C4VFwurayurW/Ym1t3SqQSkwYWTMhWiBRhlJOGppqRViIJikNGmmH/cuQ374lUVPBbPUiIH6MupxHFSBspsHcq54fQ4+kB9CTt9jSSUjzAm6Af2GWn6owBZ4mbkzLIUQ/sL68jcBoTrjFDSrVdJ9F+hqSmmJFhyUsVSRDuoy5pG8pRTJSfjT8Ywn2jdGAkpCmu4Vj9PZGhWKlBHJrOGOmemvZG4n9eO9XRqZ9RnqSacDxZFKUMagFHccAOlQRrNjAEYUnNrRD3kERYm9BKJgR3+uVZ0jiqnlWd6+Ny7SJPowh2wR6oABecgBq4AnXQABg8gmfwCt6sJ+vFerc+Jq0FK5/ZBn9gff4ABlqVjQ==</latexit><latexit sha1_base64="PdvcEAvNPt4hhjiw/ankO5XBifQ=">AAACAHicbVBNS8NAEN3Ur1q/ol4EL4tFqCAlEUG9Vb14rGhtoQlhs920Sze7YXejlFAv/hUvHlS8+jO8+W/ctjlo64OBx3szzMwLE0aVdpxvqzA3v7C4VFwurayurW/Ym1t3SqQSkwYWTMhWiBRhlJOGppqRViIJikNGmmH/cuQ374lUVPBbPUiIH6MupxHFSBspsHcq54fQ4+kB9CTt9jSSUjzAm6Af2GWn6owBZ4mbkzLIUQ/sL68jcBoTrjFDSrVdJ9F+hqSmmJFhyUsVSRDuoy5pG8pRTJSfjT8Ywn2jdGAkpCmu4Vj9PZGhWKlBHJrOGOmemvZG4n9eO9XRqZ9RnqSacDxZFKUMagFHccAOlQRrNjAEYUnNrRD3kERYm9BKJgR3+uVZ0jiqnlWd6+Ny7SJPowh2wR6oABecgBq4AnXQABg8gmfwCt6sJ+vFerc+Jq0FK5/ZBn9gff4ABlqVjQ==</latexit>

εk
<latexit sha1_base64="IxDcOp8dFbOwuCuOBw5zwxvSBP4=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGFtsQ9lsJ+3SzSbsboQS+i+8eFDx6s/x5r9x2+agrQ8GHu/NMDMvTAXXxnW/ndLK6tr6RnmzsrW9s7tX3T940EmmGPosEYlqh1Sj4BJ9w43AdqqQxqHAVji6mfqtJ1SaJ/LejFMMYjqQPOKMGis9djHVXCSyN+pVa27dnYEsE68gNSjQ7FW/uv2EZTFKwwTVuuO5qQlyqgxnAieVbqYxpWxEB9ixVNIYdZDPLp6QE6v0SZQoW9KQmfp7Iqex1uM4tJ0xNUO96E3F/7xOZqLLIOcyzQxKNl8UZYKYhEzfJ32ukBkxtoQyxe2thA2poszYkCo2BG/x5WXin9Wv6u7dea1xXaRRhiM4hlPw4AIacAtN8IGBhGd4hTdHOy/Ou/Mxby05xcwh/IHz+QM6XJDR</latexit><latexit sha1_base64="IxDcOp8dFbOwuCuOBw5zwxvSBP4=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGFtsQ9lsJ+3SzSbsboQS+i+8eFDx6s/x5r9x2+agrQ8GHu/NMDMvTAXXxnW/ndLK6tr6RnmzsrW9s7tX3T940EmmGPosEYlqh1Sj4BJ9w43AdqqQxqHAVji6mfqtJ1SaJ/LejFMMYjqQPOKMGis9djHVXCSyN+pVa27dnYEsE68gNSjQ7FW/uv2EZTFKwwTVuuO5qQlyqgxnAieVbqYxpWxEB9ixVNIYdZDPLp6QE6v0SZQoW9KQmfp7Iqex1uM4tJ0xNUO96E3F/7xOZqLLIOcyzQxKNl8UZYKYhEzfJ32ukBkxtoQyxe2thA2poszYkCo2BG/x5WXin9Wv6u7dea1xXaRRhiM4hlPw4AIacAtN8IGBhGd4hTdHOy/Ou/Mxby05xcwh/IHz+QM6XJDR</latexit>

(A, ν)! Sn
<latexit sha1_base64="Sv72wuJuzMBTKgU+aAAS6nV6XYk=">AAACAHicbVBNS8NAEN3Ur1q/ql4EL4tFqCAlEUG9Vb14rGhtoQlls920SzebsDtRSqgX/4oXDype/Rne/Ddu2xy09cHA470ZZub5seAabPvbys3NLywu5ZcLK6tr6xvFza07HSWKsjqNRKSaPtFMcMnqwEGwZqwYCX3BGn7/cuQ37pnSPJK3MIiZF5Ku5AGnBIzULu6Uzw+xK5MD7Cre7QFRKnrAN21jleyKPQaeJU5GSihDrV38cjsRTUImgQqidcuxY/BSooBTwYYFN9EsJrRPuqxlqCQh0146/mCI943SwUGkTEnAY/X3REpCrQehbzpDAj097Y3E/7xWAsGpl3IZJ8AknSwKEoEhwqM4cIcrRkEMDCFUcXMrpj2iCAUTWsGE4Ey/PEvqR5Wzin19XKpeZGnk0S7aQ2XkoBNURVeohuqIokf0jF7Rm/VkvVjv1sekNWdlM9voD6zPHwrjlZA=</latexit><latexit sha1_base64="Sv72wuJuzMBTKgU+aAAS6nV6XYk=">AAACAHicbVBNS8NAEN3Ur1q/ql4EL4tFqCAlEUG9Vb14rGhtoQlls920SzebsDtRSqgX/4oXDype/Rne/Ddu2xy09cHA470ZZub5seAabPvbys3NLywu5ZcLK6tr6xvFza07HSWKsjqNRKSaPtFMcMnqwEGwZqwYCX3BGn7/cuQ37pnSPJK3MIiZF5Ku5AGnBIzULu6Uzw+xK5MD7Cre7QFRKnrAN21jleyKPQaeJU5GSihDrV38cjsRTUImgQqidcuxY/BSooBTwYYFN9EsJrRPuqxlqCQh0146/mCI943SwUGkTEnAY/X3REpCrQehbzpDAj097Y3E/7xWAsGpl3IZJ8AknSwKEoEhwqM4cIcrRkEMDCFUcXMrpj2iCAUTWsGE4Ey/PEvqR5Wzin19XKpeZGnk0S7aQ2XkoBNURVeohuqIokf0jF7Rm/VkvVjv1sekNWdlM9voD6zPHwrjlZA=</latexit>

εn
<latexit sha1_base64="RIA0ssbLm1H0w6Xtk4fdkDW34/E=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGFtsQ9lsJ+3SzSbsboQS+i+8eFDx6s/x5r9x2+agrQ8GHu/NMDMvTAXXxnW/ndLK6tr6RnmzsrW9s7tX3T940EmmGPosEYlqh1Sj4BJ9w43AdqqQxqHAVji6mfqtJ1SaJ/LejFMMYjqQPOKMGis9djHVXCSyJ3vVmlt3ZyDLxCtIDQo0e9Wvbj9hWYzSMEG17nhuaoKcKsOZwEmlm2lMKRvRAXYslTRGHeSziyfkxCp9EiXKljRkpv6eyGms9TgObWdMzVAvelPxP6+TmegyyLlMM4OSzRdFmSAmIdP3SZ8rZEaMLaFMcXsrYUOqKDM2pIoNwVt8eZn4Z/Wrunt3XmtcF2mU4QiO4RQ8uIAG3EITfGAg4Rle4c3Rzovz7nzMW0tOMXMIf+B8/gA+5ZDU</latexit><latexit sha1_base64="RIA0ssbLm1H0w6Xtk4fdkDW34/E=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGFtsQ9lsJ+3SzSbsboQS+i+8eFDx6s/x5r9x2+agrQ8GHu/NMDMvTAXXxnW/ndLK6tr6RnmzsrW9s7tX3T940EmmGPosEYlqh1Sj4BJ9w43AdqqQxqHAVji6mfqtJ1SaJ/LejFMMYjqQPOKMGis9djHVXCSyJ3vVmlt3ZyDLxCtIDQo0e9Wvbj9hWYzSMEG17nhuaoKcKsOZwEmlm2lMKRvRAXYslTRGHeSziyfkxCp9EiXKljRkpv6eyGms9TgObWdMzVAvelPxP6+TmegyyLlMM4OSzRdFmSAmIdP3SZ8rZEaMLaFMcXsrYUOqKDM2pIoNwVt8eZn4Z/Wrunt3XmtcF2mU4QiO4RQ8uIAG3EITfGAg4Rle4c3Rzovz7nzMW0tOMXMIf+B8/gA+5ZDU</latexit>

εk
<latexit sha1_base64="IxDcOp8dFbOwuCuOBw5zwxvSBP4=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGFtsQ9lsJ+3SzSbsboQS+i+8eFDx6s/x5r9x2+agrQ8GHu/NMDMvTAXXxnW/ndLK6tr6RnmzsrW9s7tX3T940EmmGPosEYlqh1Sj4BJ9w43AdqqQxqHAVji6mfqtJ1SaJ/LejFMMYjqQPOKMGis9djHVXCSyN+pVa27dnYEsE68gNSjQ7FW/uv2EZTFKwwTVuuO5qQlyqgxnAieVbqYxpWxEB9ixVNIYdZDPLp6QE6v0SZQoW9KQmfp7Iqex1uM4tJ0xNUO96E3F/7xOZqLLIOcyzQxKNl8UZYKYhEzfJ32ukBkxtoQyxe2thA2poszYkCo2BG/x5WXin9Wv6u7dea1xXaRRhiM4hlPw4AIacAtN8IGBhGd4hTdHOy/Ou/Mxby05xcwh/IHz+QM6XJDR</latexit><latexit sha1_base64="IxDcOp8dFbOwuCuOBw5zwxvSBP4=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGFtsQ9lsJ+3SzSbsboQS+i+8eFDx6s/x5r9x2+agrQ8GHu/NMDMvTAXXxnW/ndLK6tr6RnmzsrW9s7tX3T940EmmGPosEYlqh1Sj4BJ9w43AdqqQxqHAVji6mfqtJ1SaJ/LejFMMYjqQPOKMGis9djHVXCSyN+pVa27dnYEsE68gNSjQ7FW/uv2EZTFKwwTVuuO5qQlyqgxnAieVbqYxpWxEB9ixVNIYdZDPLp6QE6v0SZQoW9KQmfp7Iqex1uM4tJ0xNUO96E3F/7xOZqLLIOcyzQxKNl8UZYKYhEzfJ32ukBkxtoQyxe2thA2poszYkCo2BG/x5WXin9Wv6u7dea1xXaRRhiM4hlPw4AIacAtN8IGBhGd4hTdHOy/Ou/Mxby05xcwh/IHz+QM6XJDR</latexit>

Figure 2: Given a metric space, the Vietoris-Rips filtration creates

a nested sequence of simplicial complexes by connecting points

situated closer than a predefined distance ǫ. Varying ǫ, we com-

pute persistent properties (cavities) in these simplices. We define a

DNN in one such topological space to compute informative data of

its behaviour that correlates with its performance on testing data.

In DNNs, we can, for example, study how its functional

topology varies during training as follows (Fig. 3). First, we

compute the correlation of every node in our DNN to every

other node at each epoch. Nodes that are highly correlated

(i.e., their correlation is above a threshold) are defined as

connected, even if there is no actual edge or path connecting

them in the network’s computational graph. These connec-

tions define a simplicial complex, with a number of cavities.

These cavities are given by the Betti numbers. We know that

the dynamics of low-dimension Betti numbers (i.e., β1 and

β2) is informative over the bias-variance problem (i.e., the

generalization vs. memorization problem) [9]. Similarly, it

has been shown that these persistence homology measures

can be used to study and interpret the data as points in a

functional space, making it possible to learn and optimize

the estimates fj(.) defined on the data [6].

3. Algorithm

Recall X = {xi,yi}
n

i=1 is the set of labeled training

samples, with n the number of samples.

Let ai be the activation value of a particular node in our

DNN for a particular input xi. Passing the sample vectors

xi through the network (i = 1, . . . , n), allows us to compute

the correlation between the activation (ap, aq) of each pair

of nodes which defines the metric ν of our Vietoris-Rips

complex. Formally,

νpq =

n∑

i=1

(api − ap)(aqi − aq)

ςap
ςaq

, (2)

where a and ςa indicate the mean and standard deviation

over X .

We represent the results of our persistent homology us-

ing a persistence diagram. In our persistence diagram, each

cavity, the whole in the donut and in the handle of the mug. On the other

hand, a torus (defined as the product of two circles, S1
× S1) has two

holes because it is hollow. Hence, a torus is topologically different to a

donut and a coffee mug.

(X,µ)
ε1

(X, τ1)
ε0

(X,µ) (X, τ0) (X,µ)
ε2

(X, τ2)

 TOPOLOGY MEASURES

DEEP NEURAL NETWORK

f̂(.)

METRIC SPACE

TOPOLOGICAL SPACE

(A, τ1) (A, τk) (A, τn)

(A, ν)

... ...

λ, µ

......S0 Sk Sn

Figure 3: An overview of computing topological summaries from

DNNs. We first define a set of nodes A in the network. By com-

puting the correlations between these nodes we project the net-

work into a metric space (A, ν) from which we obtain a set of

simplicial complexes in a topological space through Vietoris-Rips

filtration. Persistent homology on this set of simplicial complexes

results in a persistence diagram from which topological measures

can be computed directly.

point has as coordinates a set of pairs of real positive num-

bers P = {(ǫid, ǫ
i
b)|(ǫ

i
d, ǫ

i
b) ∈ R × R, i = 1, . . . C}, where

the subscripts b and d in ǫ indicate the birth and death dis-

tances of a cavity i in the Vietoris-Rips filtration, and C is

the total number of cavities.

A filtration of a metric space (A, ν) is a nested sub-

sequence of complexes that abide by the following rule:

S0 ⊆ S1 ⊆ · · · ⊆ Sn = S [30]. Thus, this filtra-

tion is in fact what defines the persistence diagram of a

k-dimensional homology group. This is done by comput-

ing the creation and deletion of k-dimensional homology

features. This, in turn, allows us to compute the lifespan

homological feature [7].

Based on this persistence diagram, we define the life of a

cavity as the average time (i.e., persistence) in this diagram.

2679

Algorithm 1 Computes the function g(λk, µk; c) that maps the topological summaries to the estimated testing error.

Input: train dataset X = {xi, yi}
n
i=1, test dataset Z = {xi, yi}

m
i=n+1.

Output: parametrized function g.

Parameters:K = #trainings.

for k=1 . . . K do

ω ← argminωL(f̂(x;ω), y). ⊲ Train DNN and estimate f by optimizing loss L over X .

∆ρk = ρtrain − ρtest ⊲ Compute performance gap.

for all pairs of nodes (ap, aq) ∈ A, p 6= q do

νpq ←
∑n

i=1
(api−ap)(aqi−aq)

ςap ςaq
⊲ Compute correlations. (Eq. 2).

end for

S ← V R(A, ν) ⊲ Perform Vietoris-Rips filtration and get set of simplicial complexes S .

P ← PH(S) ⊲ Compute persistent homology PH over S and get persistent diagram P .

λk ←
1
C

∑C

i=1(ǫ
i
d − ǫib) ⊲ Compute topological summary (Eq. 3).

µk ←
1
C

∑C

i=1
ǫid+ǫib

2 ⊲ Compute topological summary (Eq. 4).

end for

c← argminc

∑K

i=1(∆ρk − g(λk, µk; c))
2 ⊲ Compute g· by regression of {λk, µk,∆ρk}

K
k=1

Formally,

λ =
1

C

C∑

i=1

(ǫid − ǫib). (3)

Similarly, we define its midlife as the average density of

its persistence. Formally,

µ =
1

C

C∑

i=1

ǫid + ǫib
2

. (4)

Finally, we define the linear functional mapping from

these topological summaries to the gap between the training

and testing error as,

g (λ, µ; c) = ∆̂ρ, (5)

where ∆̂ρ is our estimate of the gap between the training

and testing errors, and g (λ, µ; c) = c1λ + c2µ + c3, with

ci ∈ R
+, and c = (c1, c2, c3)

T , Figure 1(b).

With the above result we can estimate the testing error

without the need of any testing data as,

ρ̂test = ρtrain − ∆̂ρ, (6)

where ρtrain is the training error computed during training

with X .

Given an actual testing datasetZ = {xi,yi}
m
n+1, we can

compute the accuracy of our estimated testing error as,

Error = |ρtest − ρ̂test|, (7)

where ρtest is the testing error computed on Z .

The pseudo-code of our proposed approach is shown in

Alg. 1.3

3Code available at https://github.com/cipriancorneanu/dnn-topology.

3.1. Computational Complexity

Let the binomial coefficient p =
(
N+1
n+1

)
be the number

of n-simplices of a simplicial complex S (as, for example,

would be generated during the Vietoris-Rips filtration illus-

trated in Fig. 2). In order to compute persistent homol-

ogy of order n on S, one has to compute rank(∂n+1), with

∂n+1 ∈ R
p×q , p the number of n-simplices, and q the num-

ber of (n + 1)-simplices. This has polynomial complexity

O(qa), a > 1.

Fortunately, in Alg. 1, we only need to compute per-

sistent homology of the first order. Additionally, the sim-

plicial complexes generated by the Vietoris-Rips filtration

are generally extremely sparse. This means that for typ-

ical DNNs, the number of n-simplices is way lower than

the binomial coefficient defined above. In practice, we have

found 10,000 to be a reasonable upper bound for the car-

dinality of A. This is because we define nodes by taking

into account structural constraints on the topology of DNNs.

Specifically, a node ai is a random variable with value equal

to the mean output of the filter in its corresponding convo-

lutional layer. Having random variables allows us to define

correlations and metric spaces in Alg. 1. Empirically, we

have found that defining nodes in this way is robust, and

similar characteristics, e.g. high correlation, can be found

even if a subset of filters is randomly selected. For smaller,

toy networks there is previous evidence [9] that supports

that functional topology defined in this way is informative

for determining overfitting in DNNs.

Finally, the time it takes to compute persistent homol-

ogy, and consequently, the topological summaries, λ and µ,

is 5 minutes and 15 seconds for VGG16, one of the most

extended networks in our analysis. This corresponds to a

single iteration of Alg. 1 (the for-loop that iterates over k),

2680

excluding training, on a single 2.2 GHz Intel Xeon CPU.

4. Related Work

Topology measures have been previously used to iden-

tify over-fitting in DNNs. For example, using lower di-

mensional Betti curves (which calculates the cavities) of

the functional (binary) graph of a network [9], which can

be used to perform early stopping in training and detect ad-

versarial attacks. Other topological measures, this time for

characterizing and monitoring structural properties, have

been used for the same purpose [24].

Other works tried to address the crucial question of how

the generalization gap can be predicted from training data

and network parameters [3, 2, 23, 16]. For example, a met-

ric based on the ratio of the margin distribution at the output

layer of the network and a spectral complexity measure re-

lated to the network’s Lipschitz constant has been proposed

[4]. In [23], the authors developed bounds on the general-

ization gap based on the product of norms of the weights

across layers. In [2], the authors developed bounds based

on noise stability properties of networks showing that more

stability implies better generalization. And, in [16], the au-

thors used the notion of margin in support vector machines

to show that the normalized margin distribution across a

DNN’s layers is a predictor of the generalization gap.

5. Experimental Settings

We have derived an algorithm to compute the testing ac-

curacy of a DNN that does not require access to any testing

dataset. This section provides extensive validation of this

algorithm. We apply our algorithm in three fundamental

problems in computer vision: object recognition, facial ac-

tion unit recognition, and semantic segmentation, Figure 4.

5.1. Object Recognition

Object recognition is one of the most fundamental and

studied problems in computer vision. Many large scale

databases exist, allowing us to provide multiple evaluations

of the proposed approach.

To give an extensive evaluation of our algorithm, we

use four datasets: CIFAR10 [17], CIFAR100 [17], Street

View House Numbers (SVHN) [22], and ImageNet [10]. In

the case of ImageNet, we have used a subset with roughly

120, 000 images split in 200 object classes [1].

We evaluate the performance of several DNNs by com-

puting the classification accuracy, namely the number of

predictions the model got right divided by the total number

of predictions, Figure 5 and Tables 1 & 2.

5.2. Facial Action Unit Recognition

Facial Action Unit (AU) recognition is one of the most

difficult tasks for DNNs, with humans significantly over-

Figure 4: We evaluate the proposed method on three different

vision problems. (a) Object recognition is a standard classifi-

cation problem consisting in categorizing objects. We evaluate

on datasets of increasing difficulty, starting with real world digit

recognition and continuing towards increasingly challenging cate-

gory recognition. (b) AU recognition involves recognizing local,

sometimes subtle patterns of facial muscular articulations. Sev-

eral AUs can be present at the same time, making it a multi-label

classification problem. (c) In semantic segmentation, one has to

output a dense pixel categorization that properly captures complex

semantic structure of an image.

performing even the best algorithms [3, 5].

Here, we use BP4D [29], DISFA [21], and EmotionNet

[13], of which, in this paper, we use a subset of 100,000

images. And, since this is a binary classification problem,

we are most interested in computing precision and recall,

Figure 6 and Tables 3 & 4.

5.3. Semantic Segmentation

Semantic segmentation is another challenging prob-

lem in computer vision. We use Pascal-VOC [12] and

Cityscapes [8]. The version of Pascal-VOC used consists of

2,913 images, with pixel based annotations for 20 classes.

The Cityscapes dataset focuses on semantic understanding

of urban street scenes [8]. It provides 5,000 images with

dense pixel annotations for 30 classes.

Semantic segmentation is evaluated using union-over-

intersection (IoU4), Figure 7 and Table 5.

4Also known as the Jaccard Index., which counts the number of pix-

els common between the ground truth and prediction segmentation masks

divided by the total number of pixels present across both masks.

2681

Figure 5: Topology summaries against performance (accuracy) gap for different models trained to recognize objects. Each disc represents

mean (centre) and standard deviation (radius) on a particular dataset. Linear mapping and the corresponding standard deviation of the

observed samples are marked.

5.4. Models

We have chosen a wide range of architectures (i.e.,

topologies), including three standard and popular models

[18, 25, 15] and a set of custom-designed ones. This pro-

vides diversity in depth, number of parameters, and topol-

ogy. The custom DNNs are summarized in Table 6.

For semantic segmentation, we use a custom architecture

called Fully Convolutional Network (FCN) capable of pro-

ducing dense pixel predictions [20]. It casts classical clas-

sifier networks [15, 25] into an encoder-decoder topology.

The encoder can be any of the networks previously used.

5.5. Training

For all the datasets we have used, if a separate test set

is provided, we attach it to the train data and perform a

k − fold cross validation on all available data. For ob-

ject recognition k = 10, and for the other two problems

k = 5. Each training is performed using a learning rate

∈ {0.1, 0.01, 0.001} with random initialization. We also

train each model on 100%, 50% and 30% of the available

folds. This increases the generalization gap variance for a

specific dataset. In the results presented below, we show

all the trainings that achieved a performance metric above

50%. We skip extreme cases of generalization gaps either

close to maximum (95%).

For object recognition the input images are resized to

32 × 32 color images, unless explicitly stated. Also they

are randomly cropped and randomly flipped. In the case of

semantic segmentation all input images are 480×480 color

images. No batch normalization (except for ResNet which

follows the original design), dropout, or other regularization

techniques are used during training. We train with a suffi-

cient fixed number of epochs to guarantee saturation in both

training and validation performance.

We use a standard stochastic gradient descent (SGD) op-

timizer for all training with momentum= .9 and learning

rate and weight decay as indicated above. The learning rate

is adaptive following a plateau criterion on the test perfor-

mance, reducing to a quarter every time the validation per-

formance metric does not vary outside a range for a fixed

number of epochs.

6. Results and Discussion

Topological summaries are strongly correlated with the

performance gap. This holds true over different vision prob-

lems, datasets and networks.

Life λ, the average persistence of cavities in the Vietoris-

Rips filtration, is negatively correlated with the performance

gap, with an average correlation of −0.76. This means that

the more structured the functional metric space of the DNN

(i.e., larger wholes it contains), the less it overfits.

Midlife µ is positively correlated with the performance

gap, with an average correlation of 0.82. Midlife is an in-

dicator of the average distance ǫ about which cavities are

2682

Model conv 2 conv 4 alexnet conv 6 resnet18 vgg16 mean

g(λ) 7.54±5.54 10.12±6.93 18.85±11.36 6.70±4.25 11.98±8.28 16.01±8.00 11.86±7.39
g(µ) 7.98±7.95 12.69±5.59 15.87 ±10.25 7.08±6.01 6.79±4.65 8.93±5.47 9.89±6.65
g(λ, µ) 7.62±5.88 9.45±6.88 15.26±7.94 6.57±5.80 4.92±3.50 6.93±5.10 8.45±5.85

Table 1: Evaluation of Alg. 1 for object recognition. Mean and standard deviation error (in %) in estimating the test performance with

leave-one-sample-out.

Figure 6: Topology summaries against performance (F1-score)

gap for different models trained for AU recognition. Each disc rep-

resents mean (centre) and standard deviation (radius) for a 10-fold

cross validation. Linear mapping and the corresponding standard

deviation of the observed samples are marked.

Model conv2 conv4 vgg16 resnet18

svhn 10.94±4.99 10.73±2.60 8.01±2.31 11.09±4.18

cifar10 9.64±3.60 5.24±1.92 9.41±1.72 5.67±0.73

cifar100 4.79±6.20 22.46±6.87 10.93±1.46 6.71±1.51

imagenet 8.33±5.48 21.84±7.35 13.49±7.14 9.49±4.35

Table 2: Evaluation of Alg. 1 for object recognition. Mean and

standard deviation error (in %) in estimating the test performance

with leave-one-dataset-out. Each row indicates the dataset left out.

formed. For DNNs that overfit less, cavities are formed at

smaller ǫ which indicates that fewer connections in the met-

ric spaces are needed to form them.

We show the plots of topological summaries against per-

formance gap for object recognition, AU recognition and

Model resnet18 vgg16 mean

g(λ) 6.96±4.18 6.29±3.98 6.62±4.08
g(µ) 4.02±3.51 5.78±3.65 3.83±3.58
g(λ, µ) 5.18±3.62 5.87±3.62 5.52±3.62

Table 3: Evaluation of Alg. 1 for AU recognition. Mean and

standard deviation error (in %) in estimating the test performance

with leave-one-sample-out.

Model resnet18 vgg16

bp4d 3.82±2.80 6.04±4.17

disfa 3.07±2.17 4.07±3.56

emotionet 7.48±3.66 7.46±5.01

Table 4: Evaluation of Alg. 1 for object recognition. Mean and

standard deviation error (in %) in estimating the test performance

with leave-one-dataset-out. Each row indicates the dataset left out.

Model fcn32 vgg16 fcn32 resnet18 mean

g(λ) 4.86±4.14 6.01±4.34 5.43±4.24
g(µ) 9.46±4.34 4.68±3.82 7.07±4.08
g(λ, µ) 5.60±2.86 3.61±3.37 4.60±3.11

Table 5: Evaluation of Alg. 1 in semantic segmentation. Mean

and standard deviation error (in %) in estimating the test perfor-

mance with leave-one-sample-out.

Network Convolutions FC layers

conv 2 643×3 ! 643×3 256, 256, #n classes
conv 4 643×3 ! 643×3 ! 643×3 !

1283×3

256, 256, #n classes

conv 6 643×3 ! 643×3! 1283×3 !
1283×3 ! 2563×3 ! 2563×3

256, 256, #n classes

Table 6: An overview of the custom deep networks used in this

paper. conv x stands for convolutional networs with x layers. We

indicate each convolutional layer by its number of filters followed

by their size in subscript and a pooling layer P by its size in sub-

script. AlexNet [18], VGG [25], and ResNet [15] are standard

architectures. Refer to original papers for details.

semantic segmentation in Figures 5-7, respectively. The lin-

ear mapping g(·) between each topological summary, life

and midlife (Eqs. 3 & 4), and the performance gap are

shown in the first and second rows of these figures, respec-

tively. In all these figures rows represent DNN’s results.

The results of each dataset are indicated by a disc, where

2683

Figure 7: Topology summaries against performance (IoU) gap for

different models trained for semantic segmentation. Each disc rep-

resents mean (centre) and standard deviation (radius) on a particu-

lar dataset. Linear mapping and the corresponding standard devi-

ation of the observed samples are marked.

the centre specifies the mean and the radius the standard de-

viation. We also mark the linear regression line g(·) and the

corresponding standard deviation of the observed samples

from it.

Finally, Tables 1, 3 & 5 show the Error, namely the

absolute value of the difference between the estimate given

by Alg. 1 and that of a testing set, computed with Eq. (7)

by leaving-one-sample-out. A different way of showing the

same results can be found in Tables 2 and 4 where mean

and standard deviation of the same error is computed by

leaving-one-dataset-out.

It is worth mentioning that our algorithm is general and

can be applied to any DNN architecture. In Table 6 we de-

tail the structure of the networks that have been used in this

paper. These networks range from simple (with only a few

hundred of nodes, i.e., conv2), to large (e.g., ResNet) nets

with many thousands of nodes.

The strong correlations between basic properties of the

functional graph of a DNN and fundamental learning prop-

erties like the performance gap also makes these networks

more transparent. Not only do we propose an algorithm ca-

pable of computing the performance gap, but we show that

this is linked to a simple law of the inner-workings of that

networks. We consider this to be a contribution to make

deep learning more explainable.

Based on these observations we have chosen to model

the relationship between the performance gap and the

topological summaries through a linear function. Fig-

ures 5-7 show a simplified representation of the observed

(λi, µi,∆ρi) pairs and the regressed lines.

We need to mention that choosing a linear hypothesis for

g is by no means the only option. Obviously, using a non-

linear regressor for g(·) in Alg. 1 leads to even more accu-

rate predictions of the testing error. However, this improve-

ment comes at the cost of being less flexible when studying

less common networks/topologies – overfitting.

Table 1-5 further evaluate the algorithm proposed.

Crucially, an average error between 8.45% and 4.60%
is obtained across computer vision problems, which is as

accurate as computing a testing error with a labelled dataset

Z .

7. Conclusions

We have derived, to our knowledge, the first algorithm

to compute the testing classification accuracy of any DNN-

based system in computer vision, without the need for the

collection of any testing data.

The main advantages of the proposed evaluation method

versus the classical use of a testing dataset are:

1. there is no need for a sequestered dataset to be main-

tained and updated by a third-party,

2. there is no need to run costly cross-validation analyses,

3. we can modify our DNN without the concern of over-

fitting to the testing data (because it does not exist),

and,

4. we can use all the available data for training the sys-

tem.

We have provided extensive evaluations of the proposed

approach on three classical computer vision problems and

shown the efficacy of the derived algorithm.

As a final note, we would like to point out the obvi-

ous. When deriving computer vision systems, practitioners

would generally want to use all the testing tools at their dis-

posal. The one presented in this paper is one of them, but

we should not be limited by it. Where we have access to

a sequestered database, we should take advantage of it. In

combination, multiple testing approaches should generally

lead to better designs.

Acknowledgments. NIH grants R01-DC-014498 and R01-

EY-020834, Human Frontier Science Program RGP0036/2016,

TIN2016-74946-P (MINECO/FEDER, UE), CERCA (Generalitat

de Catalunya) and ICREA (ICREA Academia). CC and AMM

defined main ideas and derived algorithms. CC, with SE, ran ex-

periments. CC and AMM wrote the paper.

2684

References

[1] TinyImagenet Stanford Challenge. https:

//tiny-imagenet.herokuapp.com. Accessed:

2020-03-27. 5

[2] S. Arora, R. Ge, B. Neyshabur, and Y. Zhang. Stronger gen-

eralization bounds for deep nets via a compression approach.

arXiv preprint arXiv:1802.05296, 2018. 5

[3] L. F. Barrett, R. Adolphs, S. Marsella, A. M. Martinez, and

S. D. Pollak. Emotional expressions reconsidered: Chal-

lenges to inferring emotion from human facial movements.

Psychological Science in the Public Interest, 20(1):1–68,

2019. 5

[4] P. L. Bartlett, D. J. Foster, and M. J. Telgarsky. Spectrally-

normalized margin bounds for neural networks. In Ad-

vances in Neural Information Processing Systems, pages

6240–6249, 2017. 5

[5] C. F. Benitez-Quiroz, R. Srinivasan, Q. Feng, Y. Wang, and

A. M. Martinez. Emotionet challenge: Recognition of fa-

cial expressions of emotion in the wild. arXiv preprint

arXiv:1703.01210, 2017. 5

[6] M. G. Bergomi, P. Frosini, D. Giorgi, and N. Quercioli. To-

wards a topological–geometrical theory of group equivariant

non-expansive operators for data analysis and machine learn-

ing. Nature Machine Intelligence, 1(9):423–433, 2019. 2, 3

[7] F. Chazal, D. Cohen-Steiner, L. J. Guibas, F. Mémoli, and

S. Y. Oudot. Gromov-hausdorff stable signatures for shapes

using persistence. In Computer Graphics Forum, volume 28,

pages 1393–1403. Wiley Online Library, 2009. 3

[8] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler,

R. Benenson, U. Franke, S. Roth, and B. Schiele. The

cityscapes dataset for semantic urban scene understanding.

In Proc. of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2016. 5

[9] C. A. Corneanu, M. Madadi, S. Escalera, and A. M. Mar-

tinez. What does it mean to learn in deep networks? and, how

does one detect adversarial attacks? In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 4757–4766, 2019. 2, 3, 4, 5

[10] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-

Fei. Imagenet: A large-scale hierarchical image database.

In Computer Vision and Pattern Recognition, 2009. CVPR

2009. IEEE Conference on, pages 248–255. Ieee, 2009. 1, 5

[11] M. Everingham, S. A. Eslami, L. Van Gool, C. K. Williams,

J. Winn, and A. Zisserman. The pascal visual object classes

challenge: A retrospective. International journal of com-

puter vision, 111(1):98–136, 2015. 1

[12] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,

and A. Zisserman. The PASCAL Visual Object Classes

Challenge 2012 (VOC2012) Results. http://www.pascal-

network.org/challenges/VOC/voc2012/workshop/index.html.

5

[13] C. Fabian Benitez-Quiroz, R. Srinivasan, and A. M. Mar-

tinez. Emotionet: An accurate, real-time algorithm for the

automatic annotation of a million facial expressions in the

wild. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 5562–5570, 2016. 1,

5

[14] A. Hatcher. Algebraic Topology. 2002. 2

[15] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-

ing for image recognition. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages

770–778, 2016. 1, 6, 7

[16] Y. Jiang, D. Krishnan, H. Mobahi, and S. Bengio. Predicting

the generalization gap in deep networks with margin distri-

butions. arXiv preprint arXiv:1810.00113, 2018. 5

[17] A. Krizhevsky and G. Hinton. Learning multiple layers of

features from tiny images. Technical report, Citeseer, 2009.

5

[18] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

Advances in neural information processing systems, pages

1097–1105, 2012. 1, 2, 6, 7

[19] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. nature,

521(7553):436, 2015. 1

[20] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional

networks for semantic segmentation. In Proceedings of the

IEEE conference on computer vision and pattern recogni-

tion, pages 3431–3440, 2015. 6

[21] S. M. Mavadati, M. H. Mahoor, K. Bartlett, P. Trinh, and J. F.

Cohn. Disfa: A spontaneous facial action intensity database.

IEEE Transactions on Affective Computing, 4(2):151–160,

2013. 5

[22] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y.

Ng. Reading digits in natural images with unsupervised fea-

ture learning. 2011. 5

[23] B. Neyshabur, S. Bhojanapalli, D. McAllester, and N. Sre-

bro. Exploring generalization in deep learning. In Ad-

vances in Neural Information Processing Systems, pages

5947–5956, 2017. 5

[24] B. Rieck, M. Togninalli, C. Bock, M. Moor, M. Horn,

T. Gumbsch, and K. Borgwardt. Neural persistence: A com-

plexity measure for deep neural networks using algebraic

topology. arXiv preprint arXiv:1812.09764, 2018. 5

[25] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. ICLR, 2015. 1,

6, 7

[26] L. Vietoris. Über den höheren zusammenhang kompakter

räume und eine klasse von zusammenhangstreuen abbildun-

gen. Mathematische Annalen, 97(1):454–472, 1927. 2

[27] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. Show and

tell: A neural image caption generator. In Proceedings of

the IEEE conference on computer vision and pattern recog-

nition, pages 3156–3164, 2015. 2

[28] A. M. Zador. A critique of pure learning and what artificial

neural networks can learn from animal brains. Nature com-

munications, 10(1):1–7, 2019. 2

[29] X. Zhang, L. Yin, J. F. Cohn, S. Canavan, M. Reale,

A. Horowitz, P. Liu, and J. M. Girard. Bp4d-spontaneous:

a high-resolution spontaneous 3d dynamic facial expression

database. Image and Vision Computing, 32(10):692–706,

2014. 5

[30] A. Zomorodian and G. Carlsson. Computing persistent ho-

mology. Discrete & Computational Geometry, 33(2):249–

274, 2005. 3

2685

