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Figure 1: GanHand predicts hand shape and pose for grasping multiple objects given a single RGB image. The figure shows sample

results on the YCB-Affordance dataset we propose, the largest dataset of human grasp affordances in real scenes.

Abstract

The rise of deep learning has brought remarkable

progress in estimating hand geometry from images where

the hands are part of the scene. This paper focuses on a new

problem not explored so far, consisting in predicting how a

human would grasp one or several objects, given a single

RGB image of these objects. This is a problem with enor-

mous potential in e.g. augmented reality, robotics or pros-

thetic design. In order to predict feasible grasps, we need to

understand the semantic content of the image, its geometric

structure and all potential interactions with a hand physical

model. To this end, we introduce a generative model that

jointly reasons in all these levels and 1) regresses the 3D

shape and pose of the objects in the scene; 2) estimates the

grasp types; and 3) refines the 51-DoF of a 3D hand model

that minimize a graspability loss. To train this model we

build the YCB-Affordance dataset, that contains more than

133k images of 21 objects in the YCB-Video dataset [69].

We have annotated these images with more than 28M plau-

sible 3D human grasps according to a 33-class taxonomy.

A thorough evaluation in synthetic and real images shows

that our model can robustly predict realistic grasps, even in

cluttered scenes with multiple objects in close contact.

1. Introduction

The problem of estimating 3D hand pose from monoc-

ular images has made major advances over the past few

years [71, 61, 46, 10, 31, 50, 55]. Current approaches can

estimate not only the 3D pose of the hand, but also its

shape [21], even when manipulating an object [28].

In this paper, we move beyond these works and tackle

a new problem which has not been explored so far: given

a single RGB image of a scene with an arbitrary number

of objects, we aim to predict human grasp affordances, i.e.

predict multiple plausible solutions of how a human would

grasp each one of the observed objects. We believe that such

a technology would have a great impact in several fields,

including virtual and augmented reality, human-robot inter-

action, robot imitation learning and would also open new

avenues in areas like prosthetic design to e.g. transfer hu-

man hand-like motions to electronic gloves [33].

Predicting human grasps, however, is a very challeng-

ing problem as it requires modeling the physical interac-

tions and contacts between a high-dimensional hand model

(e.g. the shape of MANO model in [58] is ruled by 51-DoF)

and a potentially noisy 3D representation of the objects es-

timated from the input RGB image. Note that this is a sig-

nificantly more complex problem than that of generating

robotic grasps, as robot end-effectors have much less DoF

than the human hand. For instance, very recently, Mousa-

vian et al. [45] introduced GraspNet to predict 6-DoF for

object manipulation. Furthermore, the common practice in

robotics is to use RGB-D cameras which, despite simplify-

ing the process of modeling the geometry of the objects, do

not have the versatility of standard RGB cameras.

In order to predict feasible human grasps, we introduce

GanHand, a multi-task GAN architecture that given solely

one input image: 1) estimates the 3D shape/pose of the ob-

jects; 2) predicts the best grasp type according to a taxon-

*Work done while visiting NAVER LABS Europe.
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omy with 33 classes [18]; 3) refines the hand configuration

given by the grasping class, through an optimization of the

51 parameters of the MANO model. This process involves

maximizing the number of contact points between the ob-

ject and the hand shape model while minimizing the inter-

penetration. Interestingly, our generative model is stochas-

tic, allowing to predict several grasps per object.

Another key contribution of this paper is the YCB-

Affordance dataset that we created to train our network.

This dataset is based on the 58 household objects of the

YCB dataset [11], whose 3D models we have manually an-

notated with a total of 367 plausible human grasps accord-

ing again to the taxonomy in [18]. The grasps of 21 ob-

jects are then transferred to 92 video sequences, depicting

scenes with one or several still objects captured by a moving

camera. Only feasible grasps where the hand does not col-

lide with other elements of the scene are selected. The to-

tal number of annotated frames is 133,936, with more than

28M of realistic grasps, being the largest dataset of human

grasp affordances in real scenes built so far.

An extensive evaluation on synthetic and real data

demonstrates the robustness of GanHand to predict re-

alistic human grasps. We first evaluate our system on

the ObMan dataset [28], made of single and synthetic

objects from ShapeNet [12] annotated automatically with

GraspIt [44]. Despite its realism, the variability of grasp

types in this dataset is somewhat reduced, making it suitable

for a proof-of-concept of our approach. We finally evaluate

GanHand on our challenging YCB-Affordance dataset, and

show that it is able to predict realistic human grasps, even

in cluttered scenes as those shown in Fig. 1.

2. Related Work

Our work lies in between several areas of both computer

vision and robotics. An exhaustive literature review is be-

yond the scope of this paper, so for practical purposes we

have just focused on the most related works.

3D hand pose and shape estimation from single images.

Most literature on 3D hand analysis is focused on estimating

hand pose, represented by a skeleton with up to 21 joints.

This problem has been studied for years, either taking as

input RGB-D [63, 13, 47, 70, 26, 32] or RGB images [71,

49, 46, 61, 31, 2, 5, 21]. The community is recently shifting

to estimating hand 3D shape from RGB inputs [21, 2]. Ge

et al. [21] use graph-CNNs to infer the 3D coordinates of a

1280-vertices hand mesh. In [2], the hand is represented by

the MANO model [58], that encodes the 3D shape using 51-

DoF. While effective, these methods are focused on hands

which do not interact with objects.

Modeling hand-object interactions. Hand-object interac-

tions have been analyzed from different perspectives. A

broad line of work aims to estimate the pose of a hand ma-

nipulating an object, either from RGB-D inputs [26, 25,

62, 65, 66], video sequences [57, 4, 48, 68] or single im-

ages [34, 35]. The most relevant work in this line is Hasson

et al. [28] which, from a single RGB image, jointly recon-

struct the shape of hands and manipulated objects.

Hand-object interactions have also been analyzed from a

classification angle in which the hand pose is to be classi-

fied according to a particular taxonomy [56, 9, 8, 30, 60].

For instance, Rogez et al. [56] consider a taxonomy with

73 grasp types [41], used to infer hand-to-object forces and

contacts. Pham et al. [51] also estimate contact forces using

a classification scheme.

Very recent works aim to build models to understand all

actors that appear in hand-object manipulation, namely the

3D hand and object poses, object and action classes and

grasp types. Cai et al. [8] use a graphical model for this

purpose and Tekin et al. [64] a multi-task deep architecture.

We will borrow insights from several of these ap-

proaches. For instance, we will split our hand prediction

problem into a classification and a regression task. Classifi-

cation will be conducted based on the 33-class grasp taxon-

omy proposed in [18]. Further, during the regression of the

hand parameters we will consider the differentiable hand

model used in [28]. Yet, the key difference with our ap-

proach and all methods discussed in this section is that in

our case hands are not visible in the input images and all

reasoning is done from an image of the objects alone.

Affordance prediction. Predicting affordances, defined as

opportunities of interaction in the scene, is an active re-

search area in the cross-domains of robotics and computer

vision. The concept of affordances applies mostly to objects

and it is typically posed as a semantic segmentation task, in

which the pixels of an input image are classified based on

their affordance label. Recent works, address this problem

using deep learning [36, 53, 17, 6, 59].

Our work is more related to those approaches that learn

human affordances in 3D indoor environments [24, 67, 39,

16]. These works, besides understanding the functionality

of the visible elements in an image, predict valid - but coarse

- 3D human poses and actions within it. We will go beyond

these methods by considering much finer pose configura-

tions of the human hand (33 grasp types) and predicting not

only pose-based affordances, but also shape affordances.

Grasp prediction is one of the most important problems

in robot manipulation. It involves predicting where to

move the gripper (typically controlled by 6 DoF) in or-

der to pickup an object. Some works use Deep convolu-

tional architectures, by directly operating on visual mea-

surements [37, 38, 42, 52, 14, 35]. Recent methods lever-

age data from 3D object reconstruction [54, 22, 43]. Grasp-

Net [45] formulates the problem using a variational auto-

encoder which, given an input point cloud generates several

grasp hypotheses, later refined by a second network. This
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Figure 2: Grasp affordance annotations. From the CAD model (a), we manually annotate a set of realistic grasps (b). Given a multi-

object scene containing the object (c), we transfer all the grasps to this scene (d). Then, we select only valid grasps for which the hand

does not collide with other objects, obtaining annotated images (e). Note that we show only three grasps for the considered object to ease

visualization but, in practice, we find thousands of them for each annotated scene.

strategy is shown to significantly improve the final grasps

quality. A similar scheme is used by GraspIt [44], that gen-

erates a large number of grasps and scores them using the

metric proposed in [19]. The generation process of GraspIt,

however, is based on heuristics that tend to produce large

percentages of not feasible grasps. As we will discuss later,

this is one of the limitations of the synthetic grasp dataset

introduced in [28], as it relies on GraspIt.

As in [45], we adopt a stochastic generative approach

that, given a single image, produces several grasp hypothe-

ses. Note, however, that the human hand model we use has

51 DoF (in contrast to the 6 DoF of robotic grippers), which

makes the problem considerably more challenging.

Datasets of Human Grasps. Building a large and realis-

tic dataset that captures the shape of the human hand while

manipulating objects is fundamental for the future research

of the field. Unfortunately, the human hand is very com-

plex, and recording its 3D shape is a major challenge. Pre-

vious work has focused on providing alternative informa-

tion such as grasp taxonomies [60, 56, 7, 30]. Other works

provide the position of the hand joints, obtained using man-

ual annotations [3], data gloves [40] or wired sensors [20].

Two recent works [28, 27] annotate images with 3D hand

shapes. [28] uses GraspIt to generate synthetic data, al-

though, as discussed above, is penalized by the quality and

realism of the grasps. [27] fits the MANO parametric model

onto RGB images. This process, however, is not automated

and laborious, and comes at the expense of the the vari-

ability of the generated grasps. [6] has released dataset of

hand-object contact maps obtained with a thermal camera.

Our YCB-Affordance dataset advances state-of-the art in

that it is annotated on real images and contains realistic hu-

man grasps. These grasps were manually defined, but we

automatically transferred them to more than 133K images.

3. YCB-Affordance Dataset

To train our network for grasp affordance prediction in

multi-object scenes, we needed natural images showing

multiple objects annotated with valid human grasps. We

could not find any prior work on this topic and no exist-

ing suitable dataset. We thus collected the first large-scale

dataset that includes hand pose and shape for natural and

realistic grasping in multi-object scenes. To do so, we aug-

mented the YCB-Video Dataset [69] with realistic human

grasps. The YCB dataset contains more than 133K frames

from videos of 92 cluttered scenes with highly occluded ob-

jects whose 6D pose was annotated in camera coordinates.

Our dataset, called YCB-Affordance, features grasps for all

objects from the YCB Object set [11] for which a CAD

model was available. These include 58 diverse household

objects of particular interest for grasping and manipulation

tasks, such as tools, cutlery, food or more basic shape struc-

tures. Each CAD model was first annotated with realistic

grasps as explained in Sec. 3.1. Then, the resulting grasps

were transferred to the YCB scenes and images as detailed

in Sec. 3.2, yielding more than 28 million grasps for 133K

images. The overall annotation process is depicted in Fig. 2.

3.1. Grasp annotations on 3D models

Realistic grasps were manually annotated to cover all

possible ways to naturally pick up or manipulate the objects.

We used the visual interface of the GraspIt simulator [44]

to manually adapt the hand palm position and rotation, and

each of the finger joint angles. We exploited its integra-

tion with the SMPL model [58] to directly retrieve the low-

dimensional MANO representation and obtain posed and

registered hand shape meshes. On average, we annotated

the 3D models with 6 distinct grasps for symmetric objects

such as cans or bottles, and up to 12 different grasps for

more complex objects such as tools or cutlery. In total, we

manually annotated 367 different fine-grained grasps that

we also assigned to a grasp type within the 33-grasp taxon-

omy of [18]. This taxonomy was defined considering the

position of the contact fingers, the level of power/precision

tradeoff in the grasp and the position of the thumb.

We then annotated rotational symmetries in all the ob-

jects from the YCB Object set considering each main axis.

A rotational symmetry is represented by its order, which in-

dicates the number of times an object can be rotated on a

particular axis and results in an equivalent shape [15]. We

took advantage of objects’ symmetry by simply rotating the

hand around the axes, automatically extending the number
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Figure 3: Percentage of grasps found through simulation compared to our manual annotations. When provided with the CAD

models of the objects, the GraspIt simulator only recovered a portion of the natural grasps that we annotated, legitimating our choice to

manually annotate the grasp for more realism. GraspIt fully recovers only three power grasp types (left) while grasps that require abducted

thumbs or accurate grasps (right) are often not found at all through simulation.

of grasps e.g. repeating grasps along the revolution axis.

Note that simple brute-force generation of grasps us-

ing GraspIt simulator only leads to a reduced set of grasps

which maximize the analytical grasp score [19] but are not

necessarily correct or natural, e.g. holding a knife by the

blade or grasping a cup with 2 fingers. On the contrary, our

YCB-Affordance dataset includes only realistic grasps, in-

cluding hand shapes that GraspIt would never find such as

those shown in Fig. 3, e.g. scissors grasp.

3.2. Grasp transfer to YCB scenes

The scenes in the YCB-Video Dataset [69] contain be-

tween 3 and 9 objects in close contact. Often, the placement

of the objects makes them not easily accessible for grasping

without touching other objects. Our goal was to annotate

the scenes with valid and feasible grasps only, i.e. grasps

for which the hand does not collide with other objects. To

do so, we exploited the 6D pose annotations of the CAD

models in camera coordinates available for the different ob-

jects. For a more complete 3D representation of the scene,

we manually annotated the position of the table plane . In

practice, this was manually done in the first frame of each

video and propagated through the remaining frames using

the motion of the camera in consecutive frames.

We then transferred all the grasps annotated on the 3D

CAD models to the real scenarios, using ground-truth 6D

object poses and selecting only valid grasps for which the

hand 3D mesh does not intersect with the objects 3D CAD

models or the table plane. In most cases, several possible

grasps remain valid for each object. However, the YCB-

Video dataset does contain a few challenging scenes where

an object is placed in a way that other objects occlude it

too much for it to be grasped without any collision. In

such cases, the object is considered as not reachable and

left without grasp annotation. The final dataset contains

133,936 frames with more than 28M realistic grasp anno-

tations, a suitable size to train deep networks.

4. Problem Formulation

Our goal is to predict how a human would naturally grasp

one or several objects, given a single RGB image of these

objects. This implies producing valid hand configurations

showing several contact points with the target object but

no intersection with other elements of the scene. Formally,

given an image I , we train a modelM that provides a hand

pose P and shape V , and grasp type C for every object of

interest in I:

M : I =⇒ {C, V, P},

where shape V is the set of vertices of the hand mesh and C

is a coarse hand representation, within the 33-grasp taxon-

omy of [18]. Hand pose and shape parameters will be rep-

resented by the 51-DoF of the MANO model [58]. In the

following we will jointly represent them by H = {P, V }.

5. Method

This section describes GanHand, our multi-task archi-

tecture that given solely one input RGB image: 1) estimates

the 6D pose for known objects (or 3D pose + shape for un-

known objects) in the image; 2) predicts the best grasp types

for each object; 3) refines the coarse hand configurations,

given by the predicted grasp classes, to gracefully adjust the

fingertips to the object shape. Our three-step architecture is

depicted in Fig. 4.

5.1. 3D scene understanding

To predict accurate grasps, we need to understand the

geometry of the 3D scene. We consider two situations:

1) For multi-object scenes, we assume the observed objects

are known and integrate the state-of-the-art object pose es-

timation method [29] to estimate their 6D pose, which we

denote as Tobject. During training, one object is randomly

selected at a time, its 3D shape is projected onto the image

5034



Figure 4: Architecture of GanHand. GanHand takes a single RGB image of one or several objects and predicts how a human would

grasp these objects naturally. Our architecture consists of three stages. First, the objects’ shapes and locations are estimated in the scene

using an object 6D pose estimator or a reconstruction network (red). The predicted shape is then projected onto the image plane to obtain

a segmentation mask that is concatenated with the input image and fed to the second sub-network for grasp prediction (blue). Finally, we

refine the hand parameters and obtain hand final shapes and poses using the parametric model MANO [58] (yellow). The model is trained

using adversarial, interpenetration, classification and optimization losses, indicated in bold.

plane to obtain a segmentation mask that is then concate-

nated with the input image and fed to the grasp prediction

network. The mask indicates which object has to be focused

on while the original RGB image gives contextual informa-

tion about the entire scene for a more realistic grasp. At

test time, we run a forward pass for each detected object,

obtaining a grasp prediction for each one of them.

2) For the simpler case of single-object scenes, we used the

object reconstruction method AtlasNet [22] retrained on the

synthetic ObMan dataset [28] to validate our approach. This

reconstruction method does not require to know the object

beforehand but is not reliable in case of multiple objects.

Once the 3D shape and pose is known, we compute its seg-

mentation mask and proceed as before.

5.2. Predicting grasp type and coarse hand

Inspired by other approaches that tackle grasp recogni-

tion as a classification task [56], we propose a coarse-to-

fine approach where grasp prediction is first addressed as a

classification problem followed by a refinement stage. We

predict the grasp class C that best suits the target object

from a 33-grasp taxonomy [18]. To do so, we extract a rep-

resentation of the input image using a pretrained and fine-

tuned ResNet-50 , followed by a classification network with

a cross entropy loss Lclass.

The predicted grasp C is associated to a representative

hand configuration HC , centered on itself, that needs to be

aligned in the camera coordinate system. For this purpose

we represent the absolute translation of the hand w.r.t the

camera as T = Tobject + ∆T . Similarly we represent the

absolute hand rotation as R = Ro + ∆R, where at train-

ing, Ro is the rotation from a ground truth grasp with added

noise. We then build a Fully Connected Network fed with

{HC , Tobject, Ro} that predicts {∆H,∆T,∆R}, to com-

pute the absolute rigid pose of the hand, and its configura-

tion Hcoarse = HC +∆H , which is still a coarse estimate.

We observed that using this strategy of predicting the in-

crement for each of the parameters significantly speeds up

convergence during training and improves results.

At test time, we uniformly sample rotation candidates Ro

and run the forward pass for multiple proposals, keeping the

top-scoring hand for each object.

5.3. Hand refinement for grasping

To improve the fingers location with respect to the ob-

ject surface and consequently, the quality of the predicted

grasp, we propose a new differentiable and parameter-free

layer that allows to maximise grasp metric during training.

This layer takes as input a MANO representation of Hcoarse

and the 3D model of the object to be grasped, and returns

a refined hand pose where the positions of the fingers are

optimized to gracefully fit the object 3D surface. For each

finger, we consider 3 rotations, one for each articulation.

Following the kinematic chain, from the knuckle to the last

joint, we bend/flex the finger within its physical limits, until

it contacts the object. Formally, this is achieved by min-

imizing the distance D between the object vertices {Ok}
and the closest arc obtained when rotating an angle θ the

finger’s vertices about the joint axes:

Dθ ←− min
i
(min

k
(||Aθ

i , Ok||2) , (1)

where Aθ
i is the arc obtained when rotating θ degrees the

i-th vertex of the finger. Given this equation to compute the

arc, we can then estimate the angle γ′
j the finger needs to

rotate around the first joint to collide with the object:

γ′
j ←− argmin

θ
Dθ + δ, ∀θ s.t. Dθ < td , (2)
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where δ (angle) is a hyperparameter that controls the inter-

penetration of the hand into the object and hence the grasp

stability (we analyze its effect in Sec. 7.1). Additionally,

td is an upper boundary threshold to consider when there is

object-finger contact. In practice, we use td = 2mm.

From these two equations we can define the following

loss functions we will use to train our architecture:

Larc =
1

|J |

∑

j∈J

D
j
θ Lγ ←−

J∑

j

||γ′
j − γj ||2 , (3)

where |J | = 5 is the number of fingers. Larc aims to mini-

mize the hand-object distances when rotating the first joint

of each finger, and Lγ directly operates on the estimated

angles and compares them with the ground truth ones γj .

This process can be sequentially performed for all three

joints (knuckle, proximal and distal) of every finger, follow-

ing the hand kinematic chain. In the results section we will

provide results when optimizing 1, 2 or 3 joints per finger.

5.4. Training the model

So far, we have only defined loss functions that progres-

sively guide the fingers towards the target object. We next

define complementary loss functions that aim to generate

human-like grasps and prevent interpenetration between the

hand and the scene.

First, following [28], we build a contact prior on the hand

vertices Vcont that are more likely to be in contact with

the target object Ot and we minimize the distance between

these vertices and the 3D object:

Lcont =
1

|Vcont|

∑

v∈Vcont

min
k
||v,Ot

k||2 . (4)

Vcont are computed as the vertices close to the object in

at least 8% of the ground truth samples. They are mostly

concentrated on the fingertips and the palm of the hand.

A very important loss (also considered in [28]) consists

in penalizing the interpenetration between the hand and the

object. If we denote by Vi the set of hand vertices that are

inside an object, we minimize their distance to their closest

object surface point:

Lint =
1

|Vi|

|O|∑

j

∑

v∈Vi

min
k
||v,Oj

k||2 , (5)

where |O| is the total number of objects found in the image.

We also penalize hand configurations that are below the

table plane, by calculating the signed distance from each

hand vertex to the table plane, and favoring this distance to

be positive. Formally, if we represent the table plane by a

point pp and a normal vp pointing upwards, this loss is:

Lp =

V∑

v

min(0, |(v − pp) · vp|) . (6)

To further enforce our network to generate anthropomor-

phic hands and realistic grasps we introduce a discriminator

D trained using a Wasserstein loss [1]. Formally, let G be

the trainable model defined so far, and let H∗, R∗, T ∗ be

the ground truth training samples, and H̃, R̃, T̃ interpola-

tions between correct samples and predictions. Then, the

adversarial loss is defined as:

Ladv = −EH,R,T∼p(H,R,T ) [D(G(I))]

+ EH,R,T∼p(H,R,T ) [D(H∗, R∗, T ∗)] . (7)

Additionally, to guarantee the satisfaction of the Lipschitz

constraint in the W-GAN, we introduce a gradient penalty

loss Lgp as proposed in [23].

Finally the total lossL to be minimized is a linear combi-

nation (see weights in Sec. 6) of all previous loss functions:

Lclass, Larc, Lγ , Lcont, Lint, Lp, Ladv and Lgp.

6. Implementation Details

We use a pre-trained ResNet-50 as image encoder. The

discriminator and hand pose refiner are 4-layer fully con-

nected networks with relu nonlinearities and Xavier initial-

ization. Input images are resized to 256x256. We perform

a hyperparameter grid search to maximize [19] and finally

train all models using LR=0.0001, BS=32, loss weights

λclass = 1, λarc = 0.01, λcont = 100, λint = 4000,

λp = 20, λadv = 1 and λgp = 10 using Adam optimizer.

The Generator is trained once every 5 forward passes to im-

prove the relative quality of the Discriminator.

The model is trained for 5 epochs, and with linear LR de-

cay for 25 epochs more. Training models for single object

(ObMan) or multi-object (YCB-Affordance) scenes takes

approximately 6 and 8 days respectively on a V100 GPU.

More implementation details (e.g., baselines) are provided

in Supplementary Material. We plan to release our code.

7. Experiments

In this section, we first evaluate the contribution of

our optimization layer when included in a state-of-the-art

method for hand shape estimation. Then we validate our

grasp prediction method on the single-object synthetic Ob-

Man dataset [28] and fully evaluate it in multi-object scenes

with our challenging YCB-Affordance dataset.

Baseline. We consider a baseline made of a pre-trained

ResNet-50 model that directly predicts the MANO repre-

sentation of the hand, rotation and translation. This baseline

substitutes the blue sub-network in Fig. 4, still using those

layers for ‘3D scene understanding’ and ‘hand refinement’.

It basically lacks the grasp taxonomy prediction.

Evaluation metrics. There exists many metrics to measure

grasp quality, and we consider on several of them. The an-

alytical grasp metric from [19] is one of the most common
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Figure 5: Sample results on the ObMan dataset [28]. For each object, we show the input image (left), the predicted grasp when

estimating the object 3D shape (middle) and when using the ground-truth object shape (right).
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Figure 6: Impact of the optimization layer. Trade-off between

interpenetration and the simulation displacement (the lower the

better), varying δ from Eq. 2. We show the contribution of our

layer in the hand reconstruction pipeline from [28] (left) and Gan-

Hand for grasp prediction (right).

ways to score a grasp. It basically computes an approxima-

tion of the minimum force to be applied to break the grasp

stability. The average number of contact fingers can also be

used to measure the quality of a grasp since numerous con-

tact points between hand and object favor a strong grasp.

Following [28] we also compute hand-object interpenetra-

tion volume (cm3). We voxelize both object and hand, and

compute the volume shared by both 3D models, using a

voxel size of 0.5cm3. More details can be found in [28].

Also from [28] we consider the simulation displacement of

the object mesh when it is subjected to gravity in simulation.

Finally, in multi-object scenes such as YCB-Affordance, we

can compute the percentage of graspable objects for which

a valid grasp, i.e. with at least two contact points and no

interpenetration, has been predicted.

7.1. Contribution of optimization layer

We first evaluate the contribution of our optimization

layer when included in the Hand-Object reconstruction

of [28]. We use the released code and trained model, and

add our optimization for the first, first+second and all three

Model Baseline GanHand GraspIt*

Finger joints optimized - 1 2 3 - 1 2 3 -

Grasp score [19] ↑ .19 .36 .37 .43 .40 .60 .56 .56 .30

# Hand-Obj Contacts ↑ 2.6 4.0 4.4 4.6 3.0 3.9 4.4 4.4 4.4

Interpenetration ↓ 42 27 29 29 48 33 34 34 10

Time (sec) ↓ .2 .3 .3 .4 .2 .3 .3 .4 300

Table 1: Grasp prediction on ObMan [28]. ↑: the higher the

better, ↓: the lower the better. We sample three grasps for both

GanHand and baseline, and select the one with highest grasp score,

providing a good trade-off between grasp accuracy and running

time. We evaluate both methods using our optimization for 1, 2, or

3 joints. Note that we run GraspIt on ground-truth object shapes.

joints of each finger. We depict the drop in simulation dis-

placement and interpenetration metrics in Fig. 6-left, where

we can see that the proposed layer provides a significant im-

provement in the reconstruction results of [28] by reducing

both metrics by more than 30%. Results also improve in our

grasp prediction pipeline as shown in Fig. 6-right.

7.2. Validation on synthetic data

The ObMan dataset [28] contains around 150k synthetic

hand+object pairs with successful grasps produced using

GraspIt for 27k different objects. Around 70k grasps were

simulated for each object, keeping only the grasps with

highest score. We use the images showing the objects alone

and added basic background textures. For training, we used

a simplified version of the method which does not consider

intersections with other elements of the scene (plane and ob-

jects). Quantitative and qualitative results obtained on this

dataset are shown in Table 1 and Fig. 5, respectively.

Our optimization layer provides a significant boost on

all analysed metrics independently of the employed archi-

tecture (baseline or ours). It increases the number of fin-
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Input image Baseline GanHand Input image Baseline GanHand

Figure 7: Sample results on the YCB-Affordance. Failure cases in bottom row: The absolute pose of the can and clamps is not accurate

and overlapping grasps are produced (left). The cup is detected as a brick, predicting a wrong grasp (right).

gers touching the object while correcting part of the in-

terpenetrations. There is no significant difference in the

number of Hand-Obj contacts but grasps predicted by Gan-

Hand have consistently better grasp scores. The GraspIt

simulator achieves lower interpenetration by handling colli-

sions, at the expense of a lower grasp score but, in practice,

it cannot be easily deployed on real systems because of its

computation cost and the need for an aligned object shape.

7.3. Evaluation on YCBAffordance

Finally, we train both models on 80 videos from YCB-

Affordance (∼130k frames). Test is evaluated on a different

subset of 12 videos (2949 frames), of the same objects seen

at train, but different scenes and poses. Numerical results

in real multi-object scenes are reported in Table 2. In this

case, we sample up to 20 predictions and select the one with

least interpenetration with all predicted objects. We found

that sampling 20 rotation candidates provided a good com-

promise between inference time and discretisation of the ro-

tation space, with an average rotation error of .15 (mean L2

error of neighboring quaternions) while allowing inference

in 0.3 seconds per object. Both methods leverage the grasp

variety of YCB-Affordance dataset predicting a good diver-

sity of grasps. However, GanHand achieves a higher % of

graspable objects and a higher accuracy in predicted grasp

types compared to the baseline (see Fig. 7). We deem this

is a benefit of our grasp prediction module. The plane inter-

penetration is considerably low for both methods (3 mm),

indicating both models learnt to adequately place the hands

above the tables. This can be appreciated again in Fig. 7.

Model Baseline GanHand

Finger joints optimized - 1 2 3 - 1 2 3

% graspable objs ↑ 4 21 33 31 21 58 57 55

Acc. grasp type % ↑ 49 62 57 56 78 76 70 76

Grasp score [19] ↑ .37 .45 .44 .45 .36 .47 .46 .42

# Hand-Obj Contacts ↑ 3.7 3.7 3.7 3.7 3.7 3.7 3.8 3.9

Obj. Interp. (cm3) ↓ 38 30 30 30 26 27 28 26

Plane interp. (cm) ↓ .1 .1 .1 .1 .3 .3 .2 .3

Table 2: Results on YCB-Affordance. GanHand outperforms

the baseline in all metrics, except from plane interpenetration

which is negligible for both methods.

8. Conclusion

We have introduced the problem of human grasp pre-

diction in RGB images and proposed GanHand, a gener-

ative model that 1) estimates the 3D pose of the objects

in the scene; 2) predicts grasp types; and 3) refines a 3D

hand mesh model. To train GanHand, we built the YCB-

Affordance, the first large-scale dataset of images annotated

with plausible human grasps. We have validated our ap-

proach in both synthetic and real images showing that our

model can robustly predict realistic human grasps. In fur-

ther work, we could take into account the intended activity

and the state of the object to select a more appropriate grasp.
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Casas, Antti Oulasvirta, and Christian Theobalt. Real-time

joint tracking of a hand manipulating an object from rgb-d

input. In ECCV, 2016. 2

[63] James S. Supancic, Grégory Rogez, Yi Yang, Jamie Shot-

ton, and Deva Ramanan. Depth-based hand pose estima-

tion: Methods, data, and challenges. Int. J. Comput. Vis.,

126(11):1180–1198, 2018. 2

[64] Bugra Tekin, Federica Bogo, and Marc Pollefeys. H+ o: Uni-

fied egocentric recognition of 3d hand-object poses and in-

teractions. In CVPR, 2019. 2

[65] Aggeliki Tsoli and Antonis A Argyros. Joint 3d tracking of

a deformable object in interaction with a hand. In ECCV,

2018. 2

[66] Dimitrios Tzionas and Juergen Gall. 3d object reconstruction

from hand-object interactions. In ICCV, 2015. 2

[67] Xiaolong Wang, Rohit Girdhar, and Abhinav Gupta. Binge

watching: Scaling affordance learning from sitcoms. In

CVPR, 2017. 2

5040



[68] Yangang Wang, Jianyuan Min, Jianjie Zhang, Yebin Liu,

Feng Xu, Qionghai Dai, and Jinxiang Chai. Video-based

hand manipulation capture through composite motion con-

trol. ACM TOG, 32(4):43, 2013. 2

[69] Yu Xiang, Tanner Schmidt, Venkatraman Narayanan, and

Dieter Fox. Posecnn: A convolutional neural network for

6d object pose estimation in cluttered scenes. In RSS, 2018.

1, 3, 4

[70] Shanxin Yuan, Guillermo Garcia-Hernando, Björn Stenger,

Gyeongsik Moon, Ju Yong Chang, Kyoung Mu Lee, Pavlo

Molchanov, Jan Kautz, Sina Honari, Liuhao Ge, et al. Depth-

based 3d hand pose estimation: From current achievements

to future goals. In CVPR, 2018. 2

[71] Christian Zimmermann and Thomas Brox. Learning to esti-

mate 3d hand pose from single rgb images. In ICCV, 2017.

1, 2

5041


