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Abstract

In unsupervised domain adaptation, rich domain-

specific characteristics bring great challenge to learn

domain-invariant representations. However, domain dis-

crepancy is considered to be directly minimized in ex-

isting solutions, which is difficult to achieve in practice.

Some methods alleviate the difficulty by explicitly model-

ing domain-invariant and domain-specific parts in the rep-

resentations, but the adverse influence of the explicit con-

struction lies in the residual domain-specific characteristics

in the constructed domain-invariant representations. In this

paper, we equip adversarial domain adaptation with Grad-

ually Vanishing Bridge (GVB) mechanism on both gener-

ator and discriminator. On the generator, GVB could not

only reduce the overall transfer difficulty, but also reduce

the influence of the residual domain-specific characteris-

tics in domain-invariant representations. On the discrim-

inator, GVB contributes to enhance the discriminating abil-

ity, and balance the adversarial training process. Exper-

iments on three challenging datasets show that our GVB

methods outperform strong competitors, and cooperate well

with other adversarial methods. The code is available at

https://github.com/cuishuhao/GVB.

1. Introduction

Diverse vision applications have gained significant im-

provement with the cutting-edge technologies such as deep

convolutional neural networks (CNN). Despite of success

already achieved, even a subtle departure from training data

may still cause existing shallow or deep models to make

spurious predictions. Directly applying a deep CNN well-

trained on millions of images to a new domain encounters

performance degradation, while collecting labeled samples

for the new domain is expensive and time-consuming. To

alleviate such notorious domain discrepancy, researchers re-
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Figure 1. Illustration of the bridge for adversarial domain adap-

tation. On the generator, the bridge models domain-specific rep-

resentations and connects either source or target domain to inter-

mediate domain. On the discriminator, the bridge balances the

adversarial game by providing additive adjustable discriminating

ability. In these processes, the method to construct bridge is the

key issue in our study.

sort to unsupervised domain adaptation (UDA) [5, 13, 37,

39, 46, 50] that transfers knowledge from labeled source

data to related unlabeled target data.

In traditional UDA methods, domain discrepancy is re-

duced by learning transferable representations [10, 14, 28],

or reweighing the importance of the samples [29]. Deep

methods carry forward the thought of learning transfer-

able representations by distribution alignment on multi-

ple layers [8, 9, 23, 44, 51]. Recently, many domain

adaptation methods are inspired by Generative Adversar-

ial Networks (GAN) [1, 12, 27, 49]. Based on GAN,

the transferable representations are constructed by the gen-

erator that tries to fool the discriminator in the minmax

game [9, 17, 35, 36, 40]. In these studies, the discrepancy

between source and target domains is considered to be di-

rectly minimized. Towards more robust UDA, we reinves-

tigate the intrinsic weakness possessed by existing domain

discrepancy minimization paradigms.
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To reduce domain discrepancy, the great challenge lies in

the rich domain-specific characteristics, which are deemed

to be mitigated by distribution alignment [8, 23] or ad-

versarial training [9, 35]. Towards more comprehensive

reduction of domain-specific characteristics, some meth-

ods [2, 3, 11] explicitly model domain-specific and domain-

invariant representations by input image reconstruction.

The time-consuming reconstruction function demands rich

domain characteristics in domain-specific representations.

Such characteristics inevitably result in more domain prop-

erties in the intermediate domain, which is expected to be

domain-invariant. From another perspective of adversarial

learning, the adversarial minmax game could achieve better

results by balancing the learning ability between the gen-

erator and discriminator. Strengthening the discriminating

ability by multiple discriminators [30] may facilitate bet-

ter collaboration with a strong generator in some situations,

while the overly critical multiple discriminators may also

break the brittal balance of adversarial training.

In this paper, we define the bridge as a basic concept,

which is a measurement modeling the discrepancy between

the existing and ideal representations. As shown by ex-

ample in Figure 1, the bridge is applied to the generator

and discriminator. The bridge on generator models domain-

specific parts and connects both source and target domains

to the intermediate domain, thus it could mitigate the over-

all transfer difficulty and facilitate more comprehensive do-

main alignment. The bridge on discriminator measures

the discrepancy between the discriminating function hyper-

plane and the ideal domain decision boundary.

The key constraint on our constructed bridge is that the

range of the bridge is progressively reduced. With the

constraint, the bridge mechanism is called Gradually Van-

ishing Bridge (GVB) for adversarial domain adaptation.

We denote GVB applied to generator and discriminator as

GVB-G and GVB-D, respectively. Among the bridges,

the bridge on generator models domain-specific parts, thus

GVB-G could explicitly reduce domain-specific character-

istics. Therefore, GVB-G plays the main role in learning

domain-invariant representations. It could also reduce the

adverse influence of domain characteristics in the represen-

tations, and avoid the influence of hard examples with ex-

cessive domain characteristics.

Both GVB-G and GVB-D are integrated into the whole

framework, denoted as GVB-GD, to ensure the balance and

robustness of the two-player minmax game. Experiments

show that GVB-GD outperforms competitors on three chal-

lenging datasets and achieves state-of-the-art on Office-

Home. We also apply GVB to other UDA methods includ-

ing CDAN [24] and Symnets [48]. The improvements on

CDAN and Symnets show the general applicability of GVB

on adversarial domain adaptation. For better explanation,

we visualize the bridge in GVB-GD to validate that the

bridge could measure the domain-specific characteristics.

We further verify the functionality and necessity of GVB,

by observation that larger range of GVB-G output tends to

result in higher misclassification probability.

In summary, the key contributions are as follows:

• We propose a new framework which constructs GVB

on both generator and discriminator to achieve more

balanced adversarial training for domain adaptation.

• As the key role in the framework, GVB on generator

could alleviate the transfer difficulty and explicitly re-

duce the domain characteristics in the representations.

• GVB outperforms competitors in most cases, and vi-

sualization also show the positive effect of GVB.

2. Related Work

Visual domain adaptation, first proposed by [34], re-

ceives increasing attention and fruitful results [45, 43], es-

pecially with deep learning techniques [8, 9, 15, 18, 19, 6].

Techniques developed on deep networks could be mainly

categorized into moment alignment and adversarial train-

ing. Moment-alignment-based methods [14, 23, 25, 38, 44]

are proposed to measure and minimize the domain discrep-

ancy with maximum mean discrepancy (MMD) [23], cor-

relation distance [38, 51] or other distance metric [20, 25]

calculated on task-specific features.

Motivated by the Generative adversarial networks

(GAN) [12], adversarial learning has been successfully ex-

plored in various research fields including domain adapta-

tion [4, 36, 42]. In Domain Adversarial Neural Network

(DANN) [9], the authors propose a gradient reversal layer

to confuse the domain classifier. Many methods such as

ADDA [40], CyCADA [17], SBADA [33], and MCD [35]

are proposed to build adversarial frameworks to directly

minimize the domain discrepancy. Typically, CDAN [24]

is a principled framework that conditions the adversarial

adaptation models on discriminative information conveyed

in the classifier predictions. Symnets [48] makes a symmet-

ric design of source and target task classifiers, in which both

domain classifiers produce classification outputs.

Some methods try to explicitly model the bridge on gen-

erator, but they still face many problems. SGF [28] and

GFK [10] build the bridge between domains on Grassman-

nian manifolds, but could not be easily applied to deep net-

works. In deep methods, DSN [2], DISE [3] and DLOW

[11] formulate the bridge between source and target by re-

constructing input images on pixel level. However, the

time-consuming reconstruction function does not guarantee

less residual domain characteristics in the domain-invariant

representations. We avoid using image reconstruction func-

tion and reduce the range of bridge on generator to get
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Figure 2. The proposed GVB-GD framework, which is an end-to-end network shared by source domain and target domain. In GVB-G,

the bridge layer G3 outputs γi that captures domain-specific properties. The intermediate representation ri is the classifier response ci
subtracted by bridge γi. Similarly, in GVB-D, the bridge layer D2 provides additive discriminating ability to the base domain classifier in

discriminator. The network is trained by minimizing classification loss, adversarial loss, discriminator loss and generator loss.

rid of the negative influence of domain-specific character-

istics. Besides, multiple discriminators in adversarial net-

works [30] may break the balance in the adversarial training

process with overly critical discriminating ability. In con-

trast, we pursue a more balanced minmax adversarial game

by building the bridge on both generator and discriminator.

3. Method

We propose GVB for adversarial domain adaptation as

shown in Figure 2. In Sec. 3.1, we introduce the baseline

for adversarial domain adaptation. The gradually vanish-

ing bridge on generator (GVB-G) is introduced in Sec. 3.2.

In Sec. 3.3, we describe the gradually vanishing bridge on

discriminator (GVB-D) and the whole framework GVB-GD

based on GVB-G and GVB-D.

3.1. Adversarial Domain Adaptation

We are given source domain DS = {(xs
i , y

s
i )}

Ns

i=1
with

Ns labeled examples covering C classes where ysi ∈
{1, ..., C} and target domain DT = {xt

i}
NT

i=1
with Nt un-

labeled examples that belong to the same C classes.

It is widely accepted that methods for domain adaptation

can be achieved by minimizing a classification loss and an

additional transfer loss. The classification loss in DS can be

calculated as:

Lcls =
1

Ns

Ns
∑

i=1

Lce(G⋆(x
s
i )), y

s
i ) (1)

where Lce is the cross-entropy loss function and G⋆ is the

network structure to obtain class responses. To construct

transfer loss, inspired by [23, 35], we directly minimize

the domain discrepancy on classifier responses. Besides,

we adopt popular methods of adversarial training, the same

with other deep domain adaptation methods [8, 17, 24].

Thus the transfer loss could be formulated as:

Ladv
trans =−

1

Ns

Ns
∑

i=1

logD⋆(G⋆(x
s
i )))

−
1

Nt

Nt
∑

j=1

log(1−D⋆(G⋆(x
t
j)))),

(2)

where D⋆ is the constructed discriminator. Some methods

utilize extra loss, such as reconstruction loss, which can be

denoted by Lext. The overall objective function is:

min
G⋆

Lcls + Ladv
trans + Lext

max
D⋆

Ladv
trans.

(3)

This formulation is regarded as the general framework

for adversarial domain adaptation. In particular, suppose

that the classification network consists of a feature extrac-

tor G1 and a successive classifier layer G2. For the input

data xi, the feature output and the classifier response can be

computed as fi = G1(xi) and ci = G2(fi), respectively.

With the discriminator D1, the baseline of our method could

be expressed as:
{

G⋆(xi) = G2(G1(xi))

D⋆(G⋆) = D1(G⋆), Lext = 0,
(4)
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3.2. Gradually Vanishing Bridge on Generator

Actually, divergence between source and target domains

can hardly be minimized to zero, thus it is quite challenging

to seek direct knowledge transfer from source domain DS

to target domain DT . Alternatively, to alleviate the transfer

difficulty, we divide the transfer process into two separate

processes from either source or target domain to interme-

diate domain DI . DI is supposed to lie in the middle of

DS and DT , with much less domain-specific characteris-

tics than DS and DT . To model domain-specific represen-

tations, we construct a bridge layer G3 in light blue boxes

in Figure 2. The output of G3 is the bridge denoted as γi,

which captures the domain-specific representation from the

input xi in either DS or DT , i.e., γi = G3(G1(xi)). Sub-

tracting bridge γi from the classifier response ci, results in

the constructed domain-invariant representation, denoted as

intermediate representation ri, calculated as follows:

ri = ci − γi. (5)

With bridge γi, the framework is the same as Eqn. 4 except

the generator. And the overall generator becomes:

G⋆(xi) = G2(G1(xi))−G3(G1(xi)). (6)

The adversarial training process enforces that the distribu-

tions of ri across domains are as similar as possible. There-

fore, γi tends to be dominated by domain-specific represen-

tations according to Eqn. 5.

In existing study, some bridge-based methods on the

generator have been proposed [2, 3, 11], but the ways

of constructing the bridge of existing study remain to be

discussed. The bridge is built by image reconstruction

in [2, 3, 11]. However, the image reconstruction function in-

evitably results in too much residual domain-specific char-

acteristics and large overall range in the constructed bridge.

In connection to our framework, if the range of γi, mea-

sured in vector-norm, is overly large, it has the following

interpretations. First, it implies that data xi is a hard exam-

ple which contains heavy domain-specific properties. Sec-

ond, the domain-specific and domain-invariant parts for xi

can hardly be separated. Consequently, the large range of

the bridge means rich domain characteristics in the γi, and

inevitably impacts ci and ri. The influence on the represen-

tations leads to a higher misclassification probability in DT ,

which is validated by experiment results in Figure 5(a).

Towards more effective constraint on the bridge, we seek

to reduce the influence of domain characteristics in γi. Thus

we gradually reduce the influence of γi by progressively

minimizing the overall range of γi as follows:

LG =
1

(Ns +Nt) ∗ C

Ns+Nt
∑

i=1

C
∑

j=1

|γi,j |, (7)

Figure 3. A toy example of the training process with bridge γ.

With grdually minimized range of γ, the discrepancy between

source and target domains is reduced. After adaptation, more

points are covered in intermediate domain. But the points still

outside of intermediate domain are regarded as hard examples or

noisy data.

where each γi is encouraged to be near zeroes. With the

reduced range of γi, the characteristics in γi is suppressed,

which results in minor negative effects on ci and ri. The

mechanism of minimizing the range of γi is denoted as

GVB. We denote GVB applied to generator as GVB-G. As

shown in the experiment in Figure 4, visualization of the

data with and without γi also validates that γi still contains

rich domain characteristics without input reconstruction.

For better comprehension of the gradually vanishing

bridge mechanism, we show the example in two-dimension

space in Figure 3 working on generator. We denote DS , DT

and DI with circles in different colors. For simplicity, we

assume that the range of bridge γ is the single parameter to

be optimized, which can measure the distance between the

centers of DS(DT ) and DI . The distance shows the discrep-

ancy between DS(DT ) and DI , which could approximately

measure the quantity of domain-specific characteristics in

DS(DT ). |γ| appears to be large before domain adapta-

tion, which demonstrates the heavy domain characteristics

in DS(DT ). Based on Eqn. 7, |γ| is minimized to reduce do-

main discrepancy. In this way, DS and DT will be pushed

to be closer and overlapped with DI as much as possible to

obtain domain-invariant characteristics. In this case, there

is less domain-specific characteristics in DS(DT ), resulting

more reliable domain-invariant representations in DI .

Furthermore, all the data points, from either DS or DT

that are possibly dragged into DI (i.e., translated with a dis-

tance of less than |γ|), are within the region bounded by

dashed circle, which is referred to as the candidate interme-

diate domain. In the training process, the points in the can-

didate intermediate domain will be dragged into DI . After

domain adaptation, |γ| becomes small, and the candidate

intermediate domain will shrink to near the sphere of DI .

In this case, most of the examples will be included into DI

(i.e., |γi| is near zero), while the ones in DS or DT but out-

side the candidate intermediate domain are recognized as
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the hard examples that contain too much domain-specific

characteristics.

3.3. Gradually Vanishing Bridge on Discriminator

In adversarial domain adaptation, less attention has been

paid to the discriminator. Besides, unlike the generator,

which could be pretrained on large-scale datasets such as

ImageNet [7], the discriminator is usually randomly ini-

tialized. Due to the large computation cost and searching

space, the discriminator is prone to run into local minimum.

Towards more effective discriminator, we propose to build

a bridge layer D2 on the discriminator as shown in dark

blue boxes in Figure 2. D2 models the distance between the

basic discriminator D1 function hyperplane and ideal deci-

sion boundary, and provides additive discriminating power

to D1. Thus the overall discriminator becomes:

D⋆(G⋆(xi)) = D1(G⋆(xi)) +D2(G⋆(xi)). (8)

In the two-player game of adversarial learning, it is a

common sense that balanced players could stimulate and

improve each other more significantly. For example, multi-

ple discriminators [30] may provide domain discrimination

from different aspects, but they should be combined prop-

erly for more balanced adversarial learning, e.g., combined

with a more capable generator. For GVB, the ability of gen-

erator is enhanced with the introduction of GVB-G, thus the

discriminating ability of the discriminator side should also

be adjusted accordingly. Therefore, similar to GVB-G, we

progressively minimize the overall range of the bridge on

discriminator side as follows:

LD =
1

(Ns +Nt)

Ns+Nt
∑

i=1

|σi|, (9)

where σi is the constructed bridge, i.e., σi = D2(G⋆(xi)).
We denote GVB applied to the discriminator as GVB-D.

Towards more balanced minmax game in the whole

training process, we combine GVB-G and GVB-D, and for-

mulate the gradually vanishing bridge on generator and dis-

criminator (GVB-GD). The whole framework could be de-

scribed as follows:











G⋆(xi) = G2(G1(xi))−G3(G1(xi))

D⋆(G⋆) = D1(G⋆)−D2(G⋆)

Lext = λLG + µLD,

(10)

where the extra loss combines both Eqn. 7 and Eqn. 9

with hyper-parameters λ and µ. Since our proposed GVB

mechanism focuses on optimization of minmax game, it is

general applicable to adversarial domain adaptation frame-

work. Thus we also apply GVB to existing methods in-

cluding CDAN [24] and Symnets [48]. CDAN multiplies

the feature representations and class responses on the gen-

erator, to play against the discriminator. Both GVB-G and

GVB-D could be applied to CDAN. Symnets builds sym-

metric generators for domains, but the discriminator is not

modeled explicitly. Therefore, only GVB-G could be ap-

plied to SymNets.

4. Experiment

We evaluate the GVB mechanism on three challenging

standard benchmarks and compare GVB with state-of-the-

art domain adaptation methods.

4.1. Datasets and Settings

Office-31 [34] is a standard benchmark for visual domain

adaptation which contains 4,652 images in 31 categories.

It consists of three domains: Amazon (A), Webcam (W)

and DSLR (D). We evaluate the methods across the three

domains, i.e., six transfer tasks in total.

Office-Home [41] is a challenging dataset for visual do-

main adaptation with 15,500 images in 65 categories. It has

four significantly different domains: Artistic images (Ar),

Clip Art (Cl), Product images (Pr), and Real-World images

(Rw). Among four domains, there are totally 12 challeng-

ing domain adaptation tasks.

VisDA-2017 [31] is a simulation-to-real dataset for do-

main adaptation with over 280,000 images across 12 cate-

gories in the training, validation and testing domains. The

training images are generated from the same object under

different circumstances, while the validation images are col-

lected from MSCOCO. [21].

For GVB-GD, we adopt ResNet-50 [16] pre-trained on

ImageNet [7] as our backbone network. We build the bridge

layer on both the generator and discriminator with several

fully-connected layers in experiments. All the experiments

are implemented with PyTorch. For each method, we run

four random experiments and report the average classifi-

cation accuracy and we report the standard deviation in

Office-31. We compare our method with state-of-the-art

domain adaptation methods. For fair comparison, results

on Office-31, Office-Home and VisDA-2017 are directly re-

ported from their original papers if available. Similar to our

methods, for CDAN and Symnet, when applying GVB on

the generator, ‘-G’ is added to the method name, and ‘-D’

is added when GVB is applied on the discriminator. We

compare our methods with state-of-art domain adaptation

methods: DAN [23], DANN [9], ADDA [40], GTA [36],

CDAN [24], Simnet [32], MCD [35] and MDD [47].

In the adversarial training, we apply gradient reversal

layer (GRL) [8] to the network. In GRL, instead of fix-

ing the adaptation factor, progressive training strategy is

adopted to suppress noisy signal from the discriminator at

the early stages of the training procedure. To optimize the

transfer process, we utilize entropy conditioning proposed
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Table 1. Accuracies (%) on Office-31 for ResNet50-based unsupervised domain adaptation methods.

Method A → D A → W D → W W → D D → A W → A Avg

ResNet-50 [16] 68.9±0.2 68.4±0.2 96.7±0.1 99.3±0.1 62.5±0.3 60.7±0.3 76.1

GFK [10] 74.5±0.0 72.8±0.0 95.0±0.0 98.2±0.0 63.4±0.0 61.0±0.0 77.5

DAN [23] 78.6±0.2 80.5±0.4 97.1±0.2 99.6±0.1 63.6±0.3 62.8±0.2 80.4

DANN [9] 79.7±0.4 82.0±0.4 96.9±0.2 99.1±0.1 68.2±0.4 67.4±0.5 82.2

ADDA [40] 77.8±0.3 86.2±0.5 96.2±0.3 98.4±0.3 69.5±0.4 68.9±0.5 82.9

Simnet [32] 85.3±0.3 88.6±0.5 98.2±0.2 99.7±0.2 73.4±0.8 71.8±0.6 86.2

GTA [36] 87.7±0.5 89.5±0.5 97.9±0.3 99.8±0.4 72.8±0.3 71.4±0.4 86.5

MCD [35] 92.2±0.2 88.6±0.2 98.5±0.1 100.0±.0 69.5±0.1 69.7±0.3 86.5

MDD [47] 93.5±0.2 94.5±0.3 98.4±0.1 100.0±.0 74.6±0.3 72.2±0.1 88.9

Baseline 89.9±0.3 92.5±0.5 98.5±0.3 99.9±0.1 70.0±0.4 71.1±0.3 87.0

GVB-G 93.9±0.4 94.2±0.4 98.6±0.2 100.0±.0 71.8±0.3 73.5±0.4 88.7

GVB-D 92.8±0.5 93.9±0.4 98.4±0.2 100.0±.0 72.0±0.3 72.6±0.3 88.3

GVB-GD 95.0±0.4 94.8±0.5 98.7±0.3 100.0±.0 73.4±0.3 73.7±0.4 89.3

CDAN [24] 92.9±0.2 93.1±0.1 98.6±0.1 100.0±.0 71.0±0.3 69.3±0.3 87.5

CDAN-G 92.1±0.3 92.9±0.2 98.2±0.1 100.0±.0 73.5±0.3 72.8±0.2 88.2

CDAN-D 93.5±0.4 92.9±0.2 98.6±0.1 100.0±.0 73.0±0.3 73.1±0.3 88.5

CDAN-GD 93.7±0.2 94.0±0.2 98.6±0.1 100.0±.0 73.4±0.3 73.0±0.2 88.8

Symnets [48] 93.9±0.5 90.8±0.1 98.8±0.3 100.0±.0 74.6±0.6 72.5±0.5 88.4

Symnets-G 96.1±0.3 93.8±0.4 98.8±0.2 100.0±.0 74.9±0.4 72.8±0.3 89.4

Table 2. Accuracies (%) on Office-Home for ResNet50-based unsupervised domain adaptation methods.

Method Ar→ClAr→PrAr→RwCl→ArCl→PrCl→RwPr→ArPr→ClPr→RwRw→ArRw→ClRw→Pr Avg

ResNet-50 [16] 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1

DAN [23] 43.6 57.0 67.9 45.8 56.5 60.4 44.0 43.6 67.7 63.1 51.5 74.3 56.3

DANN [9] 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6

MCD [35] 48.9 68.3 74.6 61.3 67.6 68.8 57 47.1 75.1 69.1 52.2 79.6 64.1

BNM [6] 52.3 73.9 80.0 63.3 72.9 74.9 61.7 49.5 79.7 70.5 53.6 82.2 67.9

MDD [47] 54.9 73.7 77.8 60.0 71.4 71.8 61.2 53.6 78.1 72.5 60.2 82.3 68.1

Symnets [48] 47.7 72.9 78.5 64.2 71.3 74.2 63.6 47.6 79.4 73.8 50.8 82.6 67.2

Symnets-G 48.0 74.3 78.5 65.1 72.2 74.4 65.1 49.4 79.7 73.8 51.7 82.5 67.8

CDAN [24] 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8

CDAN-G 53.6 72.1 77.9 61.9 71.8 71.7 63.8 52.9 79.9 71.5 58.0 83.3 68.2

CDAN-D 54.4 72.9 77.7 62.6 71.9 71.8 62.4 52.1 79.5 72.1 58.1 83.3 68.2

CDAN-GD 55.3 74.1 78.2 62.4 72.6 71.8 63.8 54.1 80.1 73.1 58.7 83.6 69.0

Baseline 54.7 72.8 78.5 62.3 71.1 73.1 61.0 53.0 80.0 72.8 56.5 83.4 68.3

GVB-G 56.5 74.0 79.2 64.2 73.0 74.1 65.2 55.9 81.2 74.2 58.2 84.0 70.0

GVB-D 55.0 73.8 79.0 64.3 72.9 75.0 63.4 54.2 80.9 73.1 58.0 83.6 69.4

GVB-GD 57.0 74.7 79.8 64.6 74.1 74.6 65.2 55.1 81.0 74.6 59.7 84.3 70.4

in [24] that pays more attention to easy-to-classify data. We

choose the baseline model as described in Sec. 3.1. For the

training of the network, we employ mini-batch stochastic

gradient descent (SGD) with momentum of 0.9 to train our

model. We keep fixing λ = 1 and µ = 1 to balance the loss,

since our method of GVB is stable under different values of

parameters λ and µ.

4.2. Results

The results on Office-31, Office-Home and VisDA-2017

datasets are separately shown in Table 1, Table 2 and Ta-

ble 3. Both GVB-G and GVB-D outperform the baseline

and most of other competitors significantly, which means

the bridge provides prominent improvement for domain

adaptation. GVB-GD further outperforms GVB-G and
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Figure 4. Visualization of data with and without the bridge γi on generator on A → D for GVB-GD. The images shown in the first

and last columns are respectively sampled from source domain (Amazon) and target domain (DSLR). The 2nd∼5th columns show the

generated source images corresponding to different representations by subtracting γi with 0×, 5×, 10× and 15× amplifications from

classifier responses ci. Similarly, the 6th∼9th columns show the generated target images by subtracting γi with 15×, 10×, 5× and 0×
amplifications from ci.

(a) GVB-G (b) GVB-D

Figure 5. Relationship between the range of bridge on tar-

get domain and classification result on GVB-GD.

(a) ResNet50 (b) Baseline (c) GVB-GD

Figure 6. t-SNE of classifier responses by ResNet50, Baseline and

GVB-GD (red: Amazon, blue: Webcam).

Table 3. Accuracies (%) of Synthetic → Real on VisDA-2017 for

unsupervised domain adaptation methods using ResNet-50.

Method Acc Method Acc Method Acc

DAN [23] 61.6 CDAN [24] 70.0 Baseline 71.3

DANN [9] 57.4 CDAN-G 73.4 GVB-G 73.1

GTA [36] 69.5 CDAN-D 73.8 GVB-D 72.8

MDD [47] 74.6 CDAN-GD 74.9 GVB-GD 75.3

GVB-D for most tasks, which means the bridge on the gen-

erator and discriminator can boost each other to learn better

domain-invariant representation. Besides, we apply GVB-

G to CDAN and Symnets, and GVB-D to CDAN. The well-

performed results of CDAN-G, CDAN-D, CDAN-GD and

Symnets-G mean the GVB mechanism is generally applica-

ble for mainstream adversarial domain adaptation methods.

For different datasets on Office-31, Office-Home and

VisDA-2017, methods with GVB could achieve well-

performed results. Among the datasets, there exists large

domain discrepancy in Office-Home and VisDA-2017,

while less domain discrepancy in Office. Thus our methods

with GVB are suitable for both the easy and difficult tasks.

Besides, VisDA-2017 is a large-scale dataset, while Office-

Home and Office are relative small datasets. This means

our GVB methods are applicable to both small and large

datasets. Meanwhile, GVB could cooperate well with meth-

ods such as CDAN and Symnets for different tasks. This

shows that GVB is generally applicable for a wide range of

domain adaptation tasks.

4.3. Qualitative Validation

Representation visualization. Since we avoid using im-

age reconstruction in the bridge γ on generator, there re-

main concerns on whether there are rich domain-specific

characteristics in γ. We visualize the representations with

and without γ in Figure 4 on Office-31. 500 random im-

ages from Amazon and 498 images from DSLR are se-

lected to train the network. Similar to FCN [22], we use

the encoder-decoder network to achieve the input images

reconstruction. The encoder is the same as GVB-GD and

the decoder is a deconvolutional neural network that maps

classifier responses into images. We utilize the weights of
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Table 4. Accuracies (%) on Office-Home with ResNet50. Methods

with notion of BG (D) are the bridge without minimization.

Method Ar→Cl Ar→Pr Ar→Rw Cl→Ar Avg

Baseline 54.7 72.8 78.5 62.3 67.1

BG 54.1 72.3 78.7 62.9 67.0

GVB-G 56.5 74.0 79.2 64.2 68.5

BD 55.3 73.1 79.0 63.9 67.8

GVB-D 55.0 73.8 79.0 64.3 68.0

GVB-G+BD 56.2 74.4 79.6 64.2 68.6

GVB-GD 57.0 74.7 80.0 64.8 69.1

encoder with pre-trained GVB-GD on A → D and fix the

encoder parameters in the training process. We train the

encoder-decoder network to reconstruct images from both

domains by minimizing L2 loss between input image and

reconstructed image. As the range of γ is small compared

with classification responses c, it is difficult to directly visu-

alize γ. Thus we amplify the γ and construct several repre-

sentations r = c− σγ with σ ∈ {0, 5, 10, 15} as the inputs

of decoder for better visualization.

From the left to right, we can see the gradual progress

from source domain to target domain in Figure 4. Take the

first row for example, the body of the bike helmet is white

in source domain and blue in target domain. With increas-

ing amplification factor σ, the generated helmets from the

2nd to the 5th column become darker and more blue, while

those from the 9th to the 6th column becomes whiter. Be-

sides, the helmet is vertical in source domain and slant in

target domain, while the object region of the generated im-

ages with amplified γ is in a circle shape which covers the

overlapping region of the original images. Furthermore, the

background is white in source domain and brown in target

domain, and it appears as half white and half brown in the

images with amplified γ. All these results validate that γ

captures rich domain-specific representations.

Statistical analysis on the bridge. To analyze the re-

lationship between the bridge on target domain and clas-

sification results, we calculate the range of the bridge as

|γi| on GVB-GD. In Figure 5, we show the results of A

→ D on DSLR and sort samples according to the range of

bridge. In Figure 5(a), with increasing range of the bridge

γi on generator, the red dots become more intensive and the

classification error goes higher. This validates that higher

misclassification probability appears with larger |γi|, thus

minimizing the range of γi tends to result in lower misclas-

sification probability.

On the discriminator side, as observed in Figure 5(b),

σi tends to be large when the input representations could

be easily transformed into intermediate domain, i.e., they

tend to be more domain-invariant. These “easy” examples

need more discriminative ability from discriminator to dis-

tinguish which domain they come from, and they need less

efforts on generator side to produce domain-invariant rep-

resentations, resulting smaller |γi|. More importantly, these

“easy” samples tend to be easily classified with higher prob-

ability since they show more domain-invariance. By con-

trast, samples with larger |γi| deliver more domain-specific

properties, which results in smaller |σi| and higher misclas-

sification probability.

Ablation study. To validate the effect of GVB com-

pared with the single bridge, we conduct ablation experi-

ments as shown in Table 4. Methods with notion of B-G

and G-D are the bridge without minimization, i.e., λ = 0
and µ = 0. (GVB-G)+(B-D) means to add a bridge on

discriminator without minimization to replace the GVB-D,

i.e., µ = 0. GVB-G outperforms B-G by a large margin,

this means the gradually vanishing mechanism is indispen-

sible on the generator. Results on GVB-D and B-D are

similar, but GVB-GD outperforms (GVB)-G+(B-D). This

means GVB-D could cooperate with GVB-G better than B-

D for a more balanced adversarial training.

Feature visualization. We visualize the features of

ResNet50 and our methods on A → D by t-SNE [26] in

Figure 6. It is shown in Figure 6(a) that ResNet50 works

well in source domain (Amazon) but poorly in target do-

main (Dslr). The Baseline achieves well-performed global

alignment by transferring on classifier responses as shown

in Figure 6(b), but the direct transfer leads to a large av-

erage distance between target data and its nearest source

data. For GVB-GD, target samples are located closer to the

source examples. The clusters in Figure 6(c) are more com-

pact that the other two cases, which further validates the

learning ability of our GVB mechanism.

5. Conclusion

In this paper, we propose the gradually vanishing bridge

mechanism that can work on the generator and discrimi-

nator in adversarial domain adaptation. On the generator,

GVB could result in more domain-invariant representation

and better reduction of the negative influence of the rich

domain-specific characteristics. To achieve a more balanced

adversarial training process, GVB is also built on the dis-

criminator side to provide additive discrimination power.

We also apply GVB to existing methods and achieve re-

markable improvement over their original counterparts.
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