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Abstract

Recently, ensemble models have demonstrated empirical

capabilities to alleviate the adversarial vulnerability. In this

paper, we exploit first-order interactions within ensembles to

formalize a reliable and practical defense. We introduce a

scenario of interactions that certifiably improves the robust-

ness according to the size of the ensemble, the diversity of

the gradient directions, and the balance of the member’s con-

tribution to the robustness. We present a joint gradient phase

and magnitude regularization (GPMR) as a vigorous ap-

proach to impose the desired scenario of interactions among

members of the ensemble. Through extensive experiments,

including gradient-based and gradient-free evaluations on

several datasets and network architectures, we validate the

practical effectiveness of the proposed approach compared

to the previous methods. Furthermore, we demonstrate that

GPMR is orthogonal to other defense strategies developed

for single classifiers and their combination can further im-

prove the robustness of ensembles.

1. Introduction

Deep neural networks (DNNs) have played an astonish-

ing role in the evolution of modern machine learning by

achieving state-of-the-art performance on many challenging

tasks [22, 41]. Despite their excellent performance, scalabil-

ity, and generalization to unseen test data, they suffer from

a major drawback: slight manipulations of the input sam-

ples can form adversarial examples causing drastic changes

in the predictions of the model [38, 19, 31]. Perturbations

required for this aim are often quasi-imperceptible to the

human eye and can transfer across classifiers [7, 14], data

samples [30, 32], and input transformations [3, 5]. This issue

has raised increasing concerns regarding the deployment of

DNNs in security-sensitive applications such as autonomous

vehicles, biometric identification, and e-commerce.

Initially, a large body of work has been devoted to ad-

dressing the problem by heuristic approaches built upon the

empirically observed characteristics of perturbations, such

as their noisy structure. However, the uncertainty of assump-

tions and lack of formal explanations for the phenomenon

has caused the majority of the defense attempts to be compro-

mised by more advanced attacks [7, 12, 11]. Recent studies

have made significant progress in explaining the cause of

adversarial vulnerability by demonstrating that adversarial

examples are natural consequences of non-zero test error of

classifiers in the data space [18, 10]. Particularly, due to the

huge cardinality of the input space, a small number of mis-

classified points around a natural input sample forms a very

close decision boundary which can be reached by adversarial

perturbations. This suggests that adversarial robustness can

only be certified for bounded perturbations [20, 10] since

achieving zero error rate is nontrivial in general [18].

The majority of studies on adversarial robustness have

concerned single classifiers [38, 19, 26, 18, 10, 20]. How-

ever, exploring interactions of multiple classifiers has high-

lighted the potential of ensembles for mitigating the adver-

sarial vulnerability [33, 21, 1, 4]. In this paper, we exploit

first-order interactions in ensembles to provably improve the

robustness of the ensemble prediction. We illustrate that the

diversity of the gradient directions and the balance of the

gradient magnitudes are two key factors for enhancing the

robustness of deep ensembles. Specifically, we make the

following contributions:

• We introduce a practically feasible case of interactions

within ensembles which is certified to improve the ro-

bustness of the model against white-box attacks.

• We propose a training framework termed joint gradient

phase and magnitude regularization (GPMR) to impose

the desired interactions among the members of the en-

semble.

• We validate the effectiveness of the proposed method

using extensive experiments including gradient-based

and gradient-free evaluations.

• We demonstrate that the proposed training framework is

orthogonal to previous approaches that aim to provide

adversarial robustness by bounding the magnitude of

the gradients, such as adversarial training.
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2. Related Work

Myriad of studies have attempted to robustify DNNs em-

ploying approaches such as knowledge distillation [35], man-

ifold learning [37, 29], data transformation and compression

[40, 15], statistical analysis [44], and regularization [43].

However, the majority of the defense schemes in the litera-

ture are compromised by more sophisticated attacks [7, 6].

An effective approach for improving the robustness of DNNs

is adversarial training in which the training set is augmented

by adversarial examples crafted during the training process.

This approach is widely studied using different types of ad-

versarial examples [38, 19, 31, 26, 23]. A major limitation

of adversarial training is its dependence on the type of ad-

versarial examples used for training the model. Thus, this

approach cannot provide reliable robustness against unseen

adversarial examples and out-of-distribution samples, e.g.

crafted by additive Gaussian noise [18].

A group of studies proposed to directly limit the variation

of predictions against slight input changes by bounding the

Lipschitz constant of networks [9, 20, 39]. However, con-

trolling the Lipschitz constant involves incorporating highly

non-linear and intractable losses to the training objective,

which results in restrictive computational costs for large-

scale DNNs. Besides, theoretical assumptions for regulariz-

ing the Lipschitz constant of DNNs reduces the effectiveness

of these approaches against strong attacks [42].

Another body of work has considered interactions of

multiple classifiers to alleviate adversarial vulnerability

[1, 4, 33, 21]. The majority of these approaches propose

a method to promote the diversity of predictions. Abbasi et

al. [1] demonstrated that specializing members of the ensem-

ble on different subsets of classes can provide robustness

against adversarial examples. Bagnall et al. [4] proposed

a joint optimization scheme to minimize the similarity of

the classification scores on adversarial examples. Pang et

al. [33] developed the adaptive diversity promoting (ADP)

approach which diversifies the non-maximum predictions to

maintain the accuracy of the model on natural examples.

However, diversifying the predictions does not provide re-

liable robustness in the white-box defense scenario, where all

the parameters of the model are known by the adversary. In

this setup, the adversary can use the gradients of diversified

predictions to fool all classifiers at the same time. Moreover,

we both theoretically and experimentally demonstrate that

diversifying predictions does not improve the robustness in

gradient-free evaluations since the gradient of classifiers can

share similar directions. Recently, Kariyappa and Qureshi

[21] considered the diversity of gradients in ensembles to

provide adversarial robustness and proposed the gradient

alignment loss (GAL).

However, this approach suffers from two limitations.

First, GAL does not consider the optimal geometrical bounds

for diversifying the gradient directions. This degrades the

performance of the approach and causes significant fluctua-

tions in the training process as discussed in section 4. Second,

GAL does not equalize the magnitude of gradients of the

members. Therefore, it is solely evaluated in the black-box

threat model, where the attacker has no access to the model

parameters or gradients. In the white-box attack scenario, the

attacker can easily fool a few classifiers in the set which have

the maximum gradient magnitudes at the input sample. In

contrast, our work establishes a new theoretical framework

for analyzing the joint robustness by finding the optimal

first-order defensive interactions between the members of

the ensemble in the white-box threat model.

3. Joint Adversarial Robustness

Altering the prediction of the classifier primarily changes

the score of the predicted class. Therefore, in our theoretical

analysis, we focus on the change of the final output of a

differentiable classifier rather than the change in the index

of the maximum argument of the output, i.e., the predicted

class. Considering ℓp-norm as the distance metric to measure

the magnitude of perturbations, we define the robustness

to adversarial examples or, more specifically, adversarial

perturbations as follows:

Definition 1. A function f : X ⊂ R
n → R

m is said to be

(ǫ, δ)p robust to adversarial perturbations over the set X , if

for all samples x, x′ ∈ X and ||x − x′||p ≤ ǫ, f satisfies

||f(x)− f(x′)||2 ≤ δ.

To compare the robustness of different classification

schemes, we analyze the ℓp-norm lower bound of the magni-

tude of perturbations, ǫ, that is needed to change the maxi-

mum prediction by a fixed δ.

We analyze the robustness of a single classifier in Section

3.1. In Section 3.2, we formalize the robustness of ensembles

for the case where the adversary has to change the prediction

of all members to fool the ensemble prediction. Here, we

introduce a practically feasible scenario, i.e., a set of condi-

tions, for interactions between the members of the ensemble

and prove that it enhances the robustness of the ensemble.

Afterward in Section 3.3, we adopt the proposed scenario for

the practical threat models in which fooling a subset of clas-

sifiers in the ensemble is sufficient to change the ensemble

prediction. Finally, we present our approach for imposing

the desired defensive interactions in Section 3.4.

3.1. Robustness of a Single Classifier

Let f : X → R
m be a differentiable classifier map-

ping data point x ∈ X to m classification scores fj(x), j ∈
{0, . . . ,m−1}. The true label for sample x is y, and the class

predicted by the network is denoted by c = argmaxj fj(x).
Any attempt to change the prediction of the network by

translating the input sample x using perturbation r changes
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fc(x). We develop our methodology based on the first-order

approximation of fc(x): fc(x + r) − fc(x) ≈ 〈∇xfc, r〉1

since DNNs exhibit linear characteristics around the input

samples [19, 16, 17] where we seek to enhance the robust-

ness. The minimal ℓp-norm perturbation r∗p , for p ∈ [1,∞),
required to change the classification score by δ can be com-

puted using the Hölder inequality and ℓp-norm projection

[28, 13] as:

r∗ ≈ δ

||∇fc||q
∂(||∇fc||q), (1)

where ℓp-norm and ℓq-norm are dual norms ( 1p + 1
q = 1),

and ∂(.) denotes the subgradient of the argument. For a

differentiable ℓq-norm at ∇fc, the subgradient is equal to:

∂||∇fc||q/∂∇fc, and Equation 1 can be rewritten as:

r∗ ≈
( δ

||∇fc||q

)( |∇fc|q−1 ⊙ sign(∇fc)

||∇fc||q−1
q

)

, (2)

where ⊙ denotes element-wise multiplication. Similar first-

order approximation of the lower bound of the ℓp-norm

robustness has been previously derived [31, 20]. Equation 2

implies that the magnitude of the gradient plays a crucial role

in the robustness of the classifier. Hence, significant efforts

have been made to directly smooth out fc by controlling

the Lipschitz constant [9, 20, 39] or adversarial training [19,

26]. Here, we take an orthogonal approach to the previous

studies and seek to increase the lower bound of Equation 2

by exploring the joint robustness of multiple classifiers.

3.2. Joint Robustness of Multiple Classifiers

Let F be an ensemble of k classifiers, F={f i}k−1
i=0 ,

where f i : X → R
m maps the data point x ∈ X to

m classification scores f i
j(x), j ∈ {0, . . . ,m − 1}. The

class predicted for x by the classifier f i ∈ F is denoted

by ci = argmaxj f
i
j(x). Following the previous studies on

the robustness of ensembles [33, 21, 1, 4], we assume that

the ensemble prediction is the average of the prediction of

individual classifiers as: F(x) = 1
k

∑

f∈F f(x), and the

predicted class by the ensemble is: c = argmaxj Fj(x),
where Fj is the predicted probability associated with the

jth class. In this section, we relax the problem by assuming

that the adversary has to fool all members in order to fool

the ensemble prediction, i.e., the ensemble rejects the input

sample when ∃ i, j : ci 6= cj .

The ℓp-norm minimal perturbation r∗p required to de-

crease the classification scores of all classifiers at x by at

least δ > 0 is the solution of the following optimization

problem:

min ||r||p s.t. 〈∇f i
ci , r〉 ≤ −δ, ∀i ∈ {0, . . . , k−1}. (3)

1We drop x from the gradient operator for the rest of the paper.

Figure 1: An illustration of Theorem 1 for k = 2. Increasing

the angle between gradients ∇f0 and ∇f1 by ∆φ increases

the magnitude of the minimum perturbation from ||r||2 =√
2

l
√
cosφ+1

to ||r′||2 =
√
2

l
√

cos(φ+∆φ)+1
.

This interprets that the joint robustness within the ensemble

is associated with the gradients of each individual member.

Analyzing such interactions rely on the solution of this opti-

mization problem which does not have an analytic form for

the general ℓp-norm case but can be computed using non-

linear programming methods [27]. However, the ℓ2-norm

case when gradient vectors are linearly independent has the

following closed-form solution:

r∗2 = −δΩT (Ω ΩT )−1
1k×1, (4)

where Ω := [∇f0
c0 ,∇f1

c1 , . . . ,∇fk−1
ck−1

]T and 1k×1 is an all-

one matrix of size k × 1.

The worst-case scenario for the joint robustness of k
classifiers occurs when gradients of classifiers, ∇f i

ci for any

given sample x, share the same direction. For this case, the

magnitude of the optimal ℓ2-norm solution for Equation 3

is: ||r∗2 ||2 ≈ δ
maxi{||∇fi

ci
||2} . Therefore, the ℓ2-norm joint

robustness offered by k classifiers in the worst-case scenario

is of the same order as the robustness of a single classifier

depicted in Equation 2.

Analyzing the characteristics of the optimal perturbation,

r∗2 , for the multiple classifier framework is not analytically

possible without considering additional constraints. In Theo-

rem 1, we assume that the gradient vectors of all classifiers

have an equal magnitude at each x, and they are equiangu-

lar, i.e., the angle of any two gradient vectors is equal to φ.

Hence, we derive a lower bound for the joint robustness of k
classifiers with equiangular gradients.

Theorem 1. Let ∇f0, . . . ,∇fk−1 be k vectors in R
n with

an equal length l, and for any i 6= j ∈ {0, . . . , k − 1},

〈∇f i,∇f j〉 = l2 cosφ, and let r ∈ R
n be a vector such

that |〈∇f i, r〉| ≥ |δ| holds for any i, then:

||r||2 ≥ |δ|
√
k

l
√

((k − 1)cosφ+ 1)
. (5)

Proof. Rewriting Equation 4 gives the minimal ℓ2-norm

solution, r, satisfying |〈∇f i, r〉| ≥ |δ| as: r∗2 =
∑

i

αi∇f i, where αi is the ith element of the vector
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α = δ(Ω ΩT )−1
1k×1, and Ω = [∇f0, . . . ,∇fk−1]T .

Applying the equiangular condition, we have: αi =
δ

l2((k − 1)cosφ+ 1)
, which is independent of i. On the

other hand, ||∑k−1
i=0 ∇f i||22 = 〈∑k−1

i=0 ∇f i,
∑k−1

i=0 ∇f i〉 =
kl2((k − 1) cosφ + 1). Combining these two equations

concludes the proof.

For the equiangular case, when k classifiers are identical,

i.e., φ = 0, members of the ensemble have the minimum de-

fensive interactions since the joint robustness is equal to the

robustness of a single classifier obtained in Equation 2. For k
classifiers with orthogonal gradient vectors, the lower bound

is equal to ||r||2 = δ
√
k
l and the robustness is of O(

√
k
l ). As

φ grows, the robustness increases and approaches infinity

when φ → arccos( −1
k−1 ). The robustness for an arbitrary set

of gradients, {∇f0, . . . ,∇fk−1}, is lower bounded by the

robustness of any set of inscribed equiangular vectors with

φ = mini 6=j ∠(∇f i,∇f j) and l = maxi ||∇f i||2. There-

fore, Theorem 1 provides a lower bound to the robustness

of the general case of the gradients. This implies that the

robustness of ensembles can be improved by increasing the

minimum angle between gradients and decreasing the maxi-

mum gradient magnitude. Figure 1 illustrates how promoting

the gradient diversity improves the robustness.

Diversity of the gradient directions has been studied be-

fore in GAL [21] as a heuristic methodology to improve

the robustness against black-box attacks. Theorem 1 high-

lights two shortcomings of GAL limiting its effectiveness

against white-box attacks. First, GAL does not consider the

optimal bound arccos( −1
k−1 ) for the gradient diversity. We

observe that this causes a fluctuation in the training of GAL

and reduces the effectiveness of diversifying the gradient

directions. Second, GAL does not regularize the gradient

magnitudes among members. Consequently, any white-box

attack to the ensemble prediction can easily circumvent the

defensive strategy by targeting the least robust members.

3.3. Threat Model in Practice

In the previous section, we formalized a geometric frame-

work to analyze the robustness according to the size of the

ensemble, k = |F|, and the extent of the diversity of the

gradient directions. This methodology is built upon the op-

timization problem in Equation 3 which assumes that the

adversary must fool all classifiers at the input sample. How-

ever, it is not practical to reject all samples which do not

have the full agreement of the members. In real-world appli-

cations, changing the prediction of a subset of the ensemble,

F ′ ⊂ F , is enough to alter the prediction of the ensemble.

In this case, the lower bound of the robustness, presented in

Theorem 1, reduces based on k′ = |F ′|. Previous defenses

based on diversifying predictions [33, 1, 4] or gradients [21]

do not control the magnitude of the gradients of the members.

Thus, the subset required to be fooled in order to fool the

ensemble is often smaller than ⌊ |F|
2 ⌋+1 since the adversary

can fool a set of locally weak classifiers, i.e., members with

large gradient magnitudes. In the next section, we propose

a gradient magnitude equalization loss that alleviate this

problem by enforcing: |F ′| ≥ ⌊ |F|
2 ⌋+ 1.

3.4. Joint Gradient Regularization

Here, we present the joint gradient phase and magnitude

regularization (GPMR) scheme as a theoretically-grounded

approach for improving the robustness of the ensemble

against bounded alterations of the input domain. GPMR

maximizes a lower bound to the robustness of the ensemble,

according to Theorem 1, by jointly regularizing the gradi-

ent directions and magnitudes. First, we define the gradient

diversity promoting loss to increase the angle between the

gradients by forcing the cosine similarity of gradients to

approach −1
k−1 as:

Ldiv = 2
k(k−1)

∑

0≤i<j≤k−1

(
〈∇f i

ci ,∇f j
cj 〉

||∇f i
ci ||2||∇f j

cj ||2
+

1

k − 1
)2,

(6)

where 2
k(k−1) normalizes the loss over the number of the

pairs in the ensemble. Second, we define the gradient mag-

nitude regularization loss. To focus on regularizing the joint

interactions of the members, we opt to equalize the gradient

magnitudes rather than minimizing them as:

Leq = 1
k

∑

i

(||∇f i
ci ||2 − 1

k

∑

j

||∇f j
cj ||2)

2. (7)

This forces the gradient magnitudes to be roughly equal at

each input sample and equalizes the contribution of the mem-

bers to the ensemble robustness. Consequently, the adversary

must fool at least the majority of classifiers and cannot fool

the ensemble prediction by fooling a few classifiers with the

maximum magnitude of gradient at the input sample. The

equalization loss also makes GPMR orthogonal to defenses

developed for single classifiers controlling the smoothness

of the predictions [36, 38, 19, 31, 26, 23, 9, 20, 39]. Hence,

other defenses can be employed to further robustify the en-

semble by alleviating the vulnerability of individual mem-

bers. It must be noted that Leq does not constrain the magni-

tude of gradients at two different input samples.

The final loss function for training the ensemble is:

Lt = Lxent + λeqLeq + λdivLdiv, (8)

where λdiv and λeq are Lagrangian coefficients controlling

the importance of the regularization terms. Lxent is the clas-

sification loss function which computes the average of the

cross-entropy loss over all members. The classification loss

can be defined on natural or adversarial examples. The lat-

ter case combines the proposed framework with adversarial
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Figure 2: Visualizing gradients for an ensemble of k = 2
classifiers trained on CIFAR-10 (top block) and MNIST

(bottom block) using GPMR. First, second, and third row in

each block illustrates the inputs to the model and gradients

of the first and second classifiers, respectively.

training to further improve the robustness of the ensemble as

studied in Section 4.3. It may be noted that GPMR does not

improve the robustness of the member classifiers. Indeed,

it regularizes the interactions of the members to mitigate

the adversarial behavior using the joint evaluation of the

members. Moreover, GPMR aims to construct an ensemble

classifier for which the perturbations crafted for one classi-

fier have less effect on other classifiers or even increase the

score corresponding to their predicted class.

4. Experiments

Here, we provide the experimental results to evaluate

the effectiveness of GPMR. We evaluate the joint robust-

ness of multiple classifiers on the MNIST, CIFAR-10, and

CIFAR-100 datasets. We consider two base network archi-

tectures detailed in Table 1. We train models using stochastic

gradient descent with momentum equal to 0.9 and weight

decay of 5e − 4. The initial learning rate is set to 10−1,

and decayed with the factor of 0.2 every 30 epochs until

the final learning rate 10−4. We run the training process for

60 epochs on MNIST, and 200 epochs on CIFAR-10 and

CIFAR-100. The batch size for training models is set to 64
for all experiments. We observe that λdiv directly affects

the classification accuracy of the ensembles as depicted in

Figure 3a. Consequently, the diversity loss coefficient, λdiv ,

is set to 0.1 for MNIST and 0.04 for CIFAR-10 and CIFAR-

100. We also observe that the accuracy of the ensembles

on natural examples is roughly independent of λeq. This is

expected since the equalization loss does not minimize the

magnitude of gradients. Hence, we select λeq = 10 for all

network architectures and datasets based on the experiments

conducted in Section 4.2 and Figure 3d.

We compare our method to three ensemble models. The

first ensemble is trained without any diversity encouraging

criterion, i.e., GPMR with λeq = λdiv = 0. The second

Table 1: Network architecture of the base classifiers, con-

sisting of Convolution (C), Max-pooling (M) and Fully-

connected (F) layers. Each RES block consists of two (C)

with a skip connection. All layers, except the last (F), are

followed by ReLU. The number of classes is denoted by m.

Model Structure

Conv 2×C64-M-2×C128-M-2×C256-M-2×C256-F512-F(m)

ResNet-20 C16-3×RES16-3×RES32-3×RES64-F512-F(m)

ensemble is trained using GAL [21] which diversifies the

gradient of predictions. ADP [33] is used as the third method

to promote the prediction diversity among classifiers. Due

to the constraints on the number of classifiers in ADP, we

conduct the comparisons with this baseline on ensembles of

k = 3 classifiers. For GAL, the coefficient of the diversity

loss, λ, is set to 0.5. For ADP coefficients α and β are set to

2 and 0.5, respectively. These values are associated with the

best performance reported by the authors. Major parts of our

experiments are adapted from Pang et al. [33] to provide

consistent evaluations for the future works. The results are

the average of 10 independent runs.

4.1. Performance on Natural Examples

Table 2 presents the classification error rate of the mem-

ber classifiers and the ensembles. Promoting diversity of

gradient directions slightly degrades the classification per-

formance on natural examples. This is attributed to that by

diversifying gradients classifiers learn to discriminate input

samples based on distinct sets of representative features, il-

lustrated in Figure 2. Minimizing the similarity of salient

regions using the gradient diversity loss divides important

features between classifiers which reduces the accuracy on

natural examples. However, this enhances the robustness

against adversarial examples as presented in experiments

on white-box defense performance. Table 2 also highlights

the superior performance of GPMR compared to GAL. As

discussed in Section 3.4, GAL does not consider the optimal

bound for the similarity of gradients. During the training, it

forces the cosine similarity of gradients for k classifiers to

approach −1 while the optimal bound is −1
k−1 . Consequently,

GAL suffers from the fluctuation in the loss and accuracy of

individual classifiers during the training.

4.2. Theory vs. Practice

Here, we evaluate the gap between the theory and practice

of the proposed approach. To this aim, we first measure

the diversity of the gradient directions within the trained

ensemble using the expected cosine similarity as:

Θ(F) = 2
k(k−1)Ex[

∑

0≤i<j≤k−1

〈∇fi
ci
,∇fj

cj
〉

||∇fi
ci
||·||∇fj

cj
|| ]. (9)
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(a) (b) (c) (d)

Figure 3: (a) Classification accuracy of ensembles versus λdiv on natural examples, (b) expected cosine similarity of gradients

versus the number of classifiers, (c) robustness of the ensemble versus the number of classifiers, where B1 and B2 denote the

optimal and practical robustness at φ = π
2 , and the solid and dashed plots show the results for GPMR with λeq equal to 10 and

0, respectively, (d) average fooling rate of members in the ensemble versus λeq .

Table 2: Classification error rate (%) on natural examples.

Ensembles consist of k = 3 Conv/ResNet-20 classifiers, i.e.,

Net 1, Net 2, and Net 3. The maximum standard deviation of

error is 0.5%, 0.6%, 5.3%, and 0.7% for Base., ADP, GAL,

and GPMR, respectively.

Dataset Classifier Base. ADP GAL GPMR

M
N

IS
T

Net 1 0.76/0.40 0.70/0.41 1.18/0.91 0.72/0.53

Net 2 0.78/0.43 0.67/0.48 1.14/0.96 0.78/0.57

Net 3 0.75/0.45 0.69/0.44 1.12/0.93 0.71/0.52

Ensemble 0.73/0.36 0.66/0.31 1.02/0.86 0.71/0.51

C
IF

A
R

-1
0

Net 1 10.43/8.50 10.72/8.93 11.92/9.58 10.37/9.11

Net 2 10.18/8.15 10.25/9.38 11.58/10.33 10.87/9.52

Net 3 10.50/8.72 10.80/9.28 11.45/10.19 11.05/9.83

Ensemble 9.28/6.94 9.12/6.85 11.40/9.16 9.30/7.22

C
IF

A
R

-1
00

Net 1 39.83/34.00 43.33/39.35 45.03/39.61 40.46/36.85

Net 2 38.65/35.58 43.45/40.53 42.32/37.77 40.47/37.48

Net 3 40.51/35.82 42.94/40.81 43.49/41.13 41.66/37.15

Ensemble 36.35/30.72 35.48/30.41 39.61/36.42 36.76/31.05

Figure 3b presents the empirical values of the cosine simi-

larity computed over 1, 000 test samples. In all experiments,

the cosine similarity is negative and close to the optimal

value which implies that the diversity of the gradient direc-

tions is better than the orthogonal case where all gradients

are perpendicular. Diversifying the gradients on MNIST

achieves closer values to the optimal bound compared to

CIFAR-10 and CIFAR-100. We attribute this to the capacity

of members compared to the complexity of the task. Increas-

ing the size of the ensemble enlarges the gap between the

practice and the optimal bound of the gradient diversity.

For the second evaluation, we adapt the robustness mea-

sure proposed by Moosavi-Dezfooli et al. [31] for the en-

semble framework as:

ρ(F) := Ex

[ ∆(x;F)
maxf∈F ∆(x;f)

]

, (10)

where ∆(x;F) is the minimum ℓ2-norm adversarial pertur-

bation for the given classifier F at x, and we approximate

it using ℓ2-DeepFool [31]. Indeed, ρ(F) measures the ex-

pected ratio of the robustness of the ensemble over the ro-

bustness of the most robust classifier in the set. This measure

can reliably characterize the effectiveness of a defense based

on ensembles since it measures the relative robustness of

the set compared to its members. We compute this measure

over 1, 000 test examples. Figure 3c illustrates the results

for this evaluation. GPMR improves the robustness on all

datasets as the size of the ensemble grows. For instance,

with k = 4 classifiers, GPMR increases the magnitude of the

minimum ℓ2 perturbation by 2.75, 2.5, and 2.4 on MNIST,

CIFAR-10, and CIFAR-100, respectively. We also ablate

the role of gradient magnitude equalization by repeating this

evaluation using GPMR with λeq = 0. As depicted in Figure

3c, diversifying the gradients without equalizing the gradient

magnitudes significantly limits the effectiveness of GPMR.

We further analyze the role of the gradient equalization

loss by measuring the average ratio of the number of clas-

sifiers that are fooled by DeepFool [31] over the number of

members in the ensemble. We refer to this ratio as the aver-

age fooling ratio (AFR) of the members. We train ensembles

consist of k = {2, 3, 4} ResNet-20 networks on CIFAR-10.

Figure 3d presents the results for these experiments. We

observe that without the equalization loss (λeq = 0) AFR is

0.58, 0.37, and 0.34 for k equal to 2, 3, and 4, respectively.

This illustrates that the attack targets merely 1 or 2 classifiers

at each input sample to fool the ensemble prediction. How-

ever, by increasing λeq AFR improves significantly, which

validates the effectiveness of the gradient equalization loss

for regularizing the contribution of members.

4.3. Whitebox Defense Performance

We evaluate the performance of GPMR against several

well-known and powerful white-box attacks including fast

gradient sign method (FGSM) [19], basic iterative method

(BIM) [23], projected gradient descent (PGD) [26], momen-

tum iterative method (MIM) [14], Jacobian-based saliency

map attack (JSMA) [34], Carlini & Wagner (C&W) [7], and
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Table 3: Classification accuracy (%) for adversarial examples on MNIST and CIFAR-10. The results for Conv and ResNet

architectures are separated by ‘/’. The coefficient ǫ for JSMA is set to 0.1 and 0.2 for MNIST and CIFAR-10, respectively.

The coefficient β of the EAD attack is set to 0.01. The maximum standard deviation of results is 6.3% and 0.20% for GAL

and other methods, respectively.

Attack Setting
MNIST

Setting
CIFAR-10

Baseline ADPk=3 GALk=3 GPMRk=2 GPMRk=3 Baseline ADPk=3 GALk=3 GPMRk=2 GPMRk=3

FGSM
ǫ=0.1 65.9/75.2 83.5/95.2 57.4/84.3 85.0/92.2 90.8/97.6 ǫ=0.02 30.3/35.2 50.5/60.4 27.6/34.9 53.2/55.2 61.0/66.8

ǫ=0.2 18.2/20.6 45.1/51.2 31.9/39.2 38.9/54.1 58.7/65.4 ǫ=0.04 17.6/18.0 44.0/48.7 31.3/32.9 43.1/45.8 56.0/60.5

BIM
ǫ=0.1 46.5/50.0 72.5/88.9 40.0/59.2 75.1/80.9 89.0/92.4 ǫ=0.01 15.4/16.9 41.8/43.9 31.8/33.8 45.5/48.5 50.3/55.2

ǫ=0.15 12.1/13.8 68.0/72.7 41.5/51.3 67.0/74.3 73.8/79.6 ǫ=0.02 5.7/7.2 23.6/32.5 20.4/23.9 33.1/34.7 38.6/46.2

PGD
ǫ=0.1 48.6/49.4 78.7/82.4 53.8/54.6 72.8/77.0 84.8/87.6 ǫ=0.01 16.9/23.1 44.4/49.2 27.4/36.9 44.8/53.8 62.5/64.9

ǫ=0.15 4.3/7.6 38.2/41.1 26.7/30.8 36.9/42.5 51.4/59.3 ǫ=0.02 6.5/7.5 23.1/31.6 20.4/21.5 24.0/33.9 35.8/49.2

MIM
ǫ=0.1 54.1/57.6 88.7/91.5 75.0/84.2 90.8/92.1 91.3/93.5 ǫ=0.01 22.3/24.2 46.3/54.6 43.3/47.6 49.0/58.4 63.4/66.8

ǫ=0.15 6.4/15.9 70.9/76.8 64.4/69.6 74.1/79.8 76.5/82.4 ǫ=0.02 6.8/7.4 25.0/33.7 21.2/28.9 29.3/35.5 47.2/51.9

JSMA
γ=0.3 79.5/83.1 90.1/95.0 76.4/83.6 90.7/94.0 95.0/96.7 γ=0.05 25.9/29.0 40.1/43.7 35.7/36.7 43.3/45.9 52.9/55.4

γ=0.6 73.2/75.0 86.2/89.8 72.4/81.3 85.9/87.6 92.8/93.3 γ=0.1 23.9/26.2 31.2/38.2 32.8/35.7 35.6/40.2 48.1/50.6

C&W
c=1.0 25.4/31.3 73.2/78.5 52.7/55.2 77.0/79.4 80.4/82.4 c=0.01 41.8/46.3 50.9/54.8 32.3/36.6 53.5/58.0 60.9/66.9

c=10.0 4.6/5.8 20.1/24.0 10.9/15.7 22.3/27.8 28.5/33.4 c=0.1 15.8/18.5 22.6/25.4 18.7/20.4 22.1/27.3 32.9/35.1

EAD
c=5.0 25.1/28.4 90.2/93.0 72.4/74.4 90.2/90.5 92.8/96.1 c=1.0 12.3/17.1 65.6/70.4 52.6/54.2 63.0/68.8 76.6/79.8

c=10.0 7.1/7.4 86.6/89.6 68.9/72.3 83.2/85.1 87.6/91.9 c=5.0 2.4/3.3 30.1/30.3 10.5/18.5 27.4/31.2 45.8/50.2

Table 4: Classification accuracy (%) on adversarial examples

for CIFAR-100 with ResNet-20 architecture .

Attack ǫ Base. ADPk=3 GALk=3 GPMRk=2 GPMRk=3

BIM
0.005 23.6 27.3 21.8 34.2 37.8
0.01 11.7 13.6 12.8 19.5 24.2

PGD
0.005 25.2 32.4 30.2 36.1 38.5
0.01 11.4 17.8 14.0 25.5 29.2

MIM
0.005 23.4 31.2 26.4 32.8 37.1
0.01 10.3 18.9 16.7 22.5 28.6

elastic-net attack (EAD) [8]. A brief summary of these at-

tacks can be found in [33]. For each attack, as detailed in

Tables 3 and 4, we consider two settings to demonstrate the

effectiveness of our approach against a wide range of adver-

saries. For BIM, PGD, and MIM, the iteration of attack is

set to 10 and the step size is set to ǫ
10 . Both C&W and EAD

are implemented with the learning rate of 0.01 and 1, 000
iterations.

Tables 3 and 4 present the classification accuracy of en-

semble models on adversarial examples. GPMR consistently

outperforms other ensemble-based defenses on both network

architectures and all datasets. Ensembles consist of k = 2
classifiers trained with GPMR outperform GAL ensembles

with k = 3 classifiers, and provide comparable performance

to ADP ensembles with k = 3 classifiers on MNIST and

CIFAR-10. On CIFAR-100, our ensemble model with k = 2
classifiers surpasses all other ensembles consisted of k = 3
classifiers. This can better demystify the effectiveness of

GPMR since its functionality is independent of the number

of classes in the task. However, the number of classifiers

required by ADP increases as the number of classes grows.

In another set of experiments, we evaluate the orthogo-

Table 5: Classification accuracy (%) of combined defenses

on ResNet-20. The maximum standard deviation is 1.4%.

Defense FGSM BIM PGD MIM

DefA 41.7 19.6 25.6 28.5
DefA + GPMR 70.9 54.0 55.1 58.9

DefB 41.3 25.4 32.1 33.8
DefB + GPMR 66.2 68.5 57.7 62.3

nality of GPMR to other defenses. We consider adversarial

training on FGSM (DefA) [19] and PGD (DefB) [26] to

combine with GPMR. Both defenses are implemented using

the same training setup as GPMR. The ℓ∞-norm magnitude

of perturbations, ǫ, is uniformly sampled from the inter-

val [0.01, 0.05] as suggested by Kurakin et al. [24]. Table

5 shows the classification accuracy of combined defenses

against FGSM (ǫ = 0.04), BIM (ǫ = 0.02), PGD (ǫ = 0.02),

and MIM (ǫ = 0.02) on CIFAR-10. As we observe, the

combination of other defenses with GPMR consistently im-

proves the performance of the defense. This is attributed to

GPMR equalizing gradients and not reducing their magni-

tudes, while the conventional defense methods seek to reduce

the magnitude of gradients. Hence, they can be combined to

simultaneously diversify gradient directions, equalize gradi-

ent magnitudes, and reduce gradient magnitude. Combining

GPMR with adversarial training further improves the robust-

ness since the lower bound in Theorem 1 improves when the

magnitude of gradients decreases.

4.4. Transferability Across Individual Classifiers

Defensive interactions between several classifiers can be

characterized by the transferability of adversarial examples
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(a) (b) (c)

Figure 4: (a) Transferability of adversarial examples in ensembles of size k = 3 on CIFAR-10. The rows and columns illustrate

the source and target networks, respectively. (b) Gradient-free evaluation of robustness using Gaussian random noise. (c) ROC

curves for detecting adversarial examples using the standard deviation of predictions.

among them. We perform transferability experiments using

PGD and MIM which are powerful attacks for the black-

box setting [25, 33]. We compute adversarial examples for

each member classifier and then evaluate their transferabil-

ity across other members by computing the classification

accuracy of the target classifier. The perturbation size for

both attacks is set to ǫ = 0.05. Figure 4a presents the results

for ResNet-20 architecture on CIFAR-10 and suggests that

diversifying gradients is an effective approach to reduce the

transferability of adversarial examples among members in

the ensemble. However, it may be noted that minimizing the

transferability among every two members does not lead to

the maximum robustness of the ensemble since for k > 2
the optimal cosine similarity of pair of gradients is greater

than −1.

4.5. Gradientfree Evaluation of the Robustness

White-box attacks are not sufficient to assess the perfor-

mance of a defense method since the defense may cause

obfuscated gradients and mislead the evaluation [2]. There-

fore, in Figure 4b, we evaluate the performance of ensembles

consist of k = 3 ResNet-20 classifiers on CIFAR-10 sam-

ples augmented with random noise. The maximum standard

deviation of the results is 2.1%, 2.3%, 4.5%, and 2.3% for

baseline, ADP, GAL, and GPMR, respectively. Results sug-

gest that diversifying the predictions in ensembles does not

improve the robustness to random perturbations since the

performance of ADP is similar to the baseline. However,

diversifying gradients improves the robustness to noisy in-

put samples which demonstrates the superiority of gradient

diversity compared to prediction diversity.

4.6. Joint Robustness for Detecting Adversaries

Here, we adopt a measure based on the prediction of all

members to evaluate the detection performance of ensembles

trained by GPMR. We compute the standard deviation of

the class probability scores associated with the predicted

Table 6: Detection performance of ensembles on CIFAR-10

using AUC (10−2) score. Results for ADP are cited from

the original paper.

Attack Setting ADP GAL GPMR

FGSM ǫ = 0.1 91.19 90.98 95.29
BIM ǫ = 0.1 93.14 90.54 96.32
PGD ǫ = 0.1 97.03 93.15 98.45
MIM ǫ = 0.1 94.09 91.24 94.13
C&W c = 1.0 90.98 88.46 93.67
EAD c = 20.0 94.84 91.52 96.46

class over all the classifiers and compare it with a predefined

threshold to accept or reject the input example. Figure 4c

and Table 6 present the ROC curves and AUC scores for

the detection performance on 1, 000 natural examples and

1, 000 adversarial examples from the CIFAR-10 dataset. All

ensembles consist of k = 3 classifiers. Results validate the

performance of our model on detecting alterations of the

input samples. Moreover, ADP outperforms GAL due to

the disparity in the robustness of subsets of classifiers in

GAL. We observe that GAL causes a notable robustness

gap between the most and least robust sets of classifiers in

the ensemble since it does not regularize the contribution of

members in the ensemble.

5. Conclusion

In this paper, we introduced a practically feasible sce-

nario of first-order defensive interactions between mem-

bers of an ensemble. We both theoretically and empirically

demonstrated that imposing these interactions significantly

improves the robustness of ensembles. We proposed the

joint gradient phase and magnitude regularization (GPMR)

as an empirical tool to regularize the interaction between

members and equalize their role in the ensemble decision.

Furthermore, we concluded that the superior performance

of GPMR is due to its capability to increase the effective

number of members contributing to the robustness.
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