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Abstract

Classical subspace clustering methods often assume that

the raw form data lie in a union of the low-dimension lin-

ear subspace. This assumption is too strict in practice,

which largely limits the generalization of subspace cluster-

ing. To tackle this issue, deep subspace clustering (DSC)

networks based on deep autoencoder (DAE) have been pro-

posed, which non-linearly map the raw form data into a

latent space well-adapted to subspace clustering. However,

existing DSC models ignore the important multi-scale in-

formation embedded in DAE, thus abandon the much more

useful deep features, leading their suboptimal clustering

results. In this paper, we propose the Multi-Scale Fu-

sion Subspace Clustering Using Similarity Constraint (SC-

MSFSC) network, which learns a more discriminative self-

expression coefficient matrix by a novel multi-scale fusion

module. More importantly, it introduces a similarity con-

straint module to guide the fused self-expression coefficient

matrix in training. Specifically, the multi-scale fusion mod-

ule is framed to generate the self-expression coefficient ma-

trix of each convolutional layer in DAE and then fuses them

with the convolutional kernel. In addition, the similarity

constraint module is to supervise the fused self-expression

coefficient matrix by the designed similarity matrix. Ex-

tensive experimental results on four benchmark datasets

demonstrate the superiority of our new model against state-

of-the-art methods.

1. Introduction

In recent years, subspace clustering [33] has aroused

widespread research interests in unsupervised learning and

is successfully exploited to various applications, such as im-

age segmentation [22, 36], motion segmentation [14, 4], im-

age clustering [40, 5, 37, 38, 11], genes expression micro-

array clustering [24] and so on. Subspace clustering aims to
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segment data drawn from a union of low-dimension sub-

spaces in an unsupervised way, and actually, many data

equip this property. For example, the face images of a sub-

ject taken under fixed pose, varying lighting conditions and

Lambertian reflectance, occupy a low-dimension subspace

whose dimension close to nine [2, 13], and the handwrit-

ten digit images of a single digit also form a low-dimension

subspace [10]. Therefore, we can apply subspace cluster-

ing to segment the data into multiple groups according to

whether they belong to the same subspace or not.

Majority of the subspace clustering methods [35, 3, 4,

19, 21] rely on the assumption that the raw form data locate

in a union of low-dimension linear subspace. In fact, this as-

sumption is too strict for some practical environments. For

example, in face image clustering, the reflectance is nor-

mally non-Lambertian and the pose of the subject is not al-

ways fixed [13]. Under such situations, the images corre-

sponding to the same face no longer lie in linear subspaces.

Subsequently, kernel-based methods [30, 29, 39] are devel-

oped to implicitly map raw data into high-dimension spaces,

expecting to address the problem of non-linear subspace

embedding. However, it is difficult to choose proper kernel

function and its corresponding hyper-parameter, and more

importantly, there is no clear theoretical guarantee such ker-

nel existing [43].

By virtue of the powerful deep learning [17], DAEs have

been widely used to non-linearly transform data into latent

space for unsupervised learning. DSC based on DAE is the

latest work [13] in the subspace clustering field, which suc-

cessfully makes the generated latent space well-adapted to

subspace clustering and obtains promising results. Beyond

that, according to the self-expression property of data that

indicates a data point can be expressed as a linear combi-

nation of other data points in the same subspace, DSC [13]

first introduces this property into the deep network and sub-

stitutes the self-expression coefficient matrix with the novel

self-expression layer, whose weights are viewed as the co-

efficient matrix. In subsequent works of DSC [43, 45, 42],

DAE is still used to extract features from input data. As
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Figure 1. Illustration of our idea. Each layer in DAE could have

itself self-expression coefficient matrix ((a) and (b)). We stack

these matrices (c) and then fuse them by convolutional kernel (d).

Afterwards, the fused coefficient matrix (d) could be supervised

by the similarity matrix (e) obtained from the similarity constraint

module. These above matrices are the real results from the exper-

iment about the ORL dataset (40 classes). We notice that there is

an explicit block-diagonal structure on matrices in (b), (d) and (e),

which is the particular character of the self-expression coefficient

matrix. Note that the final spectral clustering error is 2.00%.

we know, the shallower layers in DAE encoder learn more

pixel-level or texture-level information, and the deeper ones

extract more semantic-level or abstract-level information.

Hence, the multi-scale features of input data have been in-

herently embedded in different layers of DAE.

However, these existing works only consider the features

extracted from deeper layers, regardless of the helpful fea-

tures in shallower ones and the fusion of multi-scale infor-

mation embedded in DAE. Wasting plentiful off-the-shelf

yet useful deep convolutional features, they always achieve

unfavorable clustering performance. Since DSC merely

considers the coefficient matrix of the deepest convolutional

layer, we think that each layer exists in DAE encoder should

have itself self-expression coefficient matrix (see Figure 1).

In this way, the latent multi-scale information embedded in

DAE has been passed to the corresponding self-expression

coefficient matrix. Therefore, how to integrate these ma-

trices and fully utilize the multi-scale information embed-

ded in themselves is a challenging problem, which is vital

to further improve the clustering performance of classical

DSC networks.

In this paper, we propose Multi-Scale Fusion Subspace

Clustering Using Similarity Constraint (SC-MSFSC) net-

work that contains four modules: feature extraction mod-

ule, self-expression module, multi-scale fusion module,

and similarity constraint module. The feature extraction

module, i.e., DAE, is used to extract features from input

data. The self-expression module is used to obtain a self-

expression coefficient matrix for subspace clustering. And

the two proposed novel modules: multi-scale fusion and

similarity constraint module, are designed to fuse the multi-

scale information extracted from different layers in DAE

and stabilize the training process respectively.

Our major contributions can be summarized as follows:

• We propose a novel multi-scale fusion module that

fuses the multi-scale information extracted from dif-

ferent layers in DAE, which is achieved by stacking

the coefficient matrix extracted from different self-

expression layers and then applying a convolutional

kernel on the stacked coefficient matrix to fuse its

channel. After that, we constraint the fused coeffi-

cient matrix with self-expression loss and reconstruc-

tion loss.

• We introduce a novel similarity constraint module that

stabilizes the training process and supervises the fused

coefficient matrix. In this module, we design a simi-

larity matrix that is garnered by denoising the stacked

coefficient matrix per channel and then averaging the

values of entries. The similarity matrix is used to su-

pervise the fused coefficient matrix in training process.

• Extensive experimental results on four benchmark

datasets demonstrate the superiority of SC-MSFSC

against other state-of-the-art methods.

2. Related Work

The current subspace clustering algorithms could be di-

vided into two subproblems. The first subproblem is to es-

timate an affinity matrix from data, and the second one is to

apply spectral clustering on affinity matrix [28]. These two

subproblems could be optimized sequentially in one-pass

[4, 20, 21] or optimized alternatively in multi-pass [18, 6].

Between these two subproblems, constructing a discrimina-

tive affinity matrix is more significant. The way to build

affinity matrix could be roughly split into three categories:

factorization based methods [9, 25], model based methods

[3, 31], and self-expression based methods [4, 12, 19, 34].

Considering the robustness against noise and outliers,

and the lower computation complexity compared to other

competitors, self-expression methods have been the more

popular in subspace clustering [35]. Most of the existing

works rely on the linear subspace assumption, however, as

mentioned above, this assumption is not tenable in practi-

cal problems. A few works have been proposed to solve the

problem of non-linear subspace embedding by introducing

a pre-defined kernel matrix (such as polynomial kernel and

Gaussian RBF kernel) [30, 29, 39]. However, there is no

definite indication of how to choose proper kernel function

and whether the feature spaces generated by kernel tricks

are suitable for linear subspace clustering or not.

Based on the powerful non-linear mapping ability of the

DAE, DSC network [13] determines a subspace-friendly la-
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Figure 2. Structure of the proposed network: Multi-Scale Fusion Subspace Clustering Using Similarity Constraint (SC-MSFSC). As the

figure is shown, our network consists of four modules: a) feature extraction module which is used to provide the learned multi-scale

convolutional features, b) self-expression module which is used to learn the self-expression coefficient matrices of different layers in DAE

and also make the fused coefficient matrix maintains the self-expression property, c) multi-scale fusion module which is used to obtain

the fused coefficient matrix and also constrain this matrix through self-expression and reconstruction loss d) similarity constraint module

which is used to generate similarity matrix from the average of denoised stacked multi-scale self-expression coefficient matrices and then

supervise the fused coefficient matrix. Once the network is trained, we execute spectral clustering on the fused coefficient matrix.

tent space, which perfectly overcomes the limitation of the

linear assumption. Furthermore, the main contribution of

the DSC network is to design the novel self-expression layer

and the related loss function that models the self-expression

property of data into DAE. This self-expression layer skill-

fully represents the self-expression coefficient matrix as the

weights of a fully-connected layer without any activation

and bias [13]. Benefit from this novel layer, DSC greatly

improves clustering performance on various datasets. There

are some follow-up researches [45, 43, 42] to further ame-

liorate the performance of DSC. Deep adversarial subspace

clustering [45] adopts a subspace-specific GAN based ad-

versarial learning network to supervise the representation of

samples. Zhang et al. [42] proposed a dual self-supervised

convolutional network that utilizes the results of spectral

clustering to supervise the learning process of classification

module and self-expression module. Zhou et al. [44] in-

troduced a distribution consistency loss to guide the learn-

ing of distribution-preserving latent representation. Re-

formulating the subspace clustering as a classification prob-

lem, [43] freed the spectral clustering step from the classical

DSC network, which is a true sense of end-to-end frame-

work.

In a nutshell, most of these previous works only con-

sider supervising the final clustering results by either the

generated deep features of DAE [45, 42, 44] or the re-

fined self-expression coefficient matrix [43, 42]. Nonethe-

less, they both neglect the multi-scale information embed

in different layers of DAE, which wastes lots of deep con-

volutional features beneficial to clustering. Unlike existing

works, our proposed network not only supervises the fused

self-expression coefficient matrix by the designed similarity

matrix (which could be viewed as a kind of self-supervised

mechanism) but also integrates the multi-scale information

from the different layers of DAE.

Moreover, to the best of our knowledge, it is the first at-

tempt to integrate the multi-scale information to a joint deep

learning neural network framework in the subspace cluster-

ing field, which also lays the foundation for constructing

a more discriminative affinity matrix in other unsupervised

learning problems.

3. Multi-Scale Fusion Subspace Clustering Us-

ing Similarity Constraint (SC-MSFSC)

In this section, we describe our deep subspace clus-

tering learning network, named SC-MSFSC. We first in-

troduce our network formulation (see Figure 2) and then

present an effective algorithm to optimize the proposed net-

work. Specifically, our proposed network consists of four

important modules, i.e., feature extraction module, self-

expression module, multi-scale fusion module, and similar-

ity constraint module.

3.1. Feature Extraction Module

The foundational component of our SC-MSFSC is the

feature extraction module, which non-linearly transforms

the raw data into a latent space appropriate to subspace clus-

tering. To extract more multi-scale features from DAEs, the

convolutional version of DAEs are adopted as the backbone
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network. Given an input X, the latent variable Z can be ob-

tained through the encoder, and then feed Z into the decoder

to gain the reconstructed input data X̂ (in fine-tune stage,

we feed CZ into the decoder to gain the reconstructed in-

put data, seen Section 3.5). To ensure that the learned latent

variable Z could completely represent the input X, the loss

function of this auto-encoder network is set as:

1

2
‖X− X̂‖2F . (1)

Note that X, X̂ ∈ R
N×H×W×C , where N , H , W and C

are the number, height, width and channel of the input data

respectively.

3.2. Self­Expression Module

The self-expression module is used to obtain a self-

expression coefficient matrix of the input latent variable

Z, which models the self-expression property of data into

a fully-connected layer without any activation and bias

[13, 42, 43]. When N data points are stacked into a data

matrix Z = [z1, z2, · · · , zN ], zi ∈ R
d, i = 1, · · · , N , the

self-expression property can be defined as the matrix mul-

tiply formulation, i.e., Z = CZ, where C ∈ R
N×N is the

self-expression coefficient matrix. As shown in [12], under

the independent subspace assumption, if we regularize C

with certain norms, C will have a block-diagonal structure,

where a non-zero entry means that data point zi and zj lie

in the same subspace. To obtain desirable block-diagonal

coefficient matrix, the loss of the self-expression module

consists of regularization term and self-expression term:

‖C‖p +
1

2
‖Z−CZ‖2F s.t. (diag(C) = 0), (2)

where ‖·‖p represents an arbitrary regularization norm, e.g.,

ℓ1 norm [4, 5], nuclear norm [20, 19], and Frobenius norm

[12, 21]. Additionally, the optional diagonal constraint on

C (diag(C) = 0) is used to prevent the trial solutions of

C = I for sparsity inducing norms, such as ℓ1 norm [5].

Z indicates the latent variable matrix after the encoder. In

view of the satisfied performance of Frobenius norm in [12,

21], therefore, we only adopt the Frobenius norm in our

experimental settings.

3.3. Multi­Scale Fusion Module

The multi-scale fusion module is used to integrate the

self-expression coefficient matrix of each convolutional

layer in the encoder. Since current deep subspace clustering

algorithms neglect the multi-scale information indwelled in

the DAE, we design this module to exploit the multi-scale

information for further improving the performance of DSC

network. For clarity, suppose the input X after the first l-th

layer in the encoder as Zl ∈ R
N×Dl (Dl depends on the

convolutional kernel size of the current l-th layer), and the

latent variable matrix Zl after the last l-th layer in the de-

coder as X̂i. Assume that both the encoder and the decoder

have L layers, the reconstruction loss function (1) could be

extended as the multi-scale version of that:

1

2

L∑

l

‖Xl − X̂l‖
2

F . (3)

where l = 1, · · · , L. Through multi-scale reconstruction

loss (3), the scale information embedded in the DAE have

been passed to latent variable matrix Zl. In order to com-

pletely use the information existing in each latent variable

matrix Zl, we generalize the self-expression loss function

(2) to the multi-scale scenario. Therefore, we formulate it

as follows:

L∑

l

‖Cl‖p+
1

2

L∑

l

‖Zl−ClZl‖
2

F s.t. (diag(Cl) = 0).

(4)

For a smaller l, the learned coefficient matrix Cl holds

more pixel-level information, and oppositely, for a larger

l, Cl holds more semantics-level information. Considering

different coefficient matrix Cl possessing various informa-

tion about the input data, it is better to fuse these matrix Cl

into a more discriminative coefficient matrix CF .

In fact, how to combine these multi-scale coefficient

matrix Cl is challenging. The naive method is to obtain

CS ∈ R
N×N×L by stacking Cl along channel dimen-

sion, and then average (or sum) each entry of CS over

channel dimension. However, in such a method, the more

discriminative coefficient matrix and the less one will be

treated equally. Thus, this solution is not optimal. An-

other choice is to learn a common self-expression coeffi-

cient matrix Cc from multi-scale information in DAE, i.e.,

‖Cc‖p + 1

2

∑L
l ‖Zl − CcZl‖

2

F . However, applying more

constraints over Cc may destabilize the training process and

thus leads to worser clustering results (see Table 5).

As a matter of fact, it is better to use a convolutional ker-

nel k to integrate the channels of the CS , CF ∈ R
N×N =

k
⊗

CS , where
⊗

means the convolutional operation. If

we adopt a proper kernel size, CF will could capture more

local information on each Cl due to block-diagonal struc-

ture. This statement is proofed in the different experimental

settings about ORL dataset (see Table 5). Obviously, CF

should also be applied to the self-expression loss (2):

‖CF ‖p +
1

2
‖Z−CFZ‖

2

F s.t. (diag(CF ) = 0), (5)

where Z is the more discriminative one in (4), i.e., ZL. Be-

sides that, we also rewrite the reconstruction loss of the

deepest layer L, 1

2
‖XL − X̂L‖

2

F , as that of the fused co-

efficient matrix:
1

2
‖XL − X̂F ‖

2

F , (6)

where X̂F is the output of the decoder when CFZL are fed.
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3.4. Similarity Constraint Module

The similarity constraint module is used to supervise the

fused coefficient matrix obtained from the multi-scale fu-

sion module. Since the self-expression coefficient matrix

contains noise, which will influence the optimizing process,

we design a similarity constraint loss to stabilize the train-

ing and keep the coefficient matrix discriminative.

Recently, a thresholding method has been adopted to de-

noise the obtained coefficient matrix in literatures [5, 12,

13], i.e., given a threshold value α ∈ (0, 1), for each col-

umn of self-expression coefficient matrix, we only keep the

values of entries whose summation is α of the summation of

the whole column, and set the values of other entries 0. We

denote the stacked coefficient matrix CS after denoising as

CS De. Obviously, CS De is more sparse than CS .

To avoid extra computations, we set the average of

CS De as the similarity matrix CDe. Since there is some

information lost in the thresholding method, we set CDe

as the target, and enforce CF to approximate it. Based on

these intuitions, we propose the similarity constraint loss:

‖CDe −CF ‖
2

F . (7)

As we mentioned above, we hope CF will lie in the in-

termediate state between the output of the multi-scale fu-

sion module and the similarity constraint module. With this

loss, the obtained CF not only have sparse entries but keep

some information lost in the denoising procedure. The ab-

lation study in Table 2 shows that similarity constraint loss

successfully guides CF to a proper intermediate state.

3.5. Training Settings

Similar to [13, 42], we train the proposed SC-MCFSC

network with a two-stage strategy: 1) pre-train the stacked

autoencoder without self-expression layer; 2) train the

whole network with all previously mentioned modules.

1) Pre-train Stage. In order to obtain good enough la-

tent variables to represent the input data, and reduce the re-

construction difficulty in the later fine-tune stage, we only

to minimize the reconstruction loss (1) in this stage.

The coefficient matrices Cl are set as an identity matrix,

which equals to train the whole network without the self-

expression layer. The following is the loss function used in

pre-train stage:

Lpre = L0, (8)

where L0 = 1

2
‖X− X̂‖2F .

2) Fine-tune Stage. Benefit from the pre-trained DAE,

we could constrain the coefficient matrices by modifying

the reconstruction loss (1), i.e., feed CZ instead of Z into

the decoder of the DAE.

The total loss function in fine-tune stage is:

Lfine = L̂0 + λ1L̂1 + λ2L̂2 + λ3L3 + λ4L4, (9)

Algorithm 1 Fine-tune Stage of Training SC-MSFSC Net-

work, i.e., optimize the loss function (9).

Input: Input data, tradeoff parameters, maximum iteration

T , t = 1, and pre-trained DAE.

1: Initialization the weights of the multi self-expression

layers with constant 10−4.

2: where t < T :
3: Obtain latent variable matrix Zl, l = 1, · · · , L from

different layers of DAE.

4: Obtain multi-scale self-expression coefficient ma-

trix Cl, l = 1, · · · , L from different layers of DAE

through optimizing the rewrite reconstruction loss

(3) and self-expression loss (4).

5: Stack the obtained multi-scale self-expression coef-

ficient matrices as CS .

6: Obtain the fused self-expression coefficient matrix

CF by applying convolutional kernel on CS .

7: Obtain the similarity matrix CDe by denoising and

averaging over CS .

8: Supervise CF by CDe, see similarity constraint loss

(7). Optimize the fused self-expression loss (5) and

reconstruction loss (6) to constrain CF . Then set t =
t+ 1.

9: end while

Output: CF .

where L̂0 = 1

2

∑L
l ‖Xl − X̂l‖

2

F + 1

2
‖XL − X̂F ‖

2

F is the

modified reconstruction losses of the multi-scale scenar-

ios (3) and the fused self-expression coefficient matrix (6),

L̂1 =
∑L

l ‖Cl‖p + ‖CF ‖p is the regularization loss, L̂2 =
1

2

∑L
l ‖Zl−ClZl‖

2

F is the multi-scale self-expression loss,

L3 = 1

2
‖Z −CFZ‖

2

F is the self-expression loss about the

fused coefficient matrix CF and L4 = ‖CDe − CF ‖
2

F is

the similarity constraint loss (7). λ1, λ2, λ3, and λ4 are the

tradeoff parameters for the above loss function.

Once the network is trained, we could use the final fused

coefficient matrix CF to construct an affinity matrix AF

for spectral clustering [28]. Before the clustering step, we

adopt a heuristic, same to the previous works [4, 12, 13],

to further enhance the block-structure and improve the final

clustering accuracy.

4. Experiments

Our SC-MSFSC network is implemented by Tensorflow

[1] and optimized by ADAM [15]. To assess its perfor-

mance, we design extensive experiments on four bench-

mark datasets: two face image datasets, the Extended

Yale B [7] and ORL [32]; and two object image datasets,

COIL20/100 [27, 26]. The following baselines will be

compared against our SC-MSFSC network: Low Rank

Representation (LRR) [20], Low Rank Subspace Cluster-
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(a) Extended Yale B dataset (b) ORL dataset (c) COIL 20/100 dataset
Figure 3. Example images of the four benchmark datasets

Extended Yale B ORL

Layers Kernel Size Channels Kernel Size Channels

encoder-1 5 × 5 10 5 × 5 5

encoder-2 3 × 3 20 3 × 3 3

encoder-3 3 × 3 30 3 × 3 3

decoder-3 3 × 3 30 3 × 3 3

decoder-2 3 × 3 20 3 × 3 3

decoder-1 5 × 5 10 5 × 5 5
Table 1. Network structures for Extended Yale B and ORL.

ing (LRSC) [34], Sparse Subspace Clustering (SSC) [5],

Kernel Sparse Subspace Clustering (KSSC) [30], SSC by

Orthogonal Matching Pursuit (SSC-OMP) [41], Efficient

Dense Subspace Clustering (EDSC) [12], SSC with the

pre-trained convolutional auto-encoder features (AE+SSC),

EDSC with the pre-trained convolutional auto-encoder fea-

tures (AE+EDSC), Deep Subspace Clustering Networks

(DSC) [13], Deep Adversarial Subspace Clustering (DASC)

[45], Self-Supervised Convolutional Subspace Clustering

Network (S2CSC) [42] and Distribution Preserving Sub-

space Clustering (DPSC) [44]. For comparison methods,

we directly cite the best results reported in related papers.

The specific structure of SC-MSFSC on each dataset are

presented in Table 1 and Table 6. Consistent with the in-

dex of previous coefficient matrices, we label the decoder

index in descending order. In the DAE, the kernel stride

is set as 2, and the activation function is the Rectified Lin-

ear Unit (ReLU) [16]. The learning rate in total network is

1.0× 10−3 over all experiments and the size of the channel

fusion convolutional kernel is 3×3 in the multi-scale fusion

module and the weights are initialized by Glorot Uniform

[8] for ORL and Extended Yale B datasets and all-ones for

COIL dataset. The results of different settings about kernel

size and initialization are shown in Table 5. For a fair com-

parison, we adopt the same pre-trained weights of DAE and

pre-defined DAE structures with DSC [13].

4.1. Experiments on Extended Yale B dataset

The Extended Yale B dataset [7] is a popular benchmark

for subspace clustering which consists of 38 subjects, with

approximately 64 frontal face images per subject acquired

under different illumination conditions (seen Figure 3(a)).

Following the protocol of experiment in [13, 42], we down-

sample the original face images from 192 × 168 to 48 × 42

and test the robustness with an increasing number of clus-

Losses
Extended Yale B

(38 subjects)
ORL

L0 + L1 + L2 (DSC) 2.67 14.00

L̂0 + L̂1 + L̂2 4.85 3.00

L̂0 + L̂1 + L̂2 + L3 0.29 3.75

L̂0 + L̂1 + L̂2 + L4 4.65 2.50

L̂0 + L̂1 + L̂2 + L3 + L4 0.29 2.00
Table 2. Ablation study of SC-MSFSC network.

ters, i.e., n ∈ {10, 15, 20, 25, 30, 35, 38}. For a fair compar-

ison, we adopt same network settings as that used in DSC

[13], see Table 1. The same tradeoff parameters λ1, λ2 with

DSC are set as 1 and 3.0 × 10n/10−2.0 respectively. And

the remaining parameters λ3, λ4, T are set as 1, 200 and

50 + 40 ∗ n respectively.

The clustering performances of different comparison

methods on various numbers of subjects are presented in

Table 3. For the experiments about n subjects, we report

the mean and median clustering errors of (39 − n) trials.

We observe that our network could significantly reduce the

clustering errors and achieve the lowest clustering error in

all kinds of n that all listed comparison methods. Note

that DASC [45] gains 1.44% clustering error of 38 subjects

which is still higher than the result of our network. In par-

ticular, for 38 subjects case, our SC-MSFSC obtains a clus-

tering error of 0.29% which improves 1.2% over the best

performing baseline S2CSC. Additionally, the best baseline

S2CSC adopts the output of spectral clustering to supervise

the learning process of other modules, in such situation, it

still achieves poorer performance which means our network

truly learns more useful information from DAE. It is weird

that the results of 38 subjects are the lowest among the ones

of all ranges of n and its reason may be that DAE learned

the features of all 38 subjects, but for each trial in n < 38
cases, multi-scale features extracted from DAE would be

unstable and then leads to the unstable outcomes.

To further demonstrate the effectiveness of the proposed

multi-scale fusion loss ((3)-(6)) and similarity constraint

loss (7), we evaluate the impact of adopting multi-scale fu-

sion module and similarity constraint module via an abla-

tion study in Table 2. The baseline is set as the experimental

results of DSC [13], whose losses are L0+L1+L2. And the

second loss L̂0 + L̂1 + L̂2 have the same meanings in total

loss function (9), i.e., adding multi-scale fusion loss (except
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Methods LRR LRSC SSC AE+SSC KSSC SSC-OMP EDSC AE+EDSC DSCℓ1 DSCℓ2 S2CSCℓ2 S2CSCℓ1 Ours

10 subjects

Mean 22.22 30.95 10.22 17.06 14.49 12.08 5.64 5.46 2.23 1.59 1.18 1.18 0.84

Median 23.49 29.38 11.09 17.75 15.78 8.28 5.47 6.09 2.03 1.25 1.09 1.09 0.78

15 subjects

Mean 23.22 31.47 13.13 18.65 16.22 14.05 7.63 6.70 2.17 1.69 1.14 1.12 0.88

Median 23.49 31.64 13.40 17.76 17.34 14.69 6.41 5.52 2.03 1.72 1.14 1.14 0.78

20 subjects

Mean 30.23 28.76 19.75 18.23 16.55 15.16 9.30 7.67 2.17 1.73 1.31 1.30 0.94

Median 29.30 28.91 21.17 16.80 17.34 15.23 10.31 6.56 2.11 1.80 1.32 1.25 0.85

25 subjects

Mean 27.92 27.81 26.22 18.72 18.56 18.89 10.67 10.27 2.53 1.75 1.32 1.29 0.71

Median 28.13 26.81 26.66 17.88 18.03 18.53 10.84 10.22 2.19 1.81 1.34 1.28 0.62

30 subjects

Mean 37.98 30.64 28.76 19.99 20.49 20.75 11.24 11.56 2.63 2.07 1.71 1.67 0.96

Median 36.82 30.31 28.59 20.00 20.94 20.52 11.09 10.36 2.81 2.19 1.77 1.72 0.67

35 subjects

Mean 41.85 31.35 28.55 22.13 26.07 20.29 13.10 13.28 3.09 2.65 1.67 1.62 1.27

Median 41.81 31.74 29.04 21.74 25.92 20.18 13.10 13.21 3.10 2.64 1.69 1.60 1.31

38 subjects

Mean 34.87 29.89 27.51 25.33 27.75 23.52 11.64 12.66 3.33 2.67 1.56 1.52 0.29

Median 34.87 29.89 27.51 25.33 27.75 23.52 11.64 12.66 3.33 2.67 1.56 1.52 0.29

Table 3. Clustering error (%) on Extended Yale B. Best in bold.

L3) into the original loss L0+L1+L2. From the results in

Table 2, L3 is the key to successfully reduce the clustering

errors and adopt more information from the fused coeffi-

cient matrix, when L̂0 + L̂1 + L̂2 could not provide better

fused coefficient matrix. Additionally, L4 could improve

the performance to a certain extent, but the improvement is

limited, which is in line with its positioning, i.e., guiding

the fused coefficient matrix.

4.2. Experiments on ORL dataset

The ORL dataset [32] is composed of face images of 40

subjects, where each subjects having 10 face images taken

under varying lighting conditions, with different facial ex-

pressions (open/closed eyes, smiling/not smiling) and facial

details (glasses/no glasses) (see Figure 3(b)). Since the face

images were taken under the various facial expressions and

details, the ORL dataset becomes more challenging for sub-

space clustering due to the more non-linearity of subspace

and the smaller dataset size compared to Extended Yale B.

Consistent with the experiments in [13, 42], the face

images of ORL dataset are down-sampled from 112 × 92

to 32 × 32. The specific network structure of ORL is

shown in Table 1. As for the trade-off parameters, we set

λ1 = 1, λ2 = 0.2, λ3 = 0.2, λ4 = 100, and T = 800.

The experimental results of our network SC-MSFSC are

presented in Table 4. In such a difficult dataset, our pro-

posed network still yields up to 8% ahead of the best base-

line S2CSC, which shows the superiority of our network

again. Since the DPSC [44] neither not evaluate on ORL

dataset nor also provide the official code, therefore, we miss

Methods ORL COIL20 COIL100

LRR 33.50 30.21 53.18

LRSC 32.50 31.25 50.67

SSC 29.50 14.83 44.90

AE+SSC 26.75 22.08 43.93

KSSC 34.25 24.65 47.18

SSC-OMP 37.05 29.86 67.29

EDSC 27.25 14.86 38.13

AE+EDSC 26.25 14.79 38.88

DSCℓ1 14.25 5.65 33.62

DSCℓ2 14.00 5.42 30.96

DASC 11.75 3.61 27.85

S2CSCℓ2 11.25 2.33 27.83

S2CSCℓ1 10.50 2.14 26.67

DPSC – 2.46 24.60

Ours 2.00 0.62 23.90

Table 4. Clustering error (%) on ORL, COIL20/100. Best in bold.

the ORL results of DPSC and denote it as ‘–’.

As read from the ablation study about ORL in Table 2,

if we only use the multi-scale loss, the clustering error still

reduces significantly. The introduction of L3 maybe brings

more information, but at the same time brings some risks.

Additionally, similarity constraint loss L4 successfully re-

duces the risks L3 brings and further improves the final per-

formance. The reason why L4 has different behaviors in

both ORL and Extended Yale B may be that different size

of the dataset leads to the different representation of DAE,

and then results in the different outcomes of L̂0 + L̂1 + L̂2.

Besides that, we show the clustering errors in different

experiment settings about the multi-scale, fusion methods

6664



Baseline (DSC) 14.00

Multi-Scale

Layer 3 26.75

Layer 2,3 12.25

Layer 1,2,3 2.00

Fusion Methods

Common Matrix Cc 16.00

Sum 14.25

Mean 16.50

1 × 1 kernel 25.50

3 × 3 kernel 2.00

5 × 5 kernel 10.25

Kernel Initialization

Glorot Normal 11.50

Random Normal 42.25

Glorot Uniform 2.00

Random Uniform 4.50

Ones 4.50
Table 5. Different experiments settings about multi-scale, fusion

methods and kernel initialization on ORL dataset.

(a) DSC (b) Ours

Figure 4. t-SNE visualization to show the discriminative capability

of the self-expression matrix on ORL dataset.

and kernel initialization in Table 5. Note that we adopt the

same trade-off parameters in these experiments. For the

multi-scale section, more scales could lead to better per-

formance in clustering. For the fusion methods section, the

convolutional kernel with 3 × 3 size yields the best perfor-

mance. These results indicate that on the one hand, 3 × 3

kernel size is suitable well for the task of fusing coefficient

matrices and proper kernel size would influence the final

performance, on the other hand, simply adding or averaging

over coefficient matrices could not improve the clustering

performance. In addition, we also evaluate the clustering

errors of the method to learn a common coefficient matrix

Cc which has discussed in Section 3.3. As Table showed,

its clustering results even lower than the one of DSC which

demonstrates the correctness of our statement. As for the

initialization of convolutional kernel, we could state that

glorot uniform [8] achieves the best performance and the

normal distribution seems unfit to initialize this kind of fus-

ing strategy. To illustrate the effectiveness of our proposed

network, we display the discriminative capability of the ob-

tained self-expression matrix from DSC network and our

SC-MSFSC by using t-SNE visualization [23] in Figure 4.

The results demonstrate that the self-expression matrix of

COIL20 COIL100

Layers Kernel Size Channels Kernel Size Channels

encoder-1 3 × 3 15 5 × 5 50

decoder-1 3 × 3 15 5 × 5 50
Table 6. Network structures for COIL20/100.

our network achieves more clear and discriminative latent

mapping, which leads to better clustering performance.

4.3. Experiments on COIL20/100 dataset

To further demonstrate the performance of our proposed

network SC-MSFSC, we also conduct some experiments on

object image datasets: COIL20/100 [27, 26]. COIL 20/100

consists of object images (such as duck, see Figure 3(c)) of

20/100 subjects, where each subject having 72 gray-scale

images taken under varying poses.

Since the original structure of DSC about COIL exper-

iments only consist of one layer in the encoder, the multi-

scale fusion module cannot work well, therefore, we stack

the only one coefficient matrix twice along channel dimen-

sion. Note that in this experiment, we initialize the weights

of the convolutional kernel with 1 and set the convolutional

kernel size of the COIL 100 dataset as 9 × 9. The trade-

off parameters used in COIL20 dataset are λ1 = 1, λ2 =
150, λ3 = 30, λ4 = 100, T = 50 and that used in COIL

100 dataset are λ1 = 1, λ2 = 180, λ3 = 360, λ4 = 400,

T = 270. Although the network structure adopted in the

COIL dataset is not ideal, our SC-MSFSC still achieves

satisfying results, particular in COIL 20 dataset, our net-

work yields the best performance and leads by 1.52% over

the best baseline S2SCN. These results also illustrate that

the convolutional kernels are well suited to the coefficient

matrix of subspace clustering and our network successfully

adopts the latent information embedded in the DAE.

5. Conclusion

We have proposed a novel deep subspace learning frame-

work, Multi-Scale Fusion Subspace Clustering Using Sim-

ilarity Constraint (SC-MSFSC) to fully adopting the latent

information embedded in the DAE. Two novel modules, i.e.,

multi-scale fusion module and similarity constraint module

are devised to learn a more discriminative self-expression

coefficient matrix. Benefiting from these two modules, our

network on four benchmark datasets outperforms state-of-

the-art methods.
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