
RoboTHOR: An Open Simulation-to-Real Embodied AI Platform

Matt Deitke2∗, Winson Han1∗, Alvaro Herrasti1∗, Aniruddha Kembhavi1,2∗, Eric Kolve1∗,
Roozbeh Mottaghi1,2∗, Jordi Salvador1∗, Dustin Schwenk1∗, Eli VanderBilt1∗, Matthew Wallingford2∗,

Luca Weihs1∗, Mark Yatskar1∗, Ali Farhadi2
1PRIOR @ Allen Institute for AI 2University of Washington

ai2thor.allenai.org/robothor

RealSimulation

Action

Same Object
Different Appearance

Same Action
Different Result

Figure 1: We present ROBOTHOR, a platform to develop and test embodied AI agents with corresponding environments

in simulation and the physical world. The complexity of environments in ROBOTHOR along with disparities in appearance

and control dynamics between simulation and reality pose new challenges and open many avenues for further research.

Abstract

Visual recognition ecosystems (e.g. ImageNet, Pascal,

COCO) have undeniably played a prevailing role in the evo-

lution of modern computer vision. We argue that interac-

tive and embodied visual AI has reached a stage of devel-

opment similar to visual recognition prior to the advent of

these ecosystems. Recently, various synthetic environments

have been introduced to facilitate research in embodied AI.

Notwithstanding this progress, the crucial question of how

well models trained in simulation generalize to reality has

remained largely unanswered. The creation of a compara-

ble ecosystem for simulation-to-real embodied AI presents

many challenges: (1) the inherently interactive nature of

the problem, (2) the need for tight alignments between real

and simulated worlds, (3) the difficulty of replicating phys-

ical conditions for repeatable experiments, (4) and the as-

sociated cost. In this paper, we introduce ROBOTHOR to

democratize research in interactive and embodied visual AI.

ROBOTHOR offers a framework of simulated environments

∗ Alphabetically listed equal contribution

paired with physical counterparts to systematically explore

and overcome the challenges of simulation-to-real transfer,

and a platform where researchers across the globe can re-

motely test their embodied models in the physical world.

As a first benchmark, our experiments show there exists a

significant gap between the performance of models trained

in simulation when they are tested in both simulations and

their carefully constructed physical analogs. We hope that

ROBOTHOR will spur the next stage of evolution in em-

bodied computer vision.

1. Introduction

For decades, the AI community has sought to create per-

ceptive, communicative and collaborative agents that can

augment human capabilities in real world tasks. While

the advent of deep learning has led to remarkable break-

throughs in computer vision [33, 24, 48] and natural lan-

guage processing [45, 16], creating active and intelligent

embodied agents continues to be immensely challenging.

The widespread availability of large and open, computer

3164

vision and natural language datasets [50, 34, 47, 66], mas-

sive amounts of compute, and standardized benchmarks

have been critical to this fast progress. In stark contrast,

the considerable costs involved in acquiring physical robots

and experimental environments, compounded by the lack

of standardized benchmarks are proving to be principal hin-

drances towards progress in embodied AI. In addition, cur-

rent state of the art supervised and reinforcement learning

algorithms are data and time inefficient; impeding the train-

ing of embodied agents in the real world.

Recently, the vision community has leveraged progress

in computer graphics and created a host of simulated per-

ceptual environments such as AI2-THOR [32], Gibson [72],

MINOS [53] and Habitat [54], with the promise of training

models in simulation that can be deployed on robots in the

physical world. These environments are free to use, con-

tinue to be improved and lower the barrier of entry to re-

search in real world embodied AI; democratizing research

in this direction. This has led to progress on a variety of

tasks in simulation, including visual navigation [22, 69], in-

struction following [5, 68] and embodied question answer-

ing [21, 15]. But the elephant in the room remains: How

well do these models trained in simulation generalize to the

real world?

While progress has been ongoing, the large costs in-

volved in undertaking this research has restricted pursuits

in this direction to a small group of well resourced orga-

nizations. We believe that creating a free and accessible

framework that pairs agents acting in simulated environ-

ments with robotic counterparts acting in the physical world

will open up this important research topic to all—bringing

faster progress and potential breakthroughs. As a step to-

wards this goal, we present ROBOTHOR.

ROBOTHOR is a platform to develop artificial embod-

ied agents in simulated environments and test them in both,

simulation as well as the real world. A key promise of

ROBOTHOR is to serve as an open and accessible bench-

marking platform to stimulate reproducible research in em-

bodied AI. With this in mind, it has been designed with the

following properties:

• Simulation and Real Counterparts - ROBOTHOR

consists of a training and validation corpus of 75

scenes in simulation at present. A total of 14 test-dev

and test-standard scenes are present in simulation and

their counterparts constructed in the physical world.

Scenes are designed to have diverse wall and furniture

layouts, and all are densely populated by a variety of

object categories. Figure 1 shows a view of the din-

ing room in one of the test-dev scenes, in simulation as

well as real.

• Modular - Scenes in ROBOTHOR are built in a mod-

ular fashion, drawing from an asset library containing

wall structures, flooring components, ceilings, light-

ing elements, furniture pieces and objects; altogether

totaling 731 unique assets distributed across scenes.

This enables scene augmentation and easy expansion

of ROBOTHOR to fit the needs of researchers.

• Re-configurable - The physical environments are also

built using modular and movable components, allow-

ing us to host scenes with vastly different layouts and

furniture arrangements within a single physical space.

This allows us to scale our test corpora while limit-

ing their cost and physical footprint. Reconfiguring the

space to a new scene can be accomplished in roughly

30 minutes.

• Accessible to all - The simulation environment, assets

and algorithms we develop will be open source. More

critically, researchers from all over the world will be

able to remotely deploy their models on our hardware

at no cost to them. We will be setting up a systematic

means of reserving time in our environment.

• Replicable - The physical space has been designed to

be easily replicable by other researchers should they

wish to construct their own physical environment. This

is achieved through open sourced plans, readily avail-

able building components, IKEA furniture, and a low

cost amounting to roughly $10,000 in materials and

assets to create the physical space. In addition, we use

LoCoBot, an inexpensive and easily obtainable robot.

• Benchmarked - In addition to open sourcing baseline

models, we will host challenges involving several em-

bodied AI tasks with a focus on the ability to trans-

fer these models successfully onto robots running in a

physical environment.

ROBOTHOR has been designed to support a variety of

embodied AI tasks. In this work we benchmark models for

semantic navigation, the task of navigating to an instance

of the specified category in the environment. The complex-

ity and density of scenes in ROBOTHOR renders this task

quite challenging, with humans requiring 49.5 steps (me-

dian statistic) to find the target object. We train a set of com-

petitive models using a pure reinforcement learning (RL)

approach with asynchronous actor critic (A3C) on the sim-

ulated training environments, measure their performance on

the simulated as well as real validation environments and ar-

rive at the following revealing findings. (1) Similar to find-

ings in past works such as [69], semantic navigation models

struggle with generalizing to unseen environments in simu-

lation. We show that their performance takes an even larger

hit when deployed onto a physical robot in the real world.

(2) We analyze simulated and real world egocentric views

and find a disparity in feature space in spite of the images

from the two modalities looking fairly similar to the naked

3165

eye; a key factor affecting the transfer of policies to the real

world. (3) As expected and noted in previous works, control

dynamics in the real world vary significantly owing to mo-

tor noise, slippage, and collisions. (4) Off the shelf image

correction mechanisms such as image-to-image translation

do not improve performance.

These findings reveal that training embodied AI mod-

els that generalize to unseen simulated environments and

further yet to the real world remains a daunting challenge;

but also open up exciting research frontiers. We hope that

ROBOTHOR will allow more research teams from across

the globe to participate in this research which will result in

new model architectures and learning paradigms that can

only benefit the field.

2. Related Work

Embodied AI Environments. In recent years, several

synthetic frameworks have been proposed to investigate

tasks including visual navigation, task completion and ques-

tion answering in indoor scenes [32, 53, 70, 8, 74, 72,

46, 54]. These free virtual environments provide excel-

lent testbeds for embodied AI research by abstracting away

the noise in low-level control, manipulation and appear-

ance and allowing models to focus on the high-level end

goal. ROBOTHOR provides a framework for studying these

problems as well as for addressing the next frontier: trans-

ferring models from simulation to the real world.

Robotics research platforms [1, 2] have traditionally

been expensive to acquire. More recent efforts have led to

low cost robot solutions [58, 3, 43] opening up the space

to more research entities. There has been a long history

of using simulators in conjunction with physical robots.

These largely address tasks such as object manipulation us-

ing robotic arms [11] and autonomous vehicles [58, 55].

Visual Navigation. In this paper, we explore models for

the task of visual navigation, a popular topic in the robotics

and computer vision communities. The navigation problem

can be divided into two broad categories, spatial navigation

and semantic navigation. Spatial navigation approaches

[62, 17, 64, 23, 25, 56, 79, 49, 30, 14, 10] typically address

navigating towards a pre-specified coordinate or a frame of

a scene and they focus on understanding the geometry of

the scene and learning better exploration strategies. For ex-

ample, [79] address navigation towards a given input image,

[10] address navigation towards a point in a scene and [30]

learn a collision-free navigation policy. Semantic naviga-

tion approaches [22, 75, 69, 71, 39, 52, 41] attempt to learn

the semantics of the target in conjunction with navigation.

For example, [75] use prior knowledge of object relations

to learn a policy that better generalize to unseen scenes or

objects. [69] use meta-learning to learn a self-supervised

navigation policy toward a specified object category. [71]

use prior knowledge of scene layouts to navigate to a spe-

cific type of room. We benchmark models on the task of

semantic navigation.

Navigation using language instructions has been ex-

plored by [5, 68, 18, 31, 67, 36, 37]. This line of work

has primarily been tested in simulation; transferability to

the real world remains an open question and addressing this

via ROBOTHOR is a promising future endeavour. Naviga-

tion has also been explored in other contexts such as au-

tonomous driving (e.g., [12, 73]) or city navigation (e.g.,

[38, 13]). In this work, we focus on indoor navigation.

Sim2Real Transfer. Domain adaptation in general as well

as Sim2Real in particular, have a long history in computer

vision. There are different techniques to adapt models from

a source domain to a target domain. The main approaches

are based on randomization of the source domain to bet-

ter generalize to the target domain [63, 29, 51, 44, 61],

learning the mapping between some abstraction or higher

order statistics of the source and target domains [27, 59,

19, 35, 76, 42, 78], interpolating between the source and

the target domain on a learned manifold [20, 9], or generat-

ing the target domain using generative adversarial training

[7, 60, 57, 6, 26, 28]. ROBOTHOR enables source random-

ization via scene diversity and asset diversity. We also ex-

periment with using an off the shelf target domain mapping

method, the GAN-based model of [77].

3. RoboTHOR

State of the art learning algorithms for embodied AI

use reinforcement learning based approaches to train mod-

els, which typically require millions of iterations to con-

verge to a reasonable policy. Training policies in the real

world with real robots would take years to complete, due

to the mechanical constraints of robots. Synthetic envi-

ronments, on the other hand, provide a suitable platform

for such training strategies, but how well models trained in

simulation transfer to the real world, remains an open ques-

tion. ROBOTHOR is a platform, built upon the AI2-THOR

framework [32] to build and test embodied agents with an

emphasis on studying this problem of domain transfer from

simulation to the real world.

Scenes. ROBOTHOR consists of a set of 89 apartments, 75

in train/val (we use 60 for training and 15 for validation), 4

in test-dev (which are used for validation in the real world)

and 10 in test-standard (blind physical test set) drawn from

a set of 15, 2 and 5 wall layouts respectively. Apartments

that share the same wall layout have completely different

room assignments and furniture placements (for example, a

bedroom in one apartment might be an office in another).

Apartment layouts were designed to encompass a wide va-

riety of realistic living spaces. Figure 3 shows a heatmap

of wall placements across the train/val subset. This set of

apartments is only instantiated in simulation, while the test-

dev and test-standard apartments are also substantiated in

3166

Figure 2: Distribution of object categories in ROBOTHOR

the physical world. The layouts, furniture, objects, light-

ing, etc. of the simulation environments have been de-

signed carefully so as to closely resemble the correspond-

ing scenes in their physical counterparts, while avoiding

any overlap between the wall layouts and object instances

among train/val, test-dev and test-standard. This resem-

blance will enable researchers to study the discrepancies

between the two modalities and systematically identify the

challenges of the domain transfer.

Assets. A guiding design principle of ROBOTHOR is mod-

ularity, which allows us to easily augment and scale scenes.

A large asset library was created by digital artists from

which scenes were created by selectively drawing from

these assets. This is in contrast to environments that are

based on 3D scans of rooms which are challenging to alter

and interact with. The framework includes 11 types of fur-

niture (e.g. TV stands and dining tables) and 32 types of

small objects (e.g. mugs and laptops) across all scenes. The

majority of real furniture and objects were gathered from

IKEA. Among the small objects categories, 14 are desig-

nated as targets and guaranteed to be found in all scenes

for use in semantic navigation tasks. In total there are 731

unique object instances in the asset library with no overlap

among train/val, test-dev and test-standard scenes. Figure 2

shows the distribution of object categories amongst the as-

set library. We distribute object categories as uniformly as

possible to avoid bias toward specific locations. Figure 3

shows the spatial distribution of target objects, background

objects and furniture in the scenes. Figure 4 shows the dis-

tribution of the number of visible objects in a single frame.

A large number of frames consist of the agent looking at the

wall as is common in apartments, but outside these views

many objects are visible to the agent at any given point as it

navigates the environment.

Physical space. The physical space for ROBOTHOR is

8.8m × 3.9m. The space is partitioned into rooms and

corridors using ProPanel walls, which are designed to be

lightweight and easy to set up and tear down, allowing us to

easily configure a new apartment layout in a few minutes.

Agent. The physical robot used is a LoCoBot1, which

1http://www.locobot.org/

Target Objects Background Objects

Furniture Walls

Figure 3: Spatial distribution of objects and walls.

Heatmaps illustrate the diverse spatial distribution of target

objects, background objects, furniture, and walls.

0 2 4 6 8 10 12 14 16
Objects

200

400

600

800

1000

Lo

ca
tio

ns
 w

ith
in

 S
ce

ne
s

Objects Visible to Agent

Figure 4: Object visibility statistics. The distribution of

objects visible to an agent at a single time instant.

is equipped with an Intel RealSense RGB-D camera. We

replicate the robot in simulation with the same physical and

camera properties. To mimic the noisy dynamics of the

robot movements, we add noise to the controller in sim-

ulation. The noise parameters are estimated by manually

measuring the error in orientation and displacement over

multiple runs.

API. To enable a seamless switch between the synthetic and

the real environments, we provide an API that is agnostic

to the underlying platform. Hence, agents trained in sim-

3167

ulation can be easily deployed onto the LoCoBot for test-

ing. The API was built upon the PyRobot [43] framework

to manage control of the LoCoBot base as well as camera.

Connectivity. A main goal of this framework is to provide

access to researchers across the globe to deploy their mod-

els onto this physical environment. With this in mind, we

developed the infrastructure for connecting to the physical

robot or the simulated agent via HTTP. A scheduler prevents

accessing the same physical hardware by multiple parties.

Localization. We installed Super-NIA-3D localization

modules across the physical environment to estimate the lo-

cation of the robot and return that to the users. For our ex-

periments, we do not use the location information for train-

ing as this type of training signal is not usually available in

real world scenes. We use this location information only for

evaluation and visualization.

4. Visual Semantic Navigation

In this paper, we benchmark models for the task of visual

semantic navigation, i.e. navigating towards an instance of

a pre-specified category. ROBOTHOR enables various em-

bodied tasks such as question answering, task completion

and instruction following. Navigation is a key component

of all these tasks and is a necessary and important first step

towards studying transfer in the context of embodied tasks.

Visual semantic navigation evaluates the agent’s capa-

bilities not only in avoiding obstacles and making the right

moves towards the target, but also understanding the se-

mantics of the scene and targets. The agent should learn

how different instances of an object category look like and

should be able to reason about occlusion, scale changes and

other variations in object appearance.

More specifically, our goal is to navigate towards an in-

stance of an object category specified by a noun (e.g., Ap-

ple) given ego-centric sensory inputs. The sensory input can

be an RGB image, a depth image, or combination of both.

At each time step the agent must issue one of the following

actions: Move Ahead, Rotate Right, Rotate Left, Look Up,

Look Down, Done. The action Done signifies that the agent

reports that it has reached its goal and leads to an end of

episode. We consider an episode successful if (a) the object

is in view (b) the agent is within a threshold of distance to

the target and (c) the agent reports that it observes the ob-

ject. The starting location of the agent is a random location

in the scene.

The motion of the agent in the simulated world is

stochastic in nature, mirroring its behavior in the real world.

This renders the task more challenging. Previous works

such as [69] consider agent motion along the axes on a grid.

But given the end goal of navigating in the real world with

motor noise and wheel slippage, deterministic movements

in training lead to sub optimal performance during testing.

The semantic navigation task is very challenging owing

to the size and complexity of the scenes. Figure 5 shows the

lengths of shortest paths to the target objects, in terms of the

Move Ahead and Rotate actions. But shortest path statistics

are a bit misleading for the task of semantic navigation be-

cause they assume that the agent already knows the location

it must travel towards. In fact, the agent must explore until

it observes the target, and then move swiftly towards it. We

conducted a study where humans were posed with the prob-

lem of navigating in scenes in ROBOTHOR (simulation) to

find targets. The median number of steps was 49.5 (com-

pared to 22.0 for shortest paths), illustrating the exploration

nature of the task. Figure 6 shows an example trajectory

from a human compared to the corresponding shortest path.

0 10 20 30 40 50 60
Actions Needed

0

100

200

300

400

500

Ta

rg
et

s

Shortest Paths to Target

go straight
turn

Figure 5: Histogram of actions along the shortest path.

The number of actions invoked along the shortest paths to

targets in the training scenes. Note that the shortest path is

very difficult to obtain in practice, since it assumes a priori

knowledge of the scene.

Shortest PathHuman trajectory

Figure 6: Example human trajectory. The shortest path to

a target vs the path taken by a human from the same starting

location are visualized. The human wanders around looking

for the TV and on seeing it, walks straight towards it.

4.1. Baseline models

We measure the performance of the following baseline

models:

3168

Random - This model chooses an action randomly amongst

the set of possible actions. This includes invoking the Done

action. The purpose of this baseline is to ascertain if the

scenes and starting locations are not overly simplistic.

Instant Done - This model invokes the Done action at the

very first time step. The purpose of this baseline is to mea-

sure the percentage of trivial starting locations.

Blind - This model receives no sensory input. It only con-

sists of an LSTM with simply a target embedding input.

Its purpose is to establish a baseline that can only leverage

starting and target location bias in the dataset.

Image-A3C - The agent perceives the scene at time t in the

form of an image ot. The image is fed into a pre-trained

and frozen ResNet-18 to obtain a 7 × 7 × 512 tensor, fol-

lowed by two 1×1 convolution layers to reduce the channel

depth to 32 and finally concatenated with a 64 dimensional

embedding of the target word and provided to an LSTM

which generates the policy. The agent is trained using the

asynchronous advantage actor-critic (A3C) [40] formula-

tion, to act to maximize its expected discounted cumula-

tive reward. Two kinds of rewards are provided: a positive

success reward and a negative step reward to encourage ef-

ficient paths.

Image+Detection-A3C - The image is fed into Faster-

RCNN [48] trained on the MSCOCO dataset. Each result-

ing detection has a category, probability and box locations

and dimensions, which are converted to an embedding us-

ing an MLP. The resulting set of embeddings are converted

into a tensor 7 × 7 × 120 by aligning detection boxes to

spatial grid cells and only considering the top 3 boxes per

location. This tensor is concatenated to the tensor obtained

for the image modality and then processed as above.

4.2. Metrics

We report Success Rate and Success weighted by Path

Length (SPL) [4], common metrics for evaluating naviga-

tion models. In addition, we also report path lengths in

terms of the number of actions taken as well as distance

travelled. This quantifies the exploration carried out by the

agent.

5. Experiments

Training. We train models to navigate towards a single tar-

get, a Television with an action space of 4 including Move

Ahead, Rotate Right, Rotate Left and Done. The rotation

actions rotate the agent by 45 degrees. The agent must is-

sue the Done action when it observes the object. If an agent

is successful, it receives a reward of +5. The step penalty

at each time step is -0.01. To mimic the noisy dynamics of

the real robot, we add noise to the movement of the virtual

agent. For translation, we add a gaussian noise with mean

0.001m and standard deviation 0.005m, and for rotation we

use a mean of 0◦and standard deviation of 0.5◦.

Models were trained on 8 TITAN X GPUs for 100,000

episodes using A3C with 32 threads. For each episode, we

sample a random training scene and random starting loca-

tion in the scene for the agent. We use the Adam optimizer

with a learning rate of 0.0001.

We train the models on a subset of 50 train scenes and

report numbers on 2 of the test-dev scenes. We report met-

rics on starting locations categorized into easy, medium and

hard. If the length of the shortest path from the starting

point to the target is among the lowest 20% path lengths in

that scene, it is considered easy. If it is between 20% and

60%, it is considered medium, and longer paths are consid-

ered as hard.

Sim-to-Sim Table 1 shows the results of our benchmarked

models when trained on simulation and evaluated on the

test-dev scenes in simulation. The trivial baselines Random,

Instant Done and Blind perform very poorly, indicating that

the dataset lacks a bias that is trivial to exploit using these

models. The Image only model performs reasonably well,

succeeding at over 50% of easy trajectories but doing very

poorly at hard ones. Adding object detection does not help

performance. Our analysis in Section 6 shows that object

detectors trained in the real world show a drop in perfor-

mance in simulation, which might be contributing to their

ineffectiveness.

Sim-to-Real Due to the slow motion of the robot, episodes

on the robot last as long as 10 minutes. This limits the

amount of testing that can be done in the real world. Ta-

ble 2 shows the result of the best performing model on Sim-

to-Sim, evaluated on a real scene on a subset of starting

locations as those reported in Table 1. This shows that there

is a sizeable drop in performance for the real robot, espe-

cially in SPL. The robot however, does learn to navigate

around and explore its environment fairly safely and over

80% of the trajectories have no collisions with obstacles.

This leads to high values for episode lengths in all 3 cases -

easy, medium and hard.

Overfit Sim-to-Real The semantic navigation sim-to-real

task in ROBOTHOR tests two kinds of generalization:

Moving to new scenes and moving from simulation to real.

To factor out the former and focus on the latter, we trained

a policy on a test-dev scene, (which expectedly led to over-

fitting on sim) and then deployed this on the robot. Table 3

shows these results and demonstrates the upper bound of

current models in the real world if they had memorized the

test-dev scene perfectly in simulation. The robot does very

well on the easy targets, but is affected a lot on hard tar-

gets. For all three modes, the SPL is affected tremendously.

Appearance and control variations often lead the robot to

spaces away from the target, which does not happen in sim-

ulation due to overfitting.

3169

Easy Medium Hard

Success SPL Episode Path Success SPL Episode Path Success SPL Episode Path

length length length length length length

Random 7.58 5.32 4.36 0.34 0.00 0.00 4.27 0.30 0.00 0.00 3.06 0.19

Instant Done 4.55 3.79 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00

Blind 4.55 3.79 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00

Image 55.30 38.12 45.87 9.26 28.79 19.12 78.49 14.82 1.47 0.97 81.09 14.22

Image+Detection 36.36 19.89 63.41 11.39 11.36 5.25 90.37 16.65 0.74 0.61 83.01 14.00

Table 1: Benchmark results for Sim-to-Sim

Easy Medium Hard

Success SPL Episode Path Success SPL Episode Path Success SPL Episode Path

length length length length length length

Image 33.33 3.53 53.16 7.18 16.66 3.70 43.83 5.33 0.00 0.00 67.83 7.00

Table 2: Benchmark results for Sim-to-Real

6. Analysis

We now dig deeper into the appearance disparities be-

tween real and simulation images via t-sne embeddings, ob-

ject detection results and the output policies for both modal-

ities. We also provide a study showing the effect of chang-

ing camera parameters between real and simulation for the

transfer problem. Finally, we evaluate using an image trans-

lation method for the purposes of domain adaptation.

Appearance disparities. To the naked eye, images between

the real and simulation worlds in ROBOTHOR look quite

similar. However when we look at embeddings provided by

networks, the disparity becomes more visible. We consid-

ered 846 images, each from simulation and real collected

from the same locations in the scene, passed these images

through ResNet-18 to obtain a 512 dim feature vector and

then used t-SNE [65] to reduce the dimensionality to 3. Fig-

ure 7 shows these embeddings. One can clearly see the sep-

aration of points into real and simulation clusters. This in-

dicates that embeddings of images in the two modalities are

different, which goes towards explaining the drop in per-

formance between simulation and real test-dev scenes (see

Table 1 and Table 2). Figure 7 also shows the nearest neigh-

bor (cosine similarity) simulation image to one of the real

images. We found that although nearest neighbors are not

far away spatially, they are still slightly different, sometimes

having a different view, or a different distance to an obsta-

cle. This might explain why the robot takes different ac-

tions in the real world. This analysis indicates that methods

of representation learning might need to be revisited, espe-

cially when these representations must work across real and

simulation modalities.

Object detection transfer. Since we leverage an off the

shelf object detector (Faster-RCNN) trained on natural im-

ages (MS-COCO), it is imperative to compare the accuracy

of this model on images collected in the real and simulated

Figure 7: Comparison of embeddings for real and syn-

thetic images. The scatter plot shows a t-SNE visualization

of ResNet-18 (pre-trained on ImageNet) features for images

from real and simulated apartments. Also shown are the

nearest neighbor in feature space and spatial nearest neigh-

bor, which differ slightly in the viewpoint of the agent.

apartments. We collected 761 corresponding images from

both environments, ran Faster-RCNN on them and obtained

ground truth annotations for 10 object classes (all of which

intersected with MS-COCO classes) on Amazon Mechani-

cal Turk. At an Intersection-over-Union (IOU) of 0.5, we

obtained a mAP of 0.338 for real images and 0.255 for sim-

ulated ones; demonstrating that there is a performance hit

going across modalities. Furthermore, detection probabil-

ities tend to differ between the two modalities as demon-

strated in Figure 8, rendering transfer more challenging for

3170

Easy Medium Hard

Success SPL Episode Path Success SPL Episode Path Success SPL Episode Path

length length length length length length

Image Sim-2-Sim 100 82.17 8.09 1.05 100 86.17 27.52 4.77 94.12 83.18 42.26 7.90

Image Sim-2-Real 100 12.28 15.00 2.33 83.33 18.68 43.33 5.5 50 28.53 30.16 7.54

Table 3: Benchmark results for Sim-to-Real trained on a single test-dev scene.

Laptop

Cup Clock
Cup

Clock

Apple

Real Simulation

Figure 8: Object detection. Results of object detection in

a real and simulated image. Solid lines denote high con-

fidence detections whereas dashed lines denote low confi-

dence detections.

models that exploit these probabilities. Note that this trans-

fer is in the opposite direction (Real to Sim) compared to

our current transfer setup, but is revealing nonetheless.

Modifying camera parameters. Since the real and simu-

lation apartments were both designed by us, we were able

to model the simulation camera close to the one present

on LoCoBot. However, to test the sensitivity of the learnt

policy to the camera parameters, we performed an exper-

iment where we trained with a Field Of View (FOV) of

90◦and tested with an FOV of 42.5◦. The resulting real

world experiments for the Image only model show a huge

drop of performance to 16% for easy, and 0% for medium

and hard. Interestingly, the robot tends to move very little

and instead rotate endlessly. We hypothesize that models

trained on simulation likely overfit to the image distribution

observed at training, and the images captured at a different

FOV vary so significantly in feature space, that they invoke

unexpected behaviors. Since popular image representation

models are trained on images from the internet, they are bi-

ased towards the distribution of cameras that people use to

take pictures. Cameras on robots are usually quite differ-

ent. This suggests that we should fine tune representations

to match robot cameras and also consider different camera

parameters as a camera augmentation step during training

in simulation.

Domain adaptation via image translation. Since appear-

ance statistics vary between real and simulation, we exper-

imented with applying an image-to-image translation tech-

nique, CycleGAN [77] to translate real world images to-

wards simulation images. This would enable us to train in

simulation and apply the policy on the real robot while pro-

cessing the translated images. We needed to use a trans-

lation model that could use unpaired image data, since we

are unable to obtain paired images with 0 error in the place-

ment of the agent. Paired images were obtained for 3 test-

dev scenes to train CycleGAN. The policy (trained in sim-

ulation) was run on the robot on the remaining test-dev

scene. Interestingly, the CycleGAN model does learn to

flatten textures and adjust lighting and shadows as seen in

Figure 9. However, the resultant robot performance is very

poor and obtains 0% accuracy. While image translation

looks pleasing to the eye, it does introduce spurious errors

which hugely affect the image embeddings and thus the re-

sultant policy.

Real Real to Sim

Figure 9: Examples of real to simulation transfer. We use

CycleGAN [77] to translate real images towards simulated

ones. The model learns to flatten out the texture and adjust

the shadows to look like a simulated image.

7. Conclusion

In this paper, we presented ROBOTHOR , an open, mod-

ular, re-configurable and replicable embodied AI platform

with counterparts in simulation and the real world, where

researchers across the globe can remotely deploy their mod-

els onto physical robots and test their algorithms in the

physical world. Our preliminary findings show the perfor-

mance of models drops significantly when transferring from

simulation to real. We hope that ROBOTHOR will enable

more research towards this important problem.

Acknowledgements. This work is in part supported by

NSF IIS 1652052, IIS 17303166, DARPA N66001-19-2-

4031, 67102239 and gifts from Allen Institute for AI.

3171

References

[1] Baxter. https://en.wikipedia.org/wiki/

Baxter_(robot). 3

[2] Sawyer. https://www.rethinkrobotics.com/

sawyer. 3

[3] The MIT RACECAR. https://mit-racecar.

github.io, 2016. 3

[4] Peter Anderson, Angel X. Chang, Devendra Singh Chaplot,

Alexey Dosovitskiy, Saurabh Gupta, Vladlen Koltun, Jana

Kosecka, Jitendra Malik, Roozbeh Mottaghi, Manolis Savva,

and Amir Roshan Zamir. On evaluation of embodied navi-

gation agents. arXiv, 2018. 6

[5] Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark

Johnson, Niko Sünderhauf, Ian Reid, Stephen Gould, and

Anton van den Hengel. Vision-and-Language Navigation:

Interpreting visually-grounded navigation instructions in real

environments. In CVPR, 2018. 2, 3

[6] Konstantinos Bousmalis, Alex Irpan, Paul Wohlhart, Yunfei

Bai, Matthew Kelcey, Mrinal Kalakrishnan, Laura Downs,

Julian Ibarz, Peter Pastor, Kurt Konolige, Sergey Levine, and

Vincent Vanhoucke. Using simulation and domain adapta-

tion to improve efficiency of deep robotic grasping. In ICRA,

2018. 3

[7] Konstantinos Bousmalis, Nathan Silberman, David Dohan,

Dumitru Erhan, and Dilip Krishnan. Unsupervised pixel-

level domain adaptation with generative adversarial net-

works. In CVPR, 2017. 3

[8] Simon Brodeur, Ethan Perez, Ankesh Anand, Florian

Golemo, Luca Celotti, Florian Strub, Jean Rouat, Hugo

Larochelle, and Aaron C. Courville. Home: a household

multimodal environment. arXiv, 2017. 3

[9] Rui Caseiro, Joao F. Henriques, Pedro Martins, and Jorge

Batista. Beyond the shortest path : Unsupervised domain

adaptation by sampling subspaces along the spline flow. In

CVPR, 2015. 3

[10] Devendra Singh Chaplot, Saurabh Gupta, Dhiraj Gandhi,

Abhinav Gupta, and Ruslan Salakhutdinov. Learning to ex-

plore using active neural mapping. In CVPR Workshop on

Habitat Embodied Agents, 2019. 3

[11] Yevgen Chebotar, Ankur Handa, Viktor Makoviychuk, Miles

Macklin, Jan Issac, Nathan D. Ratliff, and Dieter Fox. Clos-

ing the sim-to-real loop: Adapting simulation randomization

with real world experience. In ICRA, 2019. 3

[12] Chenyi Chen, Ari Seff, Alain Kornhauser, and Jianxiong

Xiao. Deepdriving: Learning affordance for direct percep-

tion in autonomous driving. In ICCV, 2015. 3

[13] Howard Chen, Alane Suhr, Dipendra Misra, Noah Snavely,

and Yoav Artzi. Touchdown: Natural language navigation

and spatial reasoning in visual street environments. In CVPR,

2019. 3

[14] Tao Chen, Saurabh Gupta, and Abhinav Gupta. Learning

exploration policies for navigation. In ICLR, 2019. 3

[15] Abhishek Das, Samyak Datta, Georgia Gkioxari, Stefan Lee,

Devi Parikh, and Dhruv Batra. Embodied question answer-

ing. In CVPR, 2018. 2

[16] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina

Toutanova. Bert: Pre-training of deep bidirectional trans-

formers for language understanding. In NAACL-HLT, 2019.

1

[17] Dieter Fox, Wolfram Burgard, and Sebastian Thrun. Markov

localization for reliable robot navigation and people detec-

tion. In Sensor Based Intelligent Robots, 1999. 3

[18] Daniel Fried, Ronghang Hu, Volkan Cirik, Anna Rohrbach,

Jacob Andreas, Louis-Philippe Morency, Taylor Berg-

Kirkpatrick, Kate Saenko, Dan Klein, and Trevor Darrell.

Speaker-follower models for vision-and-language naviga-

tion. In NeurIPS, 2018. 3

[19] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pas-

cal Germain, Hugo Larochelle, François Laviolette, Mario

Marchand, and Victor Lempitsky. Domain-adversarial train-

ing of neural networks. JMLR, 2016. 3

[20] Boqing Gong, Yuan Shi, Fei Sha, and Kristen Grauman.

Geodesic flow kernel for unsupervised domain adaptation.

In CVPR, 2012. 3

[21] Daniel Gordon, Aniruddha Kembhavi, Mohammad Raste-

gari, Joseph Redmon, Dieter Fox, and Ali Farhadi. IQA:

Visual question answering in interactive environments. In

CVPR, 2018. 2

[22] Saurabh Gupta, James Davidson, Sergey Levine, Rahul Suk-

thankar, and Jitendra Malik. Cognitive mapping and plan-

ning for visual navigation. In CVPR, 2017. 2, 3

[23] Raia Hadsell, Pierre Sermanet, Jan Ben, Ayse Erkan, Marco

Scoffier, Koray Kavukcuoglu, Urs Muller, and Yann LeCun.

Learning long-range vision for autonomous off-road driving.

J. of Field Robotics, 2009. 3

[24] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,

2016. 1

[25] Peter Henry, Christian Vollmer, Brian Ferris, and Dieter Fox.

Learning to navigate through crowded environments. In

ICRA, 2010. 3

[26] Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu,

Phillip Isola, Kate Saenko, Alexei Efros, and Trevor Darrell.

CyCADA: Cycle-consistent adversarial domain adaptation.

In ICML, 2018. 3

[27] Judy Hoffman, Dequan Wang, Fisher Yu, and Trevor Darrell.

Fcns in the wild: Pixel-level adversarial and constraint-based

adaptation. arXiv, 2016. 3

[28] Haoshuo Huang, Qixing Huang, and Philipp Krahenbuhl.

Domain transfer through deep activation matching. In

ECCV, 2018. 3

[29] Stephen James, Andrew J. Davison, and Edward Johns.

Transferring end-to-end visuomotor control from simulation

to real world for a multi-stage task. In CORL, 2017. 3

[30] Gregory Kahn, Adam Villaflor, Bosen Ding, Pieter Abbeel,

and Sergey Levine. Self-supervised deep reinforcement

learning with generalized computation graphs for robot nav-

igation. In ICRA, 2018. 3

[31] Liyiming Ke, Xiujun Li, Yonatan Bisk, Ari Holtzman, Zhe

Gan, Jingjing Liu, Jianfeng Gao, Yejin Choi, and Siddhartha

Srinivasa. Tactical rewind: Self-correction via backtracking

in vision-and-language navigation. In CVPR, 2019. 3

3172

[32] Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli VanderBilt,

Luca Weihs, Alvaro Herrasti, Daniel Gordon, Yuke Zhu, Ab-

hinav Gupta, and Ali Farhadi. AI2-THOR: An Interactive 3D

Environment for Visual AI. arXiv, 2017. 2, 3

[33] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

Imagenet classification with deep convolutional neural net-

works. In NeurIPS, 2012. 1

[34] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, Lubomir D.

Bourdev, Ross B. Girshick, James Hays, Pietro Perona, Deva

Ramanan, C. Lawrence Zitnick, and Piotr Dollár. Microsoft

coco: Common objects in context. In ECCV, 2014. 2

[35] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael I.

Jordan. Learning transferable features with deep adaptation

networks. In ICML, 2015. 3

[36] Chih-Yao Ma, Jiasen Lu, Zuxuan Wu, Ghassan AlRegib,

Zsolt Kira, Richard Socher, and Caiming Xiong. Self-

monitoring navigation agent via auxiliary progress estima-

tion. In ICLR, 2019. 3

[37] Chih-Yao Ma, Zuxuan Wu, Ghassan AlRegib, Caiming

Xiong, and Zsolt Kira. The regretful agent: Heuristic-aided

navigation through progress estimation. In CVPR, 2019. 3

[38] Piotr Mirowski, Matthew Koichi Grimes, Mateusz Ma-

linowski, Karl Moritz Hermann, Keith Anderson, Denis

Teplyashin, Karen Simonyan, Koray Kavukcuoglu, Andrew

Zisserman, and Raia Hadsell. Learning to navigate in cities

without a map. In NeurIPS, 2018. 3

[39] Piotr Mirowski, Razvan Pascanu, Fabio Viola, Hubert Soyer,

Andrew J. Ballard, Andrea Banino, Misha Denil, Ross

Goroshin, Laurent Sifre, Koray Kavukcuoglu, Dharshan Ku-

maran, and Raia Hadsell. Learning to navigate in complex

environments. In ICLR, 2017. 3

[40] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza,

Alex Graves, Timothy P. Lillicrap, Tim Harley, David Silver,

and Koray Kavukcuoglu. Asynchronous methods for deep

reinforcement learning. In ICML, 2016. 6

[41] Arsalan Mousavian, Alexander Toshev, Marek Fiser, Jana

Kosecka, and James Davidson. Visual representations for

semantic target driven navigation. In ECCV Workshop on

Visual Learning and Embodied Agents in Simulation Envi-

ronments, 2018. 3

[42] Matthias Mueller, Alexey Dosovitskiy, Bernard Ghanem,

and Vladlen Koltun. Driving policy transfer via modularity

and abstraction. In CORL, 2018. 3

[43] Adithyavairavan Murali, Tao Chen, Kalyan Vasudev Alwala,

Dhiraj Gandhi, Lerrel Pinto, Saurabh Gupta, and Abhinav

Gupta. Pyrobot: An open-source robotics framework for re-

search and benchmarking. arXiv, 2019. 3, 5

[44] Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba,

and Pieter Abbeel. Sim-to-real transfer of robotic control

with dynamics randomization. In ICRA, 2018. 3

[45] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gard-

ner, Christopher Clark, Kenton Lee, and Luke S. Zettle-

moyer. Deep contextualized word representations. In

NAACL, 2018. 1

[46] Xavier Puig, Kevin Ra, Marko Boben, Jiaman Li, Tingwu

Wang, Sanja Fidler, and Antonio Torralba. Virtualhome:

Simulating household activities via programs. In CVPR,

2018. 3

[47] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and

Percy Liang. Squad: 100, 000+ questions for machine com-

prehension of text. In EMNLP, 2016. 2

[48] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster r-cnn: Towards real-time object detection with region

proposal networks. In NeurIPS. 2015. 1, 6

[49] Charles Richter and Nicholas Roy. Safe visual navigation via

deep learning and novelty detection. In RSS, 2017. 3

[50] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, Michael S. Bernstein, Alexander C. Berg,

and Fei-Fei Li. Imagenet large scale visual recognition chal-

lenge. IJCV, 2014. 2

[51] Fereshteh Sadeghi and Sergey Levine. CAD2RL: real single-

image flight without a single real image. In RSS, 2017. 3

[52] Nikolay Savinov, Alexey Dosovitskiy, and Vladlen Koltun.

Semi-parametric topological memory for navigation. In

ICLR, 2018. 3

[53] Manolis Savva, Angel X. Chang, Alexey Dosovitskiy,

Thomas A. Funkhouser, and Vladlen Koltun. MINOS: mul-

timodal indoor simulator for navigation in complex environ-

ments. arXiv, 2017. 2, 3

[54] Manolis Savva, Abhishek Kadian, Oleksandr Maksymets,

Yili Zhao, Erik Wijmans, Bhavana Jain, Julian Straub, Jia

Liu, Vladlen Koltun, Jitendra Malik, Devi Parikh, and Dhruv

Batra. Habitat: A platform for embodied ai research. In

ICCV, 2019. 2, 3

[55] Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish

Kapoor. Airsim: High-fidelity visual and physical simula-

tion for autonomous vehicles. In Field and Service Robotics,

2017. 3

[56] Shaojie Shen, Nathan Michael, and Vijay Kumar. Au-

tonomous multi-floor indoor navigation with a computation-

ally constrained mav. In ICRA, 2011. 3

[57] Ashish Shrivastava, Tomas Pfister, Oncel Tuzel, Josh

Susskind, Wenda Wang, and Russell Webb. Learning

from simulated and unsupervised images through adversarial

training. In CVPR, 2017. 3

[58] Siddhartha S. Srinivasa, Patrick Lancaster, Johan Michalove,

Matt Schmittle, Colin Summers, Matthew Rockett, Joshua R.

Smith, Sanjiban Chouhury, Christoforos Mavrogiannis, and

Fereshteh Sadeghi. MuSHR: A low-cost, open-source

robotic racecar for education and research. arXiv, 2019. 3

[59] Baochen Sun, Jiashi Feng, and Kate Saenko. Return of frus-

tratingly easy domain adaptation. In AAAI, 2016. 3

[60] Yaniv Taigman, Adam Polyak, and Lior Wolf. Unsupervised

cross-domain image generation. In ICLR, 2017. 3

[61] Jie Tan, Tingnan Zhang, Erwin Coumans, Atil Iscen,

Yunfei Bai, Danijar Hafner, Steven Bohez, and Vincent

Vanhoucke. Sim-to-real: Learning agile locomotion for

quadruped robots. In RSS, 2018. 3

[62] Charles Thorpe, Martial H. Hebert, Takeo Kanade, and

Steven A. Shafer. Vision and navigation for the carnegie-

mellon navlab. TPAMI, 1988. 3

[63] Joshua Tobin, Rachel H Fong, Alex Ray, Jonas Schneider,

Wojciech Zaremba, and Pieter Abbeel. Domain randomiza-

tion for transferring deep neural networks from simulation to

the real world. In IROS, 2017. 3

3173

[64] Chris Urmson, Joshua Anhalt, Drew Bagnell, Christopher

Baker, Robert Bittner, M. N. Clark, John Dolan, Dave Dug-

gins, Tugrul Galatali, Chris Geyer, Michele Gittleman, Sam

Harbaugh, Martial Hebert, Thomas M. Howard, Sascha Kol-

ski, Alonzo Kelly, Maxim Likhachev, Matt McNaughton,

Nick Miller, Kevin Peterson, Brian Pilnick, Raj Rajkumar,

Paul Rybski, Bryan Salesky, Young-Woo Seo, Sanjiv Singh,

Jarrod Snider, Anthony Stentz, William “Red” Whittaker,

Ziv Wolkowicki, Jason Ziglar, Hong Bae, Thomas Brown,

Daniel Demitrish, Bakhtiar Litkouhi, Jim Nickolaou, Var-

sha Sadekar, Wende Zhang, Joshua Struble, Michael Taylor,

Michael Darms, and Dave Ferguson. Autonomous driving

in urban environments: Boss and the urban challenge. J of

Field Robotics, 2008. 3

[65] Laurens van der Maaten and Geoffrey E. Hinton. Visualizing

data using t-sne. JMLR, 2008. 7

[66] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill,

Omer Levy, and Samuel R. Bowman. Glue: A multi-task

benchmark and analysis platform for natural language un-

derstanding. In BlackboxNLP@EMNLP, 2018. 2

[67] Xin Wang, Qiuyuan Huang, Asli Celikyilmaz, Jianfeng Gao,

Dinghan Shen, Yuan-Fang Wang, William Yang Wang, and

Lei Zhang. Reinforced cross-modal matching and self-

supervised imitation learning for vision-language navigation.

In CVPR, 2019. 3

[68] Xin Wang, Wenhan Xiong, Hongmin Wang, and William

Yang Wang. Look before you leap: Bridging model-free

and model-based reinforcement learning for planned-ahead

vision-and-language navigation. In ECCV, 2018. 2, 3

[69] Mitchell Wortsman, Kiana Ehsani, Mohammad Rastegari,

Ali Farhadi, and Roozbeh Mottaghi. Learning to learn how to

learn: Self-adaptive visual navigation using meta-learning.

In CVPR, 2019. 2, 3, 5

[70] Yi Wu, Yuxin Wu, Georgia Gkioxari, and Yuandong Tian.

Building generalizable agents with a realistic and rich 3d en-

vironment. arXiv, 2018. 3

[71] Yi Wu, Yuxin Wu, Aviv Tamar, Stuart Russell, Georgia

Gkioxari, and Yuandong Tian. Bayesian relational memory

for semantic visual navigation. In ICCV, 2019. 3

[72] Fei Xia, Amir R. Zamir, Zhiyang He, Alexander Sax, Jiten-

dra Malik, and Silvio Savarese. Gibson env: Real-world per-

ception for embodied agents. In CVPR, 2018. 2, 3

[73] Huazhe Xu, Yang Gao, Fisher Yu, and Trevor Darrell. End-

to-end learning of driving models from large-scale video

datasets. In CVPR, 2017. 3

[74] Claudia Yan, Dipendra Kumar Misra, Andrew Bennett,

Aaron Walsman, Yonatan Bisk, and Yoav Artzi. CHALET:

cornell house agent learning environment. arXiv, 2018. 3

[75] Wei Yang, Xiaolong Wang, Ali Farhadi, Abhinav Gupta, and

Roozbeh Mottaghi. Visual semantic navigation using scene

priors. In ICLR, 2019. 3

[76] Yang Zhang, Philip David, and Boqing Gong. Curricu-

lum domain adaptation for semantic segmentation of urban

scenes. In ICCV, 2017. 3

[77] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A

Efros. Unpaired image-to-image translation using cycle-

consistent adversarial networks. In ICCV, 2017. 3, 8

[78] Xinge Zhu, Hui Zhou, Ceyuan Yang, Jianping Shi, and

Dahua Lin. Penalizing top performers: Conservative loss

for semantic segmentation adaptation. In ECCV, 2018. 3

[79] Yuke Zhu, Roozbeh Mottaghi, Eric Kolve, Joseph J. Lim,

Abhinav Gupta, Li Fei-Fei, and Ali Farhadi. Target-driven

visual navigation in indoor scenes using deep reinforcement

learning. In ICRA, 2017. 3

3174

