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Figure 1: This paper presents a face image synthesis approach that generates realistic face images of virtual people with

independent latent variables of identity, expression, pose, and illumination. The latent space is interpretable and highly

disentangled, which allows precise control of the targeted images (e.g., degree of each pose angle, lighting intensity and

direction), as shown in the top row. The bottom row shows the generated images when we keep the identity and randomize

other properties. The faces generated by our method are not any real person in the world.

Abstract

We propose an approach for face image generation of

virtual people with disentangled, precisely-controllable la-

tent representations for identity of non-existing people, ex-

pression, pose, and illumination. We embed 3D priors into

adversarial learning and train the network to imitate the

image formation of an analytic 3D face deformation and

rendering process. To deal with the generation freedom in-

duced by the domain gap between real and rendered faces,

we further introduce contrastive learning to promote disen-

tanglement by comparing pairs of generated images. Exper-

iments show that through our imitative-contrastive learn-

ing, the factor variations are very well disentangled and the

properties of a generated face can be precisely controlled.

We also analyze the learned latent space and present sev-

eral meaningful properties supporting factor disentangle-

ment. Our method can also be used to embed real images

into the disentangled latent space. We hope our method

could provide new understandings of the relationship be-

tween physical properties and deep image synthesis.

*This work was done when Yu Deng was an intern at MSRA.

1. Introduction

Face image synthesis has achieved tremendous success

in the past few years with the rapid advance of Generative

Adversarial Networks (GANs) [14]. State-of-the art GAN

models, such as the recent StyleGAN [23], can generate

high-fidelity virtual face images that are sometimes even

hard to distinguish from real ones.

Compared to the vast body of works devoted to improv-

ing the image generation quality and tailoring GANs for

various applications, synthesizing face images de novo with

multiple disentangled latent spaces characterizing different

properties of a face image is still not well investigated. Such

a disentangled latent representation is desirable for con-

strained face image generation (e.g., random identities with

specific illuminations or poses). It can also derive a dis-

entangled representation of a real image by embedding it

into the learned feature space. A seminal GAN research

for disentangled image generation is InfoGAN [6], where

the representation disentanglement is learned in an unsuper-

vised manner via maximizing the mutual information be-

tween the latent variables and the observation. However,
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it has been shown that without any prior or weak supervi-

sion, there is no guarantee that each latent variable contains

a semantically-meaningful factor of variation [30, 7].

In this paper, we investigate synthesizing face images of

virtual people with independent latent variables for iden-

tity, expression, pose, lighting, and an additional noise. To

gain predictable controllability on the former four variables,

we translate them to the coefficients of parametric models

through training a set of Variational Autoencourders (VAE).

We incorporate priors from 3D Morphable Face Models

(3DMM) [4, 33] and an analytic rendering procedure into

adversarial learning. A set of imitative losses is introduced

which enforces the generator to imitate the explainable im-

age rendering process, thus generating face properties char-

acterized by the latent variables. However, the domain gap

between real and rendered faces gives rise to a certain gen-

eration freedom that is uncontrollable, leading to unsatis-

factory disentanglement of factor variations.

To deal with such generation freedom and enhance dis-

entanglement, we further propose a collection of contrastive

losses for training. We compare pairs of generated images

and penalize the appearance difference that is only induced

by a set of identical latent variables shared between each

pair. This way, the generator is forced to express an inde-

pendent influence of each latent variable to the final output.

We show that these contrastive losses are crucial to achieve

complete latent variable disentanglement.

The model we use in this paper is based on the Style-

GAN structure [23], though our method can be extended

to other GAN models as well. We modify the latent code

layer of StyleGAN and equip it with our new loss func-

tions for training. We show that the latent variables can

be highly disentangled and the generation can be accurately

controlled. Similar to StyleGAN, the faces generated by our

method do not correspond to any real person in the world.

We further analyze the learned StyleGAN latent space and

find some meaningful properties supporting factor disentan-

glement. Our method can be used to embed real images into

the disentangled latent space and we demonstrate this with

various experiments.

The contributions of this paper can be summarized as

follows. We propose a novel disentangled representation

learning scheme for de novo face image generation via a

imitative-contrastive paradigm leveraging 3D priors. Our

method enables precise control of the targeted face prop-

erties such as pose, expression, and illumination, achiev-

ing flexible and high-quality face image generation that, to

our knowledge, cannot be achieved by any previous method.

Moreover, we offer several analyses to understand the prop-

erties of the disentangled StyleGAN latent space. At last,

we demonstrate that our method can be used to project real

images into the disentangled latent space for analysis and

decomposition.

2. Related Work

We briefly review the literature on disentangled repre-

sentation learning and face image synthesis as follows.

Disentangled representation learning. Disentangled

representation learning (DRL) for face images has been

vividly studied in the past. Historical attempts are based

on simple bilinear models [46], restricted Boltzmann ma-

chines [10, 39], among others. A seminal GAN research

along this direction is InfoGAN [6]. However, InfoGAN

is known to suffer from training instability [48], and there

is no guarantee that each latent variable is semantically

meaningful [30, 7]. InfoGAN-CR [29] introduces an addi-

tional discriminator to identify the latent code under traver-

sal. SD-GAN [11] applies a discriminator on image pairs to

disentangle identity and appearance factors. Very recently,

HoloGAN [32] disentangles 3D pose and identity with un-

supervised learning using 3D convolutions and rigid feature

transformations. DRL with VAEs also received much atten-

tion in recent years [26, 48, 18, 5, 25].

Conditional GAN for face synthesis. CGAN [31] has

been widely used in face image synthesis tasks especially

identity-preserving generation [47, 2, 51, 3, 42]. In a typi-

cal CGAN framework, the input to a generator consists of

random noises together with some preset conditional fac-

tors (e.g., categorical labels or features) as constraints, and

an auxiliary classifier/feature extractor is applied to restore

the conditional factors from generator outputs. It does not

offer a generative modeling of the conditional factors. Later

we show that our method can be applied to various face gen-

eration tasks handled previously with CGAN frameworks.

Face image embedding and editing with GANs. GANs

have seen heavy use in face image manipulation [34, 19, 49,

44, 36, 45, 53]. These methods typically share an encoder-

decoder/generator-discriminator paradigm where the en-

coder embeds images into disentangled latent representa-

tions characterizing different facial properties. Our method

can also be applied to embed face images into our disentan-

gled latent space, as we will show in the experiments.

3D prior for GANs. Many methods have been proposed

to incorporate 3D prior knowledge into GAN for face im-

age synthesis [51, 43, 24, 8, 12, 35, 13, 32]. Most of them

leverages 3DMMs. For example, [24] utilizes 3DMM coef-

ficients extracted from input images as low-frequency fea-

ture for frontal face synthesis. [12] and [35] translate ren-

dered 3DMM faces and real face images in a cycle fash-

ion. [24] generates video frames from 3DMM faces for

face re-animation. Note that different from these methods,

we only employ 3DMM as priors in the training stage for

our imitative-contrastive learning. After training, the face

generation process does not require a 3DMM model or any

rendering procedure.
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Figure 2: Overview of our method. The left diagram (in green) shows the generation pipeline, and the rest illustrates our

training scheme which features three type of losses: adversarial loss, imitative loss, and contrastive loss.

3. Approach

Given a collection of real face images Y , our goal is to

train a network G that generates realistic face images x from

random noise z, which consists of multiple independent

variables zi ∈ R
Ni , each following the normal distribu-

tion. We consider latent variables for five independent fac-

tors: identity, expression, illumination, pose, and a random

noise accounting for other properties such as background.

As in standard GAN, a discriminator D is applied to com-

pete with G. To obtain disentangled and interpretable latent

space, we incorporate 3D priors in an imitative-contrastive

learning scheme (Fig. 2), described as follows.

3.1. Imitative Learning

To learn how a face image should be generated following

the desired properties, we incorporate a 3DMM model [33]

and train the generator to imitate the rendered 3D faces.

With a 3DMM, the 3D shape S and texture T of a face is

parameterized as

S = S̄+Bidαs +Bexpβ

T = T̄+Btαt

(1)

where S̄ and T̄ are the average face shape and texture, Bid,

Bexp, and Bt are the PCA bases of identity, expression, and

texture, respectively, and αs, β, and αt are the correspond-

ing 3DMM coefficient vectors. We denote α
.
= [αs, αt] as

the identity-bearing coefficients. We approximate scene il-

lumination with Spherical Harmonics (SH) [38] parameter-

ized by coefficient vector γ. Face pose is defined as three ro-

tation angles1 expressed as vector θ. With λ
.
= [α, β, γ, θ],

1We align the images to cancel translation.

we can easily obtain a rendered face x̂ through a well-

established analytic image formation [4].

To enable imitation, we first bridge the z-space to the λ-

space. We achieve this by training VAE models on the λ

samples extracted from real image set Y . More specifically,

we use the 3D face reconstruction network from [9] to ob-

tain the coefficients of all training images and train four sim-

ple VAEs for α, β, γ and θ, respectively. After training, we

discard the VAE encoders and keep the decoders, denoted

as Vi, i=1, 2, 3, 4, for z-space to λ-space mapping.

In our GAN training, we sample z = [z1, . . . , z5] from

standard normal distribution, map it to λ, and feed λ to both

the generator G and the renderer to obtain a generated face

x and a rendered face x̂, respectively. Note that we can input

either z or λ into G – in practice we observe no difference

between these two options in terms of either visual quality

or disentangling efficacy. The benefit of using λ is the ease

of face property control since λ is interpretable.

We define the following loss functions on x for imitative

learning. First, we enforce x to mimic the identity of x̂

perceptually by

lidI (x) = max(1− < fid(x), fid(x̂) > −τ, 0), (2)

where fid(·) is the deep identity feature from a face recog-

nition network, < ·, ·> denotes cosine similarity, and τ is

a constant margin which we empirically set as 0.3. Since

there is an obvious domain gap between rendered 3DMM

faces and real ones, we allow a small difference between the

features. The face recognition network from [50] is used in

this paper for deep identity feature extraction. For expres-

sion and pose, we penalize facial landmark differences via

llmI (x) = ‖p(x)− p̂‖2, (3)
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where p(·) denotes the landmark positions detected by the

3D face reconstruction network, and p̂ is the landmarks of

the rendered face obtained trivially. For illumination, we

simply minimize the SH coefficient discrepancy by

lshI (x) = |γ(x)− γ̂|1, (4)

where γ(·) represents the coefficient given by the 3D face

reconstruction network, and γ̂ is the coefficient of x̂. Fi-

nally, we add a simple loss which enforces the output to

mimic the skin color of the rendered face via

lclI (x) = |c(x)− c(x̂)|1, (5)

where c(·) denotes the average color of face region defined

by the mask in 3DMM. By using these imitative losses, the

generator will learn to generate face images following the

identity, expression, pose, and illumination characterized by

the corresponding latent variables.

The domain gap issue. Obviously, there is an inevitable

domain gap between the rendered 3DMM faces and gen-

erated ones. Understanding the effect of this domain gap

and judiciously dealing with it is important. On one hand,

retaining a legitimate domain gap that is reasonably large

is necessary as it avoids the conflict with the adversarial

loss and ensures the realism of generated images. It also

prevents the generative modeling from being trapped into

the small identity subspace of the 3DMM model2. On the

other hand, however, it may lead to poor factor variation dis-

entanglement (for example, changing expression may lead

to unwanted variations of identity and image background,

and changing illumination may disturb expression and hair

structure; see Fig. 3 and 6).

To understand why this happens, we first symbolize the

difference between a generated face x and its rendered

counterpart x̂ as ∆x, i.e., x = x̂ + ∆x. In the imitative

learning, x is free to deviate from x̂ in terms of certain iden-

tity characteristics and other image contents beyond face

region (e.g., background, hair, and eyewear). As a conse-

quence, ∆x has a certain degree of freedom that is uncon-

trollable. We resolve this issue via contrastive learning, to

be introduced next.

3.2. Contrastive Learning

To fortify disentanglement, we enforce the invariance of

the latent representations for image generation in a con-

trastive manner: we vary one latent variable while keep-

ing others unchanged, and enforce that the difference on the

generated face images relates only to that latent variable.

Concretely, we sample pairs of latent code z, z′ which differ

only at zk and share the same zi, ∀i 6= k. We compare the

generated face images x, x′, and then penalize the differ-

ence induced by any of zi but zk.

2The 3DMM we use in this paper is from [33] which is constructed by

scans of 200 people.

Warped Difference

ො𝑥 ො𝑥′

𝑥 𝑥′ 𝑥

𝑣

Figure 3: Illustration of the image warping process in our

contrastive learning.

To enable such a comparison, we need to find a function

φk(G(z)) which is, to the extent possible, invariant to zk
but sensitive to variations of zi’s. In this work, we imple-

ment two simple functions for face images. The first one

is designed for expression-invariant comparison. Our idea

is to restore a neutral expression for x and x′ to enable the

comparison. However, high-fidelity expression removal per

se is a challenging problem still being actively studied in

GAN-based face image manipulation [37, 13]. To circum-

vent this issue, we resort to the rendered 3DMM face x̂ to

get a surrogate flow field for image warping. Such a flow

field can be trivially obtained by revising the expression co-

efficient and rendering another 3DMM face with a neutral

expression. In practice, it is unnecessary to warp both x

and x′. We simply generate the flow field v from x̂ to x̂′

and warp x to x′ accordingly (see Fig. 3 for an example).

We then minimize the image color difference via

lexC (x, x′) = |x(v)− x′|1, (6)

where x(v) is the warped image.

Second, we design two illumination-invariant losses for

contrastive learning. Since the pixel color across the whole

image can be affected by illumination change, we sim-

ply enforce the semantical structure to remain static. We

achieve this by minimizing the difference between the face

structures of x and x′:

lil1C (x, x′) = ‖m(x)−m(x′)‖2 + ω‖p(x)− p(x′)‖2, (7)

where m(·) is the hair segmentation probability map ob-

tained from a face parsing network [28], p(·) denotes land-

mark positions same as in Eq. 3, and ω is a balancing

weight. We also apply a deep identity feature loss via

lil2C (x, x′) = 1− < fid(x), fid(x
′) > . (8)

In this paper, using the above contrastive learning losses

regarding expression and illumination can lead to satisfac-

tory disentanglement (we found that pose variations can be

well disentangled without need for another contrastive loss).

5157



Random identities

Targeted lightings

Ra
nd

om
 o

th
er

 fa
ct

or
s 

Targeted expressions

Targeted poses

Ra
nd

om
 o

th
er

 fa
ct

or
s 

Ra
nd

om
 o

th
er

 fa
ct

or
s 

Ra
nd

om
 o

th
er

 fa
ct

or
s 

Figure 4: Face images generated by our trained model. As shown in the figures, the variations of identity, expression, pose

and illumination are highly disentangled, and we can precisely control expression, illumination and pose.

Effect of contrastive learning. Following the discussion

in Section 3.1, for two rendered faces x̂ and x̂′ which only

(and perfectly) differ at one factor such as expression, both

∆x and ∆x′ have certain free variations that are uncon-

trollable. Therefore, achieving complete disentanglement

with imitative learning is difficult, if not impossible. The

contrastive learning is an essential complement to imitative

learning: it imposes proper constrains on ∆x and ∆x′ by

explicitly learning the desired differences between x and x′,

thus leading to enhanced disentanglement.

We empirically find that the contrastive learning also

leads to better imitation and more accurate face property

control. This is because the pairwise comparison can also

suppress imitation noise: any misalignment of pose or ex-

pression between x and x̂ or between x′ and x̂′ will incur

larger contrastive losses.

4. Experiments

Implementation details. In this paper, we adopt the Style-

GAN structure [23] and the FFHQ dataset [23] for training.

We train the λ-space VAEs following the schedule of [7],

where encoders and decoders of the VAEs are all MLPs with

three hidden layers. For StyleGAN, we follow the standard

training procedure of the original method except that we 1)

remove the normalization operation for input latent variable

layer, 2) discard the style-mixing strategy, and 3) train up to

image resolution of 256 × 256 due to time constraint. We

first train the network with the adversarial loss as in [23] and

our imitative losses until seeing 15M real images to obtain

reasonable imitation. Then we add contrastive losses into

the training process and train the network up to seeing 20M
real images in total. More training details can be found in

the suppl. material.
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Figure 5: Reference-based generation results where we ex-

tract expression, lighting, and pose properties of real images

and combine them with randomly generated identities.

4.1. Generation Results

Figure 4 presents some image samples generated by our

model after training. It can be seen that our method is able

to randomly generate high-fidelity face images with a large

variant of identities with diverse pose, illumination, and fa-

cial expression. More importantly, the variations of identity,

expression, pose, and illumination are highly disentangled

– when we vary one factor, all others can be well preserved.

Furthermore, we can precisely control expression, illumi-

nation and pose using the parametric model coefficients for

each of them. One more example for precisely controlled

generation is given in Fig. 1.

Figure 5 shows that we can generate images of new iden-

tities by mimicking the properties of a real reference im-

age. We achieve this by extracting the expression, lighting,

and pose parameters from the reference image and combine

them with random identity variables for generation.

4.2. Ablation Study

In this section, we train the model with different losses to

validate the effectiveness of our imitative-contrastive learn-

ing scheme. Some typical results are presented in Fig. 6.

Obviously, the network cannot generate reasonable face im-

ages if we remove the imitation losses. This is because

the contrastive losses rely on reasonable imitation, with-

out which they are less meaningful and the network be-

havior will be unpredictable. On the other hand, without

contrastive losses, variations of different factors cannot be

fully disentangled. For example, expression and lighting

changes may influence certain identity-related characteris-

tics and some other properties such as hair structure. The

contrastive losses can also improve the desired preciseness

of imitation (e.g., see the mouth-closing status in the last

row), leading to more accurate generation control.

Ours ReferenceOurs w/o l
I
’s Ours w/o l

C
’s

Figure 6: Ablation study of the training losses. The top and

bottom two rows show the results when we vary the latent

variable for lighting and expression, respectively.

Table 1: Comparison of disentanglement score as well as

generation quality.

Disentanglement ↑ Quality ↓

DSα DSβ DSγ DSθ FID PPL

3DMM - 271 -

ladv 0.83 1.98 0.87 0.07 5.49 106

+l′Is 13.4 37.0 40.4 31.6 9.15 102

+l′Cs 7.85 80.4 489 36.7 12.9 123

4.3. Quantitative Evaluation

In this section, we evaluate the performance of our model

quantitatively in terms of disentanglement efficacy as well

as generation quality. For the former, several metrics have

been proposed in VAE-based disentangled representation

learning, such as factor score [25] and mutual information

gap [5]. However, these metrics are not suitable for our

case. Here we design a simple metric named disentangle-

ment score (DS) for our method, described as follows.

Our goal is to measure that when we only vary the la-

tent variable for one single factor, if other factors on the

generated images are stable. We denote the four λ-space

variables α, β, γ, θ as ui, and we use u{j} as the shorthand

notation for the variable set {uj |j = 1, . . . , 4, j 6= i}. To

measure the disentanglement score for ui, we first randomly

generate 1K sets of u{j}, and for each u{j} we randomly

generate 10 ui. Therefore, we can generate 10K images us-

ing the trained network with combinations of ui and u{j}.

For these images, we re-estimate ui and u{j} using the 3D

reconstruction network [9] (for identity we use a face recog-

nition network [50] to extract deep identity feature instead).

We calculate the variance of the estimated values for each of

the 1K groups, and then average them to obtain σui
and σuj

.

We further normalize σui
and σuj

by dividing the variance
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of the corresponding variable computed on FFHQ. Finally,

we measure the disentanglement score via

DSui
= Πj,j 6=i

σui

σuj

, (9)

A high DS indicates that when varying a certain factor,

only the corresponding property in the generated images is

changing (σui
> 0) while other factors remain unchanged

(σuj
→ 0). Table 1 shows that the imitative learning leads

to high factor disentanglement and the contrastive learn-

ing further enhances it for expression, illumination, and

pose. The disentanglement score for identity decreases with

contrastive learning. We found the 3D reconstruction re-

sults from the network are slightly unstable when identity

changes, which increased the variances of other factors.

To evaluate the quality of image generation, we follow

[23] to compute the Fréchet Inception Distances (FID) [17]

and the Perceptual Path Lengths (PPL) [23] using 50K and

100K randomly generated images, respectively. Table 1

shows that the FID increases with our method. This is ex-

pected as the additional losses added to the adversarial train-

ing will inevitably affect the generative modeling. However,

we found that the PPL is comparable to the results trained

with only the adversarial loss.

5. Latent Space Analysis and Embedding

In this section, we analyze the latent space of GAN

trained with our method. We show some meaningful prop-

erties supporting factor variation disentanglement, based on

which we further present a method for embedding and ma-

nipulating real face images in the disentangled latent space.

5.1. Analysis of Latent Space

One key ingredients of StyleGAN is the mapping from z-

space to W-space, the latter of which relates linearly to the

AdaIN [22] parameters that control “styles” (we refer the

readers to [23] for more details). Previous studies [41, 1]

have shown that certain direction of changes in W-space

leads to variations of corresponding attributes in generated

images. In our case, W space is mapped from λ space

which naturally relates to image attributes. Therefore, we

analyze the direction of changes in the learned W-space by

varying λ variables, and some interesting properties have

been found. We will introduce these properties and then

provide strong empirical evidences supporting them.

Recall that the input to generator is λ-space variables

α, β, γ, θ and an additional noise ε. Here we denote these

five variables as ui with u5 = ε. We use u{j} as the short-

hand notation for the variable set {uj |j = 1, . . . , 5, j 6= i},

and w(ui, u{j}) denotes the W space variable mapped from

ui and u{j}. We further denote a unit vector

∆̂w(i, a, b) =
w(ui=a, u{j})− w(ui=b, u{j})

‖w(ui=a, u{j})− w(ui=b, u{j})‖
(10)

Table 2: Cosine similarities of direction of change in W
space. Top: changing a factor from a fixed start to a fixed

end. Bottom: changing a factor with a fixed offset.

identity expression lighting pose

ladv 0.65± 0.10 0.21± 0.11 0.16± 0.12 0.17± 0.11

Ours 0.96± 0.02 0.82± 0.04 0.85± 0.03 0.87± 0.03

.

identity expression lighting pose

ladv 0.42± 0.14 0.21± 0.12 0.16± 0.12 0.15± 0.11

Ours 0.82± 0.06 0.79± 0.05 0.85± 0.04 0.85± 0.04

to represent the direction of change in W space when we

change ui from a to b. The following two properties of

∆̂w(i, a, b) are observed:

Property 1. For the i-th variable ui, i ∈ 1, 2, 3, 4, with any

given starting value a and ending value b, we have:

∆̂w(i, a, b) is almost constant for ∀u{j}.

Property 2. For the i-th variable ui, i ∈ 1, 2, 3, 4, with any

given offset vector △, we have:

∆̂w(i, a, a+△) is almost constant for ∀u{j}and ∀a.

Property 1 states that if the starting and ending values of

a certain factor in λ space are fixed, then the direction of

change in W space is stable regardless of the choice of all

other factors. Property 2 further indicates that it is unnec-

essary to fix the starting and ending values – the direction

of change in W space is only decided by the difference be-

tween them.

To empirically examine Property 1, we randomly sam-

pled 50 pairs of (a, b) values for each ui and 100 remaining

factors for each pair. For each (a, b) pair, we calculate 100

∆w = w2 − w1 and get 100 × 100 pairwise cosine dis-

tances. We average all these distances for each (a, b) pair,

and finally compute the mean and standard derivation of the

50 average distance values from all 50 pairs. Similarly, we

examine Property 2 by randomly generating offsets for ui,

and all the results are presented in Table 2. It can be seen

that all the cosine similarities are close to 1, indicating the

high consistency of W-space direction change. For refer-

ence, in the table we also present the statistics obtained us-

ing a model trained with the same pipeline but without our

imitative-contrastive losses.

5.2. Real Image Embedding and Editing

Based on the above analysis, we show that our method

can be used to embed real images into the latent space and

edit the factors in a disentangled manner. We present the

experimental results on various factors. More results can be

found in the suppl. material due to space limitation.

A natural latent space for image embedding and editing

is the λ space. However, embedding an image to it leads to
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Figure 7: Real image pose manipulation results. Top: Pre-

cise manipulation of pose angles. Bottom: Face frontaliza-

tion results compared with PIM [52], TP-GAN [21], DR-

GAN [47], Hassner et al. [16], and Qian et al. [37] on LFW.

Results of other methods are from [37].

poor image reconstruction. Even inverting to the W space

is problematic – the image details are lost as shown in previ-

ous works [1, 41]. For higher fidelity, we embed the image

into a latent code w+ in the W+ space suggested by [1]

which is an extended W space. An optimization-based em-

bedding method is used similar to [1]. However, W or W+
space is not geometrically interpretable thus cannot be di-

rectly used for controllable generation. Fortunately though,

thanks to the nice properties of the learned W space (see

Section 5.1), we have the following latent representation

editing and image generation method:

w+
s = G−1

syn(xs)

xt = Gsyn(w
+
s +∆w(i, a, b))

(11)

where xs is an input image and xt is the targeted image after

editing. Gsyn is the synthesis sub-network of StyleGAN

(after the 8-layer MLP). ∆w(i, a, b) denotes the offset of

w induced by changing ui, the i-th λ-space latent variable,

from a to b (see Eq. 10). It can be computed with any u{j}

(we simply use the embedded one). Editing can be achieved

by flexibly setting a and b.

Pose Editing. Figure 7 (top) shows the typical results of

pose manipulation where we freely rotate the input face by

desired angles. We also test our method with the task of face

frontalization, and compare with previous methods. Fig-

ure 7 (bottom) shows the results on face images from the

Input Le
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Reference Ours Zhou et al. SfSNet Li et al. GT

Figure 8: Real image relighting results. Top: Light editing

for a real image. Bottom: Results on a challenging lighting

transfer task compared with Zhou et al. [53], SfSNet [40],

and Li et al. [27]. Results of other methods are from [53].

LFW dataset [20]. Our method well-preserved the identity-

bearing characteristics as well as other contextual informa-

tion such as hair structure and illumination.

Image Relighting. Figure 8 (top) shows an example of

image relighting with our method, where we freely vary

the lighting direction and intensity. In addition, we follow

the previous methods to evaluate our method on the Mul-

tiPIE [15] images. Figure 8 (bottom) shows a challenging

case for lighting transfer. Despite the extreme indoor light-

ing may be outside of the training data, our method still pro-

duces reasonable results with lighting directions well con-

forming with the references.

6. Conclusion and Future Work

We presented a novel approach for disentangled and con-

trollable latent representations for face image generation.

The core idea is to incorporate 3D priors into the adver-

sarial learning framework and train the network to imitate

the rendered 3D faces. Influence of the domain gap be-

tween rendered faces and real images is properly handled

by introducing the contrastive losses which explicitly en-

force disentanglement. Extensive experiments on disentan-

gled virtual face image synthesis and face image embedding

have demonstrated the efficacy of our proposed imitation-

contrastive learning scheme.

The generated virtual identity face images with accu-

rately controlled properties could be used for a wide range

of vision and graphics applications which we will explore

in our future work. It is also possible to apply our method

for forgery image detection and anti-spoofing by analyzing

real and faked images in the disentangled space.
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