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Abstract

Though tremendous strides have been made in uncon-

trolled face detection, accurate and efficient 2D face align-

ment and 3D face reconstruction in-the-wild remain an

open challenge. In this paper, we present a novel single-

shot, multi-level face localisation method, named Reti-

naFace, which unifies face box prediction, 2D facial land-

mark localisation and 3D vertices regression under one

common target: point regression on the image plane. To

fill the data gap, we manually annotated five facial land-

marks on the WIDER FACE dataset and employed a semi-

automatic annotation pipeline to generate 3D vertices for

face images from the WIDER FACE, AFLW and FDDB

datasets. Based on extra annotations, we propose a mu-

tually beneficial regression target for 3D face reconstruc-

tion, that is predicting 3D vertices projected on the image

plane constrained by a common 3D topology. The proposed

3D face reconstruction branch can be easily incorporated,

without any optimisation difficulty, in parallel with the exist-

ing box and 2D landmark regression branches during joint

training. Extensive experimental results show that Reti-

naFace can simultaneously achieve stable face detection,

accurate 2D face alignment and robust 3D face reconstruc-

tion while being efficient through single-shot inference.

1. Introduction

Automatic face localisation is a prerequisite for facial

image analysis in many applications such as facial attribute

analysis(e.g. expression [64] and age [41, 39]) and facial

identity recognition [18, 12, 56]. A narrow definition of face

localisation may refer to traditional face detection [54, 62],

which aims at estimating the face bounding boxes without

possessing any scale and position prior. Nevertheless, in

this paper we refer to a broader definition of face locali-

* Equal contributions.

InsightFace is a nonprofit Github project for 2D and 3D face analysis.

Figure 1. Face localisation tasks from coarse to fine. Face detec-

tion only predicts one center point and scales. Face pose estima-

tion calculates the scale, 3D rotation and translation parameters.

Sparse face alignment localises more semantic points. Face seg-

mentation computes pixel-wise label maps for different semantic

components (e.g. mouth, eyes). 3D face reconstruction can estab-

lish dense 3D correspondence for every pixel of a face, which is

the most informative and demanding face localisation technique.

sation which includes face detection [43], face pose esti-

mation [48, 60, 31, 5], face alignment [14, 57, 17, 16, 15,

58, 23], face segmentation [50, 34] and 3D face reconstruc-

tion [72, 1, 19, 70]. In Fig. 1, we show face localisation

tasks with multiple levels of detail, from coarse to fine.

Typically, face pose estimation, face alignment, face seg-

mentation and 3D face reconstruction are steps subsequent

to face detection. These fine-grind face localisation tasks

are performed on individual face crops and the compu-

tational complexity increases linearly with the number of

faces in the input image. Since all face localisation tasks

from face detection to 3D face reconstruction aim at estab-

lishing the semantic correspondence between different face

images, with their main difference being only in the infor-

mation level, the question that arises is if can we combine

them into a united framework by jointly training and make
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different tasks benefit from each other.

The training process for face detection usually contains

classification and box regression losses [21]. Chen et al. [8]

proposed to combine face detection and alignment in a joint

cascade framework based on the observation that aligned

face shapes can provide better features for face classifica-

tion. Inspired by [8], MTCNN [66] and STN [7] simul-

taneously detected faces and five facial landmarks. Due to

training data limitation, JDA [8], MTCNN [66] and STN [7]

have not verified whether detection of tiny faces can benefit

from the extra supervision of five facial landmarks.

In Mask R-CNN [25], the detection performance is sig-

nificantly improved by adding a branch for predicting an

object mask in parallel with the existing branch for bound-

ing box classification and regression. This confirms that

dense pixel-wise annotations are also beneficial for improv-

ing detection. In FAN [55], an anchor-level attention map

is proposed to improve the occluded face detection. Nev-

ertheless, the proposed attention map is quite coarse and

does not contain semantic information. In MFN [6], a sin-

gle end-to-end network is presented to jointly predict the

bounding box locations and 3DMM parameters for multiple

faces. This contributes to more precise face detection in-

the-wild by leveraging both 2D information from bounding

boxes and 3D information from 3DMM parameters. How-

ever, 3DMM parameter prediction constitutes an indirect

regression target when compared to semantic point predic-

tion (e.g. box center) on the image plane. In this paper, we

explore joint learning for different face localisation tasks

(face detection, 2D face alignment and 3D face reconstruc-

tion) based on the single-shot [40, 69, 51] framework. To

overcome the limitation of training data [6], we have man-

ually annotated five facial landmarks for 84.6k faces from

the WIDER FACE training dataset [59]. In addition, we set

up a semi-automatic annotation pipeline to generate 1k 3D

vertices for 22k faces from the WIDER FACE dataset [59],

27.1k faces from the AFLW dataset [30], and 39.3k faces

from the FDDB full image set [28]. Based on these train-

ing data, we propose an innovative, straightforward and ef-

fective 3D mesh regression method. More specifically, we

directly regress x, y and z coordinates in the image space

and add a regularization term to control the edge distance

of triangles in the mesh for more accurate prediction of z
coordinates.

Joint learning of face bounding box locations, five fa-

cial landmarks and 1k 3D vertices forces the network to

learn exclusive facial features that characterize face pose,

shape, and expression, in addition to differentiating face re-

gions from the background. As five facial landmarks lo-

calisation and 3D vertices regression both target on predict-

ing semantic points on the image plane, face box prediction

benefits from joint learning and becomes more accurate and

stable, producing less false positives. Also, as the anno-

tated but challenging face detection data [59] are employed

in the joint training of face detection and the rest fine-grind

face localisation tasks (for which usually less challenging

datasets are employed, e.g. [30]), they directly contribute to

robust 3D mesh regression.

To summarise, our key contributions are:

• We integrate face bounding box prediction, 2D facial

landmark localisation and 3D vertices regression un-

der a unified multi-level face localisation task with a

common goal: point regression on the image plane.

• Based on a single-shot inference, we propose a mutu-

ally beneficial learning strategy to train a unified multi-

level face localisation method that simultaneously pre-

dicts face bounding boxes, five 2D facial landmarks,

and 1k 3D vertices.

• Our method achieves state-of-the-art performance in

face detection and 2D face alignment, as well as robust

3D face reconstruction with single-shot inference.

2. Related Work

Face Detection. Inspired by generic object detection meth-

ods [21, 46, 38, 44, 45, 35, 36], face detection has recently

achieved remarkable progress [27, 40, 69, 10, 51]. Differ-

ent from generic object detection, face detection features

smaller ratio variations (from 1:1 to 1:1.5) but much larger

scale variations (from several pixels to thousands of pix-

els). The most recent state-of-the-art methods [40, 69, 51]

focus on single-shot design [38, 36] which densely samples

face locations and scales on feature pyramids [35], demon-

strating promising performance and yielding faster infer-

ence compared to two-stage methods [46, 63, 10]. Follow-

ing this route, we improve the performance of single-shot

face detection by exploiting extra-supervisions from multi-

level face localisation tasks.

3D Face Reconstruction. Building dense pixel-to-pixel

correspondence is one of the most fundamental problems

in 3D face reconstruction from 2D images. Recently, a lot

of works follow the approach of regressing 3DMM param-

eters from 2D images using CNNs [29, 72, 53, 47, 24, 52].

Jourabloo et al. [29] employs a cascade of CNNs to alter-

nately regress the shape and pose parameters. 3DDFA [72]

utilizes cascade iterations on a single CNN to jointly regress

the shape and pose parameters. However, as pose and

3DMM parameters are indirect information for a 2D face

image, the variations from network prediction can exert

huge visual error. Most recently, model parameter regres-

sion methods have changed into dense correspondence re-

gression approaches [1, 19]. By using the intermediate UV

representation, DenseReg [1] predicts the UV coordinates

and PRN [19] forecasts 3D coordinates rearranged in the

UV space. However, UV transformation is still an indirect

representation for a 2D image. In this paper, we resort the

most straightforward 3D representation: 3D vertices pro-
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jected on the image plane. This representation is consistent

with the regression targets of face detection and 2D facial

landmark localisation, and easy to optimise in a single-shot,

multi-level face localisation framework. Due to the parallel

training with face detection and 2D face alignment, our 3D

face reconstruction branch is very robust under in-the-wild

scenarios.

3. Proposed Approach

3.1. 3D Face Reconstruction

In Fig. 3, we show a fixed number of N vertices

(V = [x1, y1, z1;x2, y2, z2; · · · ;xN , yN , zN ]) on a pre-

defined topological triangle context. These corresponding

vertices share the same semantic meaning across different

faces. With the fixed triangle topology, every pixel on the

face can be indexed by the barycentric coordinates and the

triangle index, thus there exists a pixel-wise correspondence

with the 3D face. Comparing Mesh68 and Mesh1k in Fig. 3,

it becomes obvious that more vertices make the mesh more

informative and smooth. As the parameters of the last layer

increase linearly with the size of the regression output, we

choose to regress 1k + 68 vertices, which is a subset of

53, 215 vertices [42], carefully sampled to sufficiently re-

tain the 3D faces structure.

In this paper, we directly regress 3D vertices on the 2D

image plane. As each densely aligned 3D face is repre-

sented by concatenating its N vertex coordinates, we em-

ploy the following vertex loss to constrain the location of

vertices:

Lvert=
1

N

N∑

i=1

||Vi(x, y, z)−V
∗

i (x, y, z)||1, (1)

where N = 1103 is the number of vertices, V is the predic-

tion of our model and V
∗ is the ground-truth.

The x and y coordinates of visible vertices in the im-

age space can be directly learned from input face images.

However, predicting the z coordinates and the x and y co-

ordinates of invisible vertices is challenging due to the in-

formation loss occurring when projecting a face from 3D to

2D. By taking advantage of the 3D triangulation topology,

we consider the edge length loss [37]:

Ledge=
1

3M

M∑

i=1

||Ei −E
∗

i ||1, (2)

where M = 2110 is the number of triangles, E is the edge

length calculated from the prediction and E
∗ is the edge

length calculated from the ground truth. The edge graph is

a fixed topology as shown in Fig. 3.

By combining the vertex loss and the edge loss, we de-

fine the mesh regression loss as: Lmesh=Lvert + λ0Ledge,
where λ0 is set to 1 according to our experimental experi-

ence.

3.2. Multilevel Face Localisation

For any training anchor i, we minimise the following

multi-task loss:

L = Lcls(pi, p
∗

i ) + λ1p
∗

iLbox(ti, t
∗

i )

+ λ2p
∗

iLpts(li, l
∗

i ) + λ3p
∗

iLmesh(vi, v
∗

i ).
(3)

where ti, li, vi are box, five landmarks and 1k vertices pre-

dictions, t∗i , l
∗

i , v
∗

i is the corresponding ground-truth, pi is

the predicted probability of anchor i being a face, and p∗i is

1 for the positive anchor and 0 for the negative anchor. The

classification loss Lcls is the softmax loss for binary classes

(face/not face).

For a positive anchor with center coordinates xa
center,

yacenter and scale sa, we have the box size regression tar-

gets: log(w∗/sa) and log(h∗/sa) [21], where w∗ and h∗

are the width and height of the ground-truth face box. In

addition, we have the following unified point regression tar-

gets for multi-level face localisation tasks:

(xj
∗ − xa

center)/s
a,

(yj
∗ − yacenter)/s

a,

(zj
∗ − z∗nose−tip))/s

a, (4)

where xj
∗ and yj

∗ are the ground-truth coordinates of the

two box corners, five facial landmarks and 1k 3D vertices in

the image space, and zj
∗ is the ground-truth z coordinates

of the 1k 3D vertices. As we use orthographic projection to

generate the ground-truth 3D meshes, we translate all ver-

tices so that the z coordinate of the nose tip is 0. After-

wards, we normalise the z coordinates by the anchor scale.

We follow [21] and use the smooth-L1 loss for all the above

regression targets. As these three localisation tasks are ho-

mogeneous, the loss-balancing parameters λ1-λ3 are all set

to 1.

As illustrated in Fig. 4, face detection, five 2D facial

landmark localisation and 3D face reconstruction are three

face localisation tasks aiming at different levels of locali-

sation detail which however, share the same target: accu-

rate point regression on the image plane. Integrating direct

regression of 3D vertices in the single-shot face detection

design, induces no optimisation difficulty as it is compati-

ble with box center regression and five facial landmark re-

gression. Each task can benefit from other tasks such that:

(1) localisation of more semantic points contributes to more

accurate box prediction, and (2) more challenging training

scenarios in the face detection dataset result in more robust

point prediction.

3.3. Singleshot Multilevel Face Localisation

In Fig. 2, we present the framework of the proposed

single-shot, multi-level face localisation approach. As can

be seen, our model consists of three main components: the
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(a) Network Structure (b) Multi-task Loss

Figure 2. (a) An overview of the proposed single-shot multi-level face localisation approach. (b) Detailed illustration of our loss design.

RetinaFace is designed based on the feature pyramids with five scales. For each scale of the feature maps, there is a deformable context

module. Following the context modules, we calculate a joint loss (face classification, face box regression, five facial landmarks regression

and 1k 3D vertices regression) for each positive anchor. To minimise the residual of localisation, we employ cascade regression.

Figure 3. A mesh consists of vertices plus triangles. Mesh68 is

a coarse version used for quantitative evaluation and Mesh1k is a

more elaborate version which includes facial details. In this paper,

we regress Mesh68 and Mesh1k simultaneously.

Figure 4. Three face localisation tasks have different levels of de-

tail but share the same target: accurate point prediction on the im-

age plane. Each task can benefit from other tasks.

feature pyramid network, the context head module and the

cascade multi-task loss. First, the feature pyramid network

gets the input face images and outputs five feature maps of

different scale. Then, the context head module gets a feature

map of a particular scale and calculates the multi-task loss

(Eq. 3). In more detail, the first context head module pre-

dicts the bounding box from the regular anchor, while sub-

sequently, the second context head module predicts a more

accurate bounding box using the regressed anchor, which

is generated by the first context head module. The pro-

posed RetinaFace employs fully convolutional neural net-

works, thus it can be easily trained in an end-to-end way.

Feature Pyramid RetinaFace employs feature pyramid lev-

els from P2 to P6, where P2 to P5 are computed from

the output of the corresponding ResNet residual stage (C2

through C5) using top-down and lateral connections as

in [35, 36]. P6 is calculated through a 3×3 convolution with

stride=2 on C5. C1 to C5 is a pre-trained classification net-

work on the ImageNet-11k dataset while P6 are randomly

initialised using the “Xavier” method [22].

Context Module Inspired by SSH [40] and Pyramid-

Box [51], we also apply independent context modules on

five feature pyramid levels to increase the receptive field

and enhance the rigid context modelling power. We replace

all 3 × 3 convolution layers within the lateral connections

and context modules with the deformable convolution net-

work (DCN) [11, 71], which further strengthens the non-

rigid context modelling capacity.

Cascade Multi-task Loss To further improve the perfor-

mance of face localisation, we employ cascade regres-

sion [4, 65] with multi-task loss (Sec. 3.2). The loss head is

a 1× 1 convolution across different feature maps of dimen-

sion Hn×Wn×256, n ∈ {2, . . . , 6}. The first context head

module predicts the bounding box from the regular anchor.

Subsequently, the second context head module predicts a

more accurate bounding box from the regressed anchor.

Anchor Settings and Matching Strategy We employ

scale-specific anchors on the feature pyramid levels from P2

to P6 similarly to [55]. Here, P2 is designed to capture tiny

faces by tiling small anchors at the cost of more computa-

tional time and with risk of more false positives. We set the

scale step at 21/3 and the aspect ratio at 1:1. With the input

image size at 640× 640, the anchors can cover scales from

16 × 16 to 406 × 406 across the feature pyramid levels. In

total, there are 102,300 anchors, and 75% of these anchors

are from P2. For the first head module, anchors are matched

to a ground-truth box when Intersection over Union (IoU)

is larger than 0.7, and to the background when IoU is less

than 0.3. For the second head module, anchors are matched
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(a) Five Landmarks Annotation (b) 1k 3D Vertices Annotation

Figure 5. We annotate (a) five facial landmarks and (b) 1k 3D

vertices on faces that can be annotated from the WIDER FACE

dataset.

to a ground-truth box when IoU is larger than 0.5, and to the

background when IoU is less than 0.4. Unmatched anchors

are ignored during training. We employ OHEM [49, 69] to

balance the positive and negative training examples.

4. Experiments

4.1. Dataset

The WIDER FACE dataset [59] consists of 32, 203 im-

ages and 393, 703 face bounding boxes with a high degree

of variability in scale, pose, expression, occlusion and il-

lumination. As illustrated in Fig. 5, we define five levels of

face image quality [13] according to how difficult it is to an-

notate landmarks on the face. We have manually annotated

five facial landmarks (i.e. eye centres, nose tip and mouth

corners) for 84.6k faces on the training set and 18.5k faces

on the validation set. To obtain accurate ground-truth 3D

vertices from 2D faces, we employ a semi-automatic an-

notation pipeline. That is, for each face we automatically

recover 68 3D landmarks [15] and employ them to drive a

3DMM fitting algorithm [3] in order to reconstruct a dense

3D face with 53K vertices, projected on the image plane. To

ensure high quality in the 3DMM fitting results, we recover

UV texture maps from the fitted faces and ask annotators

to inspect them for artifacts. If the fitting is not accurate,

the annotator manually updates the 68 landmarks and gets

another automatic 3DMM fitting. If the fitting is still not

accurate, the face is discarded. Finally, we get 22k accurate

3D face annotations from the training set.

Following [6], we also completed 27.1k and 39.3k 3D

face annotations from the AFLW dataset [30] and the full

FDDB image set [28] using our semi-automatic annotation

method. For the face detection task, only the training data

of the WIDER FACE dataset were used. For the rest of

the tasks, face annotations from both the AFLW and FDDB

datasets were employed, except for the subset of faces that

overlaps with faces of the AFLW2000-3D dataset [72].

Method Easy Medium Hard average AP

Baseline 95.832 95.243 89.875 52.65

+DCN 96.149 95.568 90.286 53.36

+Cascade 96.233 95.679 90.642 54.20

Lpts 96.570 95.913 91.161 54.73

Lvert 96.512 95.805 90.983 54.55

Lmesh 96.528 95.829 90.991 54.62

L5pts+mesh 96.713 96.082 91.447 55.02

Table 1. Ablation experiments of RetinaFace (ResNet-50) on the

WIDER FACE validation subset and the Hard test subset.

4.2. Implementation Details

Data Augmentation As there are around 20% tiny faces in

the WIDER FACE training set, we follow [69, 51] to ran-

domly crop square patches from the original images and

resize them to 640 × 640 resolution during training. Be-

sides random crops, we also augment the training dataset

by applying random horizontal flip and photo-metric colour

distortion [69].

Training and testing Details We train our method using a

SGD optimizer (momentum at 0.9, weight decay at 0.0005,

and batch size of 8× 4) on four NVIDIA Tesla P40 (24GB)

GPUs. The learning rate starts from 10−3, rising to 10−2

after 5 epochs, then divided by 10 at 55 and 68 epochs.

The training process is terminated at 80 epochs. Our imple-

mentation is on MXNet [9]. For the evaluation on WIDER

FACE, we follow the standard practices of [40, 69] and em-

ploy flipping as well as multi-scale (the shorter image size

at [500, 800, 1100, 1400, 1700]) strategies. Box voting [20]

is applied on the union set of predicted facial boxes using an

IoU threshold of 0.4. For the evaluation of other tasks, Reti-

naFace employs single-scale inference using the ResNet-50

backbone (model size: 155MB, speed: 22.3ms on the P40

GPU).

4.3. Face Detection

Besides the standard evaluation metric of Average Preci-

sion (AP), we also employ a more strict evaluation metric

of average AP for IoU=0.5 : 0.05 : 0.95, rewarding more

accurate face detectors. As illustrated in Tab. 1, we evaluate

the performance of several different settings on the WIDER

FACE validation set and report the average AP on the Hard

test subset. Here, we use Resnet-50 [26] as the backbone

and focus on the metric of average AP. By applying the De-

formable Context Module (DCM) and cascade regression,

we improve the average AP of the baseline to 54.20%.

Five facial landmarks regression (Lpts) and 1k 3D ver-

tices regression (Lvert) improve the average AP by 0.53%
and 0.35%, respectively. The difference in improvement

percentage is due to the annotation of five facial landmarks

being much easier than annotating 3D vertices, and thus

more training data with 5 facial points annotations can be

https://competitions.codalab.org/competitions/20146
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(a) False Positive Suppression (b) False Positive Examples

Figure 6. Joint five facial landmarks regression and 1k 3D vertices

regression can (a) significantly decrease the scores of false posi-

tives, and (b) effectively suppress high-score false positives.

included, aiding to achieve a higher performance. Adding

topology constraints into 1k 3D vertices regression only

slightly improves face detection. However, they are ben-

eficial for predicting z coordinates and pose (Sec. 4.5).

We therefore employ the mesh loss (Lmesh). Combining

five facial landmark regression and mesh regression signifi-

cantly improves the performance by 0.82%.

Besides improving the accuracy of facial boxes, joint five

facial landmark regression and 1k 3D vertices regression

can effectively suppress the scores of false positives as illus-

trated in Fig. 6(a). In Fig. 6(b), we show some high-score

false positives (> 0.9) produced from the baseline. Reti-

naFace assigns much lower scores (< 0.3) to these crops.

Moreover, for the baseline the class information for a face

is only a binary label and no information exists about the

image quality. In contrast, we annotate 1k 3D vertices for

easy-to-medium level faces, and five facial landmarks for

faces that can be annotated. These annotations implicitly

indicate the information level of faces, which can be learned

by our model. Therefore, RetinaFace only gives high con-

fidence scores for very informative faces and low scores for

less informative faces.

To obtain the evaluation results from the WIDER FACE

leader-board, we submitted the detection results of Reti-

naFace (ResNet-152) to the organisers. As shown in Fig. 7,

we compared RetinaFace with other 29 state-of-the-art face

detection algorithms (e.g. SSH [40], SFD [69], Pyramid-

Box [51], DSFD [33], SFDet [68], RefineFace [67] etc.).

Our approach sets up a new impressive record in terms of

AP (91.7%) and outperforms these state-of-the-art methods

on the Hard subset which contains a large number of tiny

faces.

4.4. Five Facial Landmark Localisation

Face detection datasets are more challenging [59] than

the face alignment datasets, which are usually collected by

a pre-trained face detector with a high threshold. In the fol-

lowing experiments, we explore the benefits of training for

point regression and face detection simultaneously.

To evaluate the accuracy of five facial landmark local-

isation, we compare RetinaFace with MTCNN [66] and

Figure 7. Precision-recall curves of RetinaFace (ResNet-152) on

the WIDER FACE test Hard subsets.
Method AUC (%) Failure Rate (%)

MTCNN [66] 36.63 26.31

STN [7] 42.63 24.23

RetinaFace-MobileNet0.5 47.12 19.72

RetinaFace-R50 58.54 9.82

RetinaFace(w/o 3D)-R50 55.66 10.25

AFLW-R50-gtbox 44.91 25.40

Wider-R50-gtbox 61.55 8.78

Table 2. Summary of five facial landmark localisation results on

the WIDER FACE dataset. Accuracy is reported as the Area Under

The Curve (AUC) and the Failure Rate (threshold at 10%). “-

gtbox” refers to crop-based face alignment based on ground-truth

facial boxes.

STN [7] on the WIDER FACE validation set (18.5k faces).

Here, we employ the face box size (
√
W ×H) as the nor-

malisation distance. In Fig. 8(a), we show the Cumulative

Error Distribution (CED) curves on the WIDER FACE val-

idation set. As shown in Tab. 2, RetinaFace-MobileNet0.5

outperforms the baselines and decrease the failure rate to

19.72%. By employing a deeper backbone (ResNet-50),

RetinaFace-R50 further reduces the failure rate to 9.82%.

After removing the 3D mesh regression branch from Reti-

naFace, the AUC obviously decreases from 58.54% to

55.66%. This is because 3D mesh regression is pose-

invariant and a joint training framework can improve the

accuracy of 2D five facial landmarks. In Fig. 8(b), we

test RetinaFace on the AFLW2000-3D profile subset (232

faces) [72], and we confirm that 3D mesh regression can

significantly improve five facial landmark localisation un-

der the large-pose scenario.

We further train two crop-based five facial landmark

regression networks (ResNet-50) on the AFLW dataset

(24,386 faces) [30] and the WIDER FACE dataset, sepa-

rately. Even with the ground-truth facial boxes, the model

trained on AFLW still has a high failure rate (25.40%),

which indicates the difference in the difficulty level between

the face alignment dataset (AFLW) and the face detection

dataset (WIDER FACE). Even though the model trained on

WIDER FACE achieves the highest performance, the com-

putational complexity increases linearly with the number of

faces in the input image. However, RetinaFace achieves
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(a) CED on WIDER FACE (b) NME on AFLW Profile

Figure 8. Qualitative comparison between baselines and Reti-

naFace on five facial landmark localisation. (a) CED on the

WIDER FACE validation set (18k faces) (b) NME on the

AFLW2000-3D profile subset [72].

Method [0◦,30◦] [30◦,60◦] [60◦,90◦] Mean

SDM [72] 3.67 4.94 9.67 6.12

3DDFA [72] 3.43 4.24 7.17 4.94

Yu et al. [61] 3.62 6.06 9.56 6.41

3DSTN [2] 3.15 4.33 5.98 4.49

PRN [19] 2.75 3.51 4.61 3.62

FAME [5] 3.11 3.84 6.60 4.52

SS-SFN [6] 3.09 4.27 5.59 4.31

MS-SFN [6] 2.91 3.83 4.94 3.89

Lvert 2.77 3.70 4.95 3.81

Lmesh 2.72 3.65 4.81 3.72

L5pts+mesh 2.57 3.32 4.56 3.48

Table 3. Comparison of NME(%) for 68 points on the AFLW2000-

3D dataset.

only slightly lower performance while its computational

complexity remains fixed independently of the number of

faces in each image.

4.5. 3D Vertex Regression

Following [19], we evaluate the accuracy of 3D vertex

regression on the AFLW2000-3D dataset [72] considering

68 points with the 2D projected coordinates. The mean er-

ror is normalised by the bounding box size [72]. In addition,

our 3D vertex prediction can be used for (1) pose-invariant

facial component segmentation [1], and (2) 3D pose esti-

mation by utilizing a least squares solution [19] instead of

solving a PnP problem.

In Tab. 3, we compare the proposed RetinaFace (ResNet-

50) with other state-of-the-art dense regression algorithms

(e.g. PRN [19] and MS-SFN [6] etc.) for 68 landmark lo-

calisation under yaw angle variations. The proposed direct

3D vertex regression is more than able to handle 68 facial

landmark localisation under pose-variations, achieving an

impressive NME of 3.81%. 3D topology constraints help to

slightly decrease the NME to 3.72%. After training the 2D

landmark regression and 3D mesh regression jointly with

the face detector, we achieve better performance than state-

of-the-art methods. PRN [19] employs UV position map

regression and MS-SFN [6] uses 3DMM parameter regres-

sion, both of which are indirect regression methods. In con-

trast, our method directly regresses the projected 3D ver-

Method Eyebrow Eye Nose Lip

DenseReg [1] 47.62 74.29 87.71 72.35

L5pts+vert 71.3 76.85 90.90 75.43

L5pts+mesh 72.23 78.51 92.21 77.55

Table 4. Semantic segmentation accuracy on the Helen test set [32]

measured using IoU ratio.

Method [0◦,30◦] [30◦,60◦] [60◦,90◦]

DenseReg [1] 4.14± 3.93 5.96± 4.74 6.38± 4.90

PRN [19] 3.96± 3.43 5.75± 4.42 6.08± 4.41

L5pts+vert 3.79± 3.08 5.28± 3.83 5.60± 3.81

L5pts+mesh 3.69± 2.99 5.11± 3.73 5.41± 3.57

Table 5. Yaw angle estimation on the AFLW2000-3D dataset.

tices on the image plane, which can benefit from challeng-

ing training scenarios of face detection and large-scale five

facial landmark annotations.

Besides the evaluation on facial landmark localisation,

we can also transfer our 3D vertex predictions into pixel-

wised segmentation maps for different semantic compo-

nents [1]. After an additional linear regression from 1k

vertices to 53k vertices, we directly employ the segmen-

tation mask (right/left eyebrow, right/left eye, nose, and up-

per/lower lip) defined in [1]. Tab. 4 reports evaluation re-

sults on the Helen test set [32] using the IoU ratio. Note

that the ground-truth here is generated by deformation-free

coordinates [1]. The results indicate that the proposed Reti-

naFace (ResNet-50) outperforms DenseReg (ResNet-101),

which is based on indirect UV coordinate regression. In

contrast, RetinaFace employs direct vertex regression on the

image plane, which is beneficial for more accurate locali-

sation on the image, e.g. the substantial improvement for

eyebrows. Given that RetinaFace is not optimized for the

segmentation task, we believe that the pose-invariant facial

component segmentation results in Fig. 9 are impressive.

As we can directly predict 3D vertices, the pose es-

timation is only the estimation of a rotation matrix ob-

tained as the least squares solution between the regressed

landmarks and the landmarks of a template face in frontal

pose. In Tab. 5, we compare RetinaFace (ResNet-50) with

DenseReg [1] and PRN [19] on the yaw angle estimation.

Both DenseReg [1] and PRN [19] use an intermediate UV

representation, while RetinaFace employs direct vertex re-

gression on the image plane. As we can see from Tab. 5,

RetinaFace can predict more accurate yaw angles with low

variance, while topology constraints can further improve

pose estimation. Both z coordinates regression and pose

estimation try to predict indirect 3D information from 2D

images, thus the inclusion of topology constraints can boost

both tasks by building the connections between direct im-

age clues and indirect information estimation. In Fig. 9,

we present the pose estimation results at the nose tip. Reti-

naFace is robust on pose estimation under expression varia-

tions, illumination changes and occlusions.
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Figure 9. Example results of RetinaFace on the AFLW2000-3D dataset. First row: 1k 3D vertices predicted by RetinaFace (ResNet-50,

L5pts+mesh). Second row: 3D pose estimation and mesh render by the Vulkan toolkit. Third row: pose-invariant facial component

segmentation.

Figure 10. Testing results of RetinaFace (ResNet-50, L5pts+mesh) compared to MFN [6] (first row). We show both the predicted 1k 3D

vertices (Second row) and the 3D meshes rendered by the Vulkan toolkit (Third row). Please zoom in to check the missing faces (Column

2-4) and obvious mis-alignment (Column 5-6) by MFN.

4.6. MultiFace Reconstruction

In Fig. 10, we compare RetinaFace with MFN [6] on

multi-face images. MFN employs a single end-to-end net-

work to jointly predict the bounding box locations and

3DMM parameters for multiple faces. However, 3DMM

parameter regression is not as straightforward as our vertex

regression on the image plane. In Columns 5 and 6, a mis-

alignment problem in MFN can be observed. Even tiny vari-

ations in the predicted 3DMM parameters can significantly

affect the reconstruction results. Nevertheless, RetinaFace

can exactly fit the face boundary. In Columns 2, 3 and 4, it

can be seen that several faces are missed by MFN. In con-

trast, our RetinaFace achieves state-of-the-art performance

on WIDER FACE and can easily detect the tiny faces even

under low illumination conditions. In the last row of Fig. 10,

we render the 3D 1k vertices predicted by RetinaFace.

5. Conclusion

In this paper, we innovatively unify multi-level face lo-

calisation tasks under one common target: point regression

on the image plane. We directly regress 3D vertices in the

image space while constrained by the 3D topology of the

employed 3D face template. Also, the proposed 3D mesh

regression branch can be easily incorporated in parallel with

the existing box and 2D landmark regression branches with-

out any optimisation difficulty during joint training. Finally,

extensive experimental results showed that the proposed

mutually beneficial design can simultaneously achieve ac-

curate face detection, 2D face alignment and 3D face re-

construction with efficient single-shot inference.
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