
Learning Depth-Guided Convolutions for Monocular 3D Object Detection

Mingyu Ding1,2 Yuqi Huo 2,5 Hongwei Yi 3 Zhe Wang4 Jianping Shi4 Zhiwu Lu2,5 Ping Luo1

1The University of Hong Kong 2Gaoling School of Artificial Intelligence, Renmin University of China
3Shenzhen Graduate School, Peking University 4SenseTime Research

5Beijing Key Laboratory of Big Data Management and Analysis Methods, Beijing 100872, China

{myding, pluo}@cs.hku.hk {bohony,luzhiwu}@ruc.edu.cn

Abstract

3D object detection from a single image without LiDAR

is a challenging task due to the lack of accurate depth in-

formation. Conventional 2D convolutions are unsuitable

for this task because they fail to capture local object and

its scale information, which are vital for 3D object de-

tection. To better represent 3D structure, prior arts typi-

cally transform depth maps estimated from 2D images into

a pseudo-LiDAR representation, and then apply existing

3D point-cloud based object detectors. However, their re-

sults depend heavily on the accuracy of the estimated depth

maps, resulting in suboptimal performance. In this work,

instead of using pseudo-LiDAR representation, we improve

the fundamental 2D fully convolutions by proposing a new

local convolutional network (LCN), termed Depth-guided

Dynamic-Depthwise-Dilated LCN (D4LCN), where the fil-

ters and their receptive fields can be automatically learned

from image-based depth maps, making different pixels of

different images have different filters. D4LCN overcomes

the limitation of conventional 2D convolutions and narrows

the gap between image representation and 3D point cloud

representation. Extensive experiments show that D4LCN

outperforms existing works by large margins. For example,

the relative improvement of D4LCN against the state-of-the-

art on KITTI is 9.1% in the moderate setting. D4LCN ranks

1st on KITTI monocular 3D object detection benchmark at

the time of submission (car, December 2019). The code is

available at https://github.com/dingmyu/D4LCN.

1. Introduction

3D object detection is a fundamental problem and has

many applications such as autonomous driving and robotics.

Previous methods show promising results by utilizing Li-

DAR device, which produces precise depth information in

terms of 3D point clouds. However, due to the high-cost

(a) Pseudo-LiDAR points from DORN (b) Pseudo-LiDAR from MonoDepth

(c) Our result using MonoDepth (d) Result of Pesudo-LiDAR

Figure 1. (a) and (b) show pseudo-LiDAR points generated by

the supervised depth estimator, DORN [10] and the unsupervised

Monodepth [13] respectively. The green box represents ground-

truth (GT) 3D box. Pseudo-LiDAR points generated by inaccu-

rate depth as shown in (b) have large offsets comapred to the GT

box. (c) and (d) show the detection results of our method and

Pseudo-Lidar [48] by using a coarse depth map. The performance

of [48] depends heavily on the accuracy of the estimated depth

maps, while our method achieves accurate detection results when

accurate depth maps are missing.

and sparse output of LiDAR, it is desirable to seek cheaper

alternatives like monocular cameras. This problem remains

largely unsolved, though it has drawn much attention.

Recent methods towards the above goal can be generally

categorized into two streams as image-based approaches

[36, 26, 41, 19, 17, 4] and pseudo-LiDAR point-based ap-

proaches [48, 33, 50]. The image-based approaches [5, 17]

typically leverage geometry constraints including object

shape, ground plane, and key points. These constraints

are formulated as different terms in loss function to im-

prove detection results. The pseudo-LiDAR point-based ap-

proaches transform depth maps estimated from 2D images

to point cloud representations to mimic the LiDAR signal.

As shown in Figure 1, both of these methods have draw-

backs, resulting in suboptimal performance.

Specifically, the image-based methods typically fail to

capture meaningful local object scale and structure informa-

111672



tion, because of the following two factors. (1) Due to per-

spective projection, the monocular view at far and near dis-

tance would cause significant changes in object scale. It is

difficult for traditional 2D convolutional kernels to process

objects of different scales simultaneously (see Figure 2). (2)

The local neighborhood of 2D convolution is defined in the

camera plane where the depth dimension is lost. In this non-

metric space (i.e. the distance between pixels does not have

a clear physical meaning like depth), a filter cannot distin-

guish objects from the background. In that case, a car area

and the background area would be treated equally.

Although pseudo-LiDAR point-based approaches have

achieved progressive results, they still possess two key is-

sues. (1) The performance of these approaches heavily re-

lies on the precision of estimated depth maps (see Figure 1).

The depth maps extracted from monocular images are often

coarse (point clouds estimated using them have wrong co-

ordinates), leading to inaccurate 3D predictions. In other

words, the accuracy of the depth map limits the perfor-

mance of 3D object detection. (2) Pseudo-LiDAR methods

cannot effectively employ high-level semantic information

extracted from RGB images, leading to many false alarms.

This is because point clouds provide spatial information but

lose semantic information. As a result, regions like road-

blocks, electrical boxes and even dust on the road may cause

false detection, but they can be easily discriminated by us-

ing RGB images.

To address the above problems, we propose a novel

convolutional network, termed Depth-guided Dynamic-

Depthwise-Dilated local convolutional network (D4LCN),

where the convolutional kernels are generated from the

depth map and locally applied to each pixel and channel

of individual image sample, rather than learning global ker-

nels to apply to all images. As shown in Figure 2, D4LCN

treats the depth map as guidance to learn local dynamic-

depthwise-dilated kernels from RGB images, so as to fill the

gap between 2D and 3D representation. More specifically,

the learned kernel in D4LCN is sample-wise (i.e. exem-

plar kernel [15]), position-wise (i.e. local convolution [20]),

and depthwise (i.e. depthwise convolution [18]), where each

kernel has its own dilation rate (i.e. different exemplar ker-

nels have different receptive fields).

D4LCN is carefully designed with four considerations.

(1) The exemplar kernel is to learn specific scene geom-

etry for each image. (2) The local convolution is to distin-

guish object and background regions for each pixel. (3) The

depth-wise convolution is to learn different channel filters in

a convolutional layer with different purposes and to reduce

computational complexity. (4) The exemplar dilation rate is

to learn different receptive fields for different filters to ac-

count for objects with diverse scales. The above delicate

designs can be easily and efficiently implemented by comb-

ing linear operators of shift and element-wise product. As a

(b) Spatially-aware Convolution(a) Standard 2D Convolution

(c) Dynamic Local Filtering

(d) Dynamic-Depthwise-Dilated Local ConvNet

D(i, j, 3)

Dynamic Local filters

Depthwise-Dilated Local filters

Generate

Generate

Conv

Local Conv ℱ

Shifting &

Element-wise 

product

Depth map as guidance

Depth map as guidance

Adaptive

dilation rates

Conv kernel
Spatial 

Conv kernels

I

𝒜!(𝐼)

I

k × k × cn

D

cn

I

I

Novel group operation

Figure 2. Comparisons among different convolutional ap-

proaches. (a) is the traditional 2D convolution that uses a single

convolutional kernel applied on each pixel to convolve the entire

image. (b) applies multiple fixed convolutional kernels on differ-

ent regions (slices) of an image. (c) uses the depth map to gener-

ate dynamic kernels with the same receptive fields for each pixel.

(d) denotes our approach, where the filter is dynamic, depth-wise,

and has adaptive receptive fields for each pixel and channel of the

feature map. It can be implemented more efficiently with fewer

parameters than (c). Best viewed in color.

result, the efficient D4LCN can not only address the prob-

lem of the scale-sensitive and meaningless local structure

of 2D convolutions, but also benefit from the high-level se-

mantic information from RGB images compared with the

pseudo-LiDAR representation.

Our main contributions are three-fold. (1) A novel com-

ponent for 3D object detection, D4LCN, is proposed, where

the depth map guides the learning of dynamic-depthwise-

dilated local convolutions from a single monocular image.

(2) We carefully design a single-stage 3D object detection

framework based on D4LCN to learn better 3D representa-

tion for reducing the gap between 2D convolutions and 3D

point cloud-based operations. (3) Extensive experiments

show that D4LCN outperforms state-of-the-art monocular

3D detection methods and takes the first place on the KITTI

benchmark [12].

2. Related Work

Image-based Monocular 3D Detection. Previous

monocular 3D detection methods [36, 26, 41, 1, 19, 17,

4, 54] usually make assumptions about the scene geometry

and use this as a constraint to train the 2D-to-3D mapping.

Deep3DBox [36] uses the camera matrix to project a pre-

11673



dicted 3D box onto the 2D image plane, constraining each

side of the 2d detection box, such that it corresponds to any

of the eight corners of the 3D box. OFTNet [43] introduces

the orthographic feature transform, which maps image-

based features into an orthographic 3D space. It is help-

ful when scale of objects varies drastically. [21, 31] inves-

tigated different ways of learning the confidence to model

heteroscedastic uncertainty by using a 3D intersection-over-

union (IoU) loss. To introduce more prior information,

[2, 24, 57, 53] used 3D shapes as templates to get better

object geometry. [23] predicts a point cloud in an object-

centered coordinate system and devises a projection align-

ment loss to learn local scale and shape information. [34]

proposes a 3D synthetic data augmentation algorithm via

in-painting recovered meshes directly onto the 2D scenes.

However, as it is not easy for 2D image features to rep-

resent 3D structures, the above geometric constraints fail to

restore accurate 3D information of objects from just a sin-

gle monocular image. Therefore, our motivation is to utilize

depth information, which essentially bridges gap between

2D and 3D representation, to guide learning the 2D-to-3D

feature representation.

Point Cloud-based Monocular 3D Detection. Previ-

ous monocular methods [48, 33, 50] convert image-based

depth maps to pseudo-LiDAR representations for mimick-

ing the LiDAR signal. With this representation, existing

LiDAR-based detection algorithms can be directly applied

to monocular 3D object detection. For example, [50] de-

tects 2D object proposals in the input image and extracts a

point cloud frustum from the pseudo-LiDAR for each pro-

posal. [33] proposes a multi-modal features fusion module

to embed the complementary RGB cue into the generated

point clouds representation. However, this depth-to-LiDAR

transformation relies heavily on the accuracy of depth map

and cannot make use of RGB information. In contrast, our

method treats depth map as guidance to learn better 3D rep-

resentation from RGB images.

LiDAR-based 3D Detection. With the development of

deep learning on point sets, 3D feature learning [39, 40, 59]

is able to learn deep point-based and voxel-based features.

Benefit from this, LiDAR-based methods have achieved

promising results in 3D detection. For example, [59] di-

vides point clouds into equally spaced 3D voxels and trans-

forms a group of points within each voxel into a unified

feature representation. [47] applies the FPN technique to

voxel-based detectors. [55] investigates a sparse convolu-

tion for voxel-based networks. [25] utilizes PointNets to

learn a representation of point clouds organized in vertical

columns (pillars). [38] leverages mature 2D object detec-

tors to learn directly from 3D point clouds. [49] aggregates

point-wise features as frustum-level feature vectors. [44, 7]

directly generated a small number of high-quality 3D pro-

posals from point clouds via segmenting the point clouds of

the whole scene into foreground and background. There are

also some works focus on multi-sensor fusion (LIDAR as

well as cameras) for 3D object detection. [29, 28] proposed

a continuous fusion layer that encodes both discrete-state

image features as well as continuous geometric informa-

tion. [6, 22] used LIDAR point clouds and RGB images

to generate features and encoded the sparse 3D point cloud

with a compact multi-view representation.

Dynamic Networks. A number of existing techniques

can be deployed to exploit the depth information for monoc-

ular 3D detection. M3D-RPN [1] proposes depth-aware

convolution which uses non-shared kernels in the row-space

to learn spatially-aware features. However, this rough and

fixed spatial division has bias and fail to capture object

scale and local structure. Dynamic filtering network [20]

uses the sample-specific and position-specific filters but has

heavy computational cost, and it also fails to solve the scale-

sensitive problem of 2D convolutions. Trident network [27]

utilizes manually defined multi-head detectors for 2D detec-

tion. However, it needs to manually group data for different

heads. Other techniques like deformable convolution [8]

and variants of [20] such as [14, 46, 52, 11], fail to capture

object scale and local structure as well. In this work, our

depth-guided dynamic dilated local convolutional network

is proposed to solve the two problems associated with 2D

convolutions and narrow the gap between 2D convolution

and point cloud-based 3D processing.

3. Methodology

As a single-stage 3D detector, our framework consists of

three key components: a network backbone, a depth-guided

filtering module, and a 2D-3D detection head (see Figure 3).

Details of each component are given below. First, we give

an overview of our architecture as well as backbone net-

works. We then detail our depth-guided filtering module

which is the key component for bridging 2D convolutions

and the point cloud-based 3D processing. Finally, we out-

line the details of our 2D-3D detection head.

3.1. Backbone

To utilize depth maps as guidance of 2D convolutions,

we formulate our backbone as a two-branch network: the

first branch is the feature extraction network using RGB im-

ages, and the other is the filter generation network to gen-

erate convolutional kernels for feature extraction network

using the estimated depth as input. These two networks

process the two inputs separately and their outputs of each

block are merged by the depth-guided filtering module.

The backbone of the feature extraction network is

ResNet-50 [16] without its final FC and pooling layers, and

is pre-trained on the ImageNet classification dataset [9]. To

obtain a larger field-of-view and keep the network stride at

16, we find the last convolutional layer (conv5 1, block4)

11674



RGB Image

Depth Map

Estimate

Depth-Guided Filtering Module

Shift with different dilation rates 

Adaptive weights
𝒜!, 𝒜", 𝒜# ∈ ℝ𝑐

2D bbox [x’,	y’,	w’,	h’]2D

3D shape [w’,	h’,	l’]3D

3D center [x’,	y’]P,	z’3D

3D rotation 𝛼’3D

3D corners 𝑥’(m) , y’(m) , z’(m)

Element-wise product

3D detection result

NMS & Transform

I4

w4

h4

c4

I1

I2

I3

h1 h2 h3

w1

w2
w3

c3
c2

c1

D1

D2

D3

h1 h2 h3

w1

w2
w3

c3
c2

c1

𝑤 = 3𝑤 = 2𝑤 = 1

𝑘×𝑘

(𝑔𝑖, 𝑔𝑗)

h

c
w

Dilation

𝑒. 𝑔. 0,1 0, −1 1,1 …

Shift-pooling 

by nf

Feature extraction network

Filter generation network

Output

Figure 3. Overview of our framework for monocular 3D object detection. The depth map is first estimated from the RGB image and used

as the input of out two-branch network together with the RGB image. Then the depth-guided filtering module is used to fuse there two

information of each residual block. Finally, a one-stage detection head with Non-Maximum Suppression (NMS) is employed for prediction.

that decreases resolution and set its stride to 1 to avoid sig-

nal decimation, and replace all subsequent convolutional

layers with dilated convolutional layers (the dilation rate is

2). For the filter generation network, we only use the first

three blocks of ResNet-50 to reduce computational costs.

Note the two branches have the same number of channels

of each block for the depth guided filtering module.

3.2. Depth­Guided Filtering Module

Traditional 2D convolution kernels fail to efficiently

model the depth-dependent scale variance of the objects

and effectively reason about the spatial relationship between

foreground and background pixels. On the other hand,

pseudo-lidar representations rely too much on the accuracy

of depth and lose the RGB information. To address these

problems simultaneously, we propose our depth-guided fil-

tering module. Notably, by using our module, the convolu-

tional kernels and their receptive fields (dilation) are differ-

ent for different pixels and channels of different images.

Since the kernel of our feature extraction network is

trained and generated by the depth map, it is sample-specific

and position-specific, as in [20, 14], and thus can cap-

ture meaningful local structures as the point-based opera-

tor in point clouds. We first introduce the idea of depth-

wise convolution [18] to the network, termed depth-wise

local convolution (DLCN). Generally, depth-wise convolu-

tion (DCN) involves a set of global filters, where each filter

only operates at its corresponding channel, while DLCN re-

quires a feature volume of local filters the same size as the

input feature maps. As the generated filters are actually a

feature volume, a naive way to perform DLCN requires to

convert the feature volume into hn × wn location-specific

filters and then apply depth-wise and local convolutions

to the feature maps, where hn and wn are the height and

width of the feature maps at layer n. This implementation

would be time-consuming as it ignores the redundant com-

putations in neighboring pixels. To reduce the time cost,

we employ the shift and element-wise product operators,

in which shift [51] is a zero-flop zero-parameter operation,

and element-wise product requires little calculation. Con-

cretely, let In ∈ R
hn×wn×cn and Dn ∈ R

hn×wn×cn be

the output of the feature extraction network and filter gen-

eration network, respectively, where n is the index of the

block (note that block n corresponds to the layer convn+1

in ResNet). Let k denote the kernel size of the feature ex-

traction network. By defining a shifting grid {(gi, gj)}, g ∈
(int)[1− k/2, k/2− 1] that contains k · k elements, for ev-

ery vector (gi, gj), we shift the whole feature map I ⊙ D
towards the direction and step size indicated by (gi, gj) and

get the result (I ⊙ D)(gi,gj). For example, g ∈ {−1, 0, 1}
when k = 3, and the feature map is moved towards nine

directions with a horizontal or vertical step size of 0 or 1.

We then use the sum and element-wise product operations

to compute our filtering result:

I ′ =
1

k · k

∑

gi,gj

(I ⊙D)(gi,gj). (1)

To encourage information flow between channels of the

depth-wise convolution, we further introduce a novel shift-

pooling operator in the module. Considering nf as the num-

ber of channels with information flow, we shift the feature

maps along the channel axis for nf times by 1, 2, .., nf − 1

to obtain new nf − 1 shifted feature maps I
(ni)
s , ni ∈

{1, 2, ..., nf − 1}. Then we perform element-wise mean

to the shifted feature maps and the original I to obtain the

new feature map as the input of the module. The process of

this shift-pooling operation is shown in Figure 4 (nf = 3).

Compared to the idea ‘group’ of depth-wise convolution

in [18, 58] which aims to group many channels into a group

11675



to perform information fusion between them, the proposed

shift-pooling operator is more efficient and adds no addi-

tional parameters to the convolution. The size of our con-

volutional weights of each local kernel is always k×k× cn
when applying shift-pooling, while it changes significantly

in [18] for different number of groups from k × k × cn to

k×k×cn×cn in group convolution (assume that the convo-

lution keeps the number of channels unchanged). Note that

it is difficult for the filter generation network to generate so

many kernels for the traditional convolutions F between all

channels, and the characteristic of being position-specific

dramatically increases their computational cost.

With our depth-wise formulation, different kernels can

have different functions. This enables us to assign differ-

ent dilation rates [56] for each filter to address the scale-

sensitive problem. Since there are huge intra-class and

inter-class scale differences in an RGB image, we use I to

learn an adaptive dilation rate for each filter to obtain dif-

ferent sizes of receptive fields by an adaptive function A.

Specifically, let d denote our maximum dilation rate, the

adaptive function A consists of three layers: (1) an Adap-

tiveMaxPool2d layer with the output size of d×d and chan-

nel number c; (2) a convolutional layer with a kernel size of

d× d and channel number d× c; (3) a reshape and softmax

layer to generate d weights Aw(I), w ∈ (int)[1, d] with a

sum of 1 for each filter. Formally, our guided filtering with

adaptive dilated function (D4LCN) is formulated as follows:

I ′ =
1

d · k · k
·
∑

w

Aw(I)
∑

gi,gj

(I ⊙D)(gi∗w,gj∗w), (2)

For different images, our depth-guided filtering module as-

signs different kernels on different pixels and adaptive re-

ceptive fields (dilation) on different channels. This solves

the problem of scale-sensitive and meaningless local struc-

ture of 2D convolutions, and also makes full use of RGB

information compared to pseudo-LiDAR representations.

3.3. 2D­3D Detection Head

In this work, we adopt a single-stage detector with prior-

based 2D-3D anchor boxes [42, 32] as our base detector.

3.3.1 Formulation

Inputs: The output feature map I4 ∈ R
h4×w4 of our back-

bone network with a network stride factor of 16. Follow-

ing common practice, we use a calibrated setting which

assumes that per-image camera intrinsics K ∈ R
3×4 are

available both at the training and test time. The 3D-to-2D

projection can be written as:





x
y
1





P

· z3D = K ·









x
y
z
1









3D

(3)

(1+2+3)

(2+3+4)

(3+4+5)

(cn+1+2)

𝐼 𝐼 𝐼!
(#)

𝐼!
(%)

Shift Shift

1

2

cn

cn-1

𝐼&
!
'(

Input

index

...

...

2

1

cn 1

2

cn

index

...

...

index

...

...

nf =3

cn

hn
wn

Element-wise

Mean

Figure 4. An example of our shift-pooling operator of depth-wise

convolution in depth-guided filtering module when nf is 3. It is

efficiently implemented by shift and element-wise mean operators.

where [x, y, z]3D denotes the horizontal position, height and

depth of the 3D point in camera coordinates, and [x, y]P is

the projection of the 3D point in 2D image coordinates.

Ground Truth: We define a ground truth (GT) box

using the following parameters: the 2D bounding box

[x, y, w, h]2D, where (x, y) is the center of 2D box and w, h
are the width and height of 2D box; the 3D center [x, y, z]3D
represents the location of 3D center in camera coordinates;

the 3D shapes [w, h, l]3D (3D object dimensions: height,

width, length (in meters)), and the allocentric pose α3D

in 3D space (observation angle of object, ranging [−π, π])
[34]. Note that we use the minimum enclosing rectangle of

the projected 3D box as our ground truth 2D bounding box.

Outputs: Let na denote the number of anchors and nc

denote the number of classes. For each position (i, j) of

the input, the output for an anchor contains 35 + nc pa-

rameters: {[tx, ty, tw, th]2D, [tx, ty]P , [tz, tw, th, tl, tα]3D,

t
(m)
C , s}, where [tx, ty, tw, th]2D is the predicted 2D box;

[tx, ty]P is the position of the projected 3D corner in

the 2D plane, [tz, tw, th, tl, tα]3D denotes the depth, pre-

dicted 3D shape and rotation, respectively; t
(m)
C =

{[t
(m)
x , t

(m)
y ]P , [t

(m)
z ]3D},m ∈ {1, 2, ..., 8} denotes 8 pro-

jected 3D corners; s denotes the classification score of each

class. The size of the output is h4 × w4 × na × (35 + nc),
where (h4, w4) is the size of the input image with a down

sampling factor of 16. The output is actually an anchor-

based transformation of the 2D-3D box.

3.3.2 2D-3D Anchor

Inspired by [1], we utilize 2D-3D anchors with pri-

ors as our default anchor boxes. More specifically, a

2D-3D anchor is first defined on the 2D space as in

[32] and then use the corresponding priors in the train-

ing dataset to calculate the part of it in the 3D space.

One template anchor is defined using parameters of both

spaces: {[Ax, Ay, Aw, Ah]2D, [Az, Aw, Ah, Al, Aα]3D},

where [Az, Aw, Ah, Al, Aα]3D denotes the 3D anchor

(depth, shape, rotation).

For 2D anchors [Ax, Ay, Aw, Ah]2D, we use 12 differ-

11676



ent scales ranging from 30 to 400 pixels in height follow-

ing the power function of 30 ∗ 1.265exp, exp ∈ (int)[0, 11]
and aspect ratios of [0.5, 1.0, 1.5] to define a total of 36 an-

chors. We then project all ground truth 3D boxes to the 2D

space. For each projected box, we calculate its intersection

over union (IoU) with each 2D anchor and assign the corre-

sponding 3D box to the anchors that have an IoU ≥ 0.5. For

each 2D anchor, we thus use the statistics across all match-

ing ground truth 3D boxes as its corresponding 3D anchor

[Az, Aw, Ah, Al, Aα]3D. Note that we use the same anchor

parameters [Ax, Ay]2D for the regression of [tx, ty]2D and

[tx, ty]P . The anchors enable our network to learn a rela-

tive value (residual) of the ground truth, which significantly

reduces the difficulty of learning.

3.3.3 Data Transformation

We combine the output of our network which is an anchor-
based transformation of the 2D-3D box and the pre-defined
anchors to obtain our estimated 3D boxes:

[x′

, y
′]2D = [Ax, Ay]2D + [tx, ty]2D ∗ [Aw, Ah]2D

[x′

, y
′]P = [Ax, Ay]2D + [tx, ty]P ∗ [Aw, Ah]2D

[x′(m)
, y

′(m)]P = [Ax, Ay]2D + [t(m)
x , t

(m)
y ]P ∗ [Aw, Ah]2D

[w′

, h
′]2D = [Aw, Ah]2D · exp([tw, th]2D)

[w′

, h
′

, l
′]3D = [Aw, Ah, Al]3D · exp([tw, th, tl]3D)

[z′, z′(m)
, α

′]3D = [Az, Az, Aα] + [tz, tz, talpha]3D. (4)

where [x′, y′]P , [z
′, z′(m), α′]3D denote respectively the es-

timated 3D center projection in 2D plane, the depth of 3D

center and eight corners, the 3D rotation by combining out-

put of the network and the anchor.

3.3.4 Losses

Our overall loss contains a classification loss, a 2D regres-

sion loss, a 3D regression loss and a 2D-3D corner loss. We

use the idea of focal loss [30] to balance the samples. Let st
and γ denote the classification score of target class and the

focusing parameter, respectively. We have:

L = (1− st)
γ(Lclass + L2d + L3d + Lcorner), (5)

where γ = 0.5 in all experiments, and Lclass, L2d, L3d,

Lcorner are the classification loss, 2D regression loss, 3D

regression loss and D-3D corner loss, respectively.

In this work, we employ the standard cross-entropy (CE)

loss for classification:

Lclass = − log(st). (6)

Moreover, for both 2D and 3D regression, we simply use

the SmoothL1 regression losses:

L2D = SmoothL1([x′

, y
′

, w
′

, h
′]2D, [x, y, w, h]2D),

L3D = SmoothL1([w′

, h
′

, l
′

, z
′

, α
′]3D, [w, h, l, z, α]3D),

+ SmoothL1([x′

, y
′]P , [x, y]P ),

Lcorner =
1

8

∑
SmoothL1([x′(m)

, y
′(m)]P , [x

(m)
, y

(m)]P )

+ SmoothL1([z′(m)]3D, [z]3D), (7)

where [x(m), y(m)]P denotes the projected corners in image

coordinates of the GT 3D box and [z]3D is its GT depth.

4. Experiments

4.1. Dataset and Setting

KITTI Dataset. The KITTI 3D object detection dataset

[12] is widely used for monocular and LiDAR-based 3D

detection. It consists of 7,481 training images and 7,518

test images as well as the corresponding point clouds and

the calibration parameters, comprising a total of 80,256 2D-

3D labeled objects with three object classes: Car, Pedes-

trian, and Cyclist. Each 3D ground truth box is assigned

to one out of three difficulty classes (easy, moderate, hard)

according to the occlusion and truncation levels of objects.

There are two train-val splits of KITTI: the split1 [5] con-

tains 3,712 training and 3,769 validation images, while the

split2 [53] uses 3,682 images for training and 3,799 images

for validation. The dataset includes three tasks: 2D detec-

tion, 3D detection, and Bird’s eye view, among which 3D

detection is the focus of 3D detection methods.

Evaluation Metrics. Precision-recall curves are used for

evaluation (with the IoU threshold of 0.7). Prior to Aug.

2019, 11-point Interpolated Average Precision (AP) met-

ric AP|R11
proposed in the Pascal VOC benchmark is sep-

arately computed on each difficulty class and each ob-

ject class. After that, the 40 recall positions-based metric

AP|R40
is used instead of AP|R11

, following [45]. All meth-

ods are ranked by AP|R11
of the 3D car detection in the

moderate setting.

Implementation Details. We use our depth-guided filter-

ing module three times on the first three blocks of ResNet,

which have different network strides of 4,8,16, respectively.

[10] is used for depth estimation. A drop-channel layer with

a drop rate of 0.2 is used after each module and a dropout

layer with a drop rate of 0.5 is used after the output of the

network backbone. For our single-stage detector, we use

two convolutional layers as our detection head. The number

of channels in the first layer is 512, and na∗(35+nc) for the

second layer, where nc is set to 4 for three object classes and

the background class, and na is set to 36. Non Maximum

Suppression (NMS) with an IoU threshold of 0.4 is used on

the network output in 2D space. Since the regression of the

3D rotation α is more difficult than other parameters, a hill-

climbing post-processing step is used for optimizing α as in

11677



Method
Test set Split1 Split2

Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

OFT-Net [43] 1.61 1.32 1.00 4.07 3.27 3.29 – – –

FQNet [31] 2.77 1.51 1.01 5.98 5.50 4.75 5.45 5.11 4.45

ROI-10D [34] 4.32 2.02 1.46 10.25 6.39 6.18 – – –

GS3D [26] 4.47 2.90 2.47 13.46 10.97 10.38 11.63 10.51 10.51

Shift R-CNN [37] 6.88 3.87 2.83 13.84 11.29 11.08 – – –

MonoGRNet [41] 9.61 5.74 4.25 13.88 10.19 7.62 – – –

MonoPSR [23] 10.76 7.25 5.85 12.75 11.48 8.59 13.94 12.24 10.77

Mono3D-PLiDAR [50] 10.76 7.50 6.10 31.50 21.00 17.50 – – –

SS3D [21] 10.78 7.68 6.51 14.52 13.15 11.85 9.45 8.42 7.34

MonoDIS [45] 10.37 7.94 6.40 11.06 7.60 6.37 – – –

Pseudo-LiDAR [48] – – – 19.50 17.20 16.20 – – –

M3D-RPN [1] 14.76 9.71 7.42 20.27 17.06 15.21 20.40 16.48 13.34

AM3D [1] 16.50 10.74 9.52 (+0.01) 32.23 (+5.26) 21.09 17.26 – – –

D4LCN (Ours) 16.65 (+0.15) 11.72 (+0.98) 9.51 26.97 21.71 (+0.62) 18.22 (+0.96) 24.29 (+3.89) 19.54 (+3.06) 16.38 (+3.04)

Table 1. Comparative results on the KITTI 3D object detection dataset. For the test set, only AP|R40
is provided by the official leaderboard.

We thus show the results on the test set in AP|R40
and split1/split2 in AP|R11

. We use red to indicate the highest result with relative

improvement in parentheses and blue for the second-highest result of the class car. Our method achieves 7 firsts and 2 seconds in 9 items.

[1]. The input images are scaled to 512×1760 and horizon-

tal flipping is the only data augmentation. nf is set to 3 and

the maximum dilation rate d is set to 3 in all experiments.

The network is optimized by stochastic gradient descent

(SGD), with a momentum of 0.9 and a weight decay of

0.0005. We take a mini-batch size of 8 on 4 Nvidia Tesla

v100 GPUs (16G). We use the ‘poly’ learning rate policy

and set the base learning rate to 0.01 and power to 0.9. The

iteration number for the training process is set to 40,000.

4.2. Comparative Results

We conduct experiments on the official test set and two

splits of validation set of the KITTI dataset. Table 1 in-

cludes the top 14 monocular methods in the leaderboard,

among which our method ranks top-1. We can observe that:

(1) Our method outperforms the second-best competitor for

monocular 3D car detection by a large margin (relatively

9.1% for 10.74 vs. 11.72) under the moderate setting (which

is the most important setting of KITTI). (2) Most competi-

tors, such as [23, 33, 45, 37, 50, 1], utilize the detector

(e.g. Faster-RCNN) pre-trained on COCO/KITTI or resort

to multi-stage training to obtain better 2D detection and sta-

ble 3D results, while our model is trained end-to-end using

the standard ImageNet pre-trained model. However, we still

achieve the state-of-the-art 3D detection results, validating

the effectiveness of our D4LCN to learn 3D structure. (3)

Recently KITTI uses AP|R40
instead of AP|R11

, however,

all existing methods report the results under the old metric.

We thus also give results under AP|R11
on the validation set

for fair comparison. It can be seen that our method outper-

forms all others on the two splits for 3D car detection. Our

results under AP|R40
on validation set are shown in ablation

study.

Method Task
AP|R11

AP|R40

Easy Moderate Hard Easy Moderate Hard

3DNet

2D detection 93.42 85.16 68.14 94.13 84.45 65.73

3D detection 17.94 14.61 12.74 16.72 12.13 09.46

Bird’s-eye view 24.87 19.89 16.14 23.19 16.67 13.39

+CL

2D detection 94.04 85.56 68.50 94.98 84.93 66.11

3D detection 20.66 15.57 13.41 17.10 12.09 09.47

Bird’s-eye view 2903 23.82 19.41 24.12 17.75 13.66

+DLCN

2D detection 92.98 85.35 68.63 93.81 86.71 70.19

3D detection 23.25 17.92 15.58 18.32 13.50 10.61

Bird’s-eye view 27.76 22.89 18.73 26.78 18.68 15.14

+SP

2D detection 92.57 85.14 68.40 93.35 86.52 67.93

3D detection 25.30 19.02 17.26 19.69 14.44 11.52

Bird’s-eye view 31.39 24.40 19.85 26.91 20.07 15.77

D4LCN

2D detection 93.59 85.51 68.81 94.25 86.93 70.34

3D detection 26.97 21.71 18.22 22.32 16.20 12.30

Bird’s-eye view 34.82 25.83 23.53 31.53 22.58 17.87

Table 2. Ablation study on the class car on the KITTI split1.

4.3. Detailed Analysis

4.3.1 Ablation Study

To conduct ablation study on our model, we make compari-

son among five versions of our model: (1) 3DNet: the base-

line model using L2D and L3D without our depth-guided

filtering module; (2) + CL: the Corner Loss is added to

3DNet; (3) + DLCN: depth-guided depth-wise local filter-

ing is added; (4) + SP: shift-pooling operator is added (with

nf = 3); (5) D4LCN (our full model): adaptive dilation

rates are added, as in Eq. 2. From Table 2, we can observe

that: (1) The performance continuously increases when

more components are used for 3D object detection, showing

the contribution of each component. (2) Our depth-guided

filtering module increases the 3D detection AP scores (mod-

erate) from {15.57, 12.09} to {21.71, 16.20} w.r.t. the

AP|R11
and AP|R40

metrics, respectively. This suggests that

it is indeed effective to capture the meaningful local struc-

ture for 3D object detection. (3) The main improvement

comes from our adaptive dilated convolution (2.69 and 1.76

11678



Depth
AP|R11

AP|R40

Easy Moderate Hard Easy Moderate Hard

MonoDepth [13] 22.43 19.63 16.38 16.82 13.18 10.87

DORN [10] 26.97 21.71 18.22 22.32 16.20 12.30

DispNet [35] 30.95 24.06 20.29 25.73 18.56 15.10

PSMNet [3] 30.03 25.41 21.63 25.24 19.80 16.45

Table 3. Comparisons of depth maps of different quality for 3D

detection on the class car on the KITTI split1.

Class
Easy Moderate Hard

[split1/split2/test] [split1/split2/test] [split1/split2/test]

Car 26.97/24.29/16.65 21.71/19.54/11.72 18.22/16.38/9.51

Pedestrian 12.95/12.52/4.55 11.23/10.37/3.42 11.05/10.23/2.83

Cyclist 5.85/7.05/2.45 4.41/6.54/1.67 4.14/6.54/1.36

Table 4. Multi-class 3D detection results of our method on the

three data splits. Note that all pseudo-LiDAR based methods

[33, 50, 48] fail to detect pedestrians and cyclists.

for AP|R11
and AP|R40

, respectively), which allows each

channel of the feature map to have different receptive fields

and thus solves the scale-sensitive problem. Note that we

have tried different values of nf ∈ {1, 2, 3, 4, 5, 6}, and

found that nf = 3 is the best.

4.3.2 Evaluation of Depth Maps

To study the impact of accuracy of depth maps on the per-

formance of our method, we extract depth maps using four

different methods [13, 10, 35, 3] and then apply them to

3D detection. As reported in previous works on depth es-

timation, the three supervised methods (i.e. PSMNet, Disp-

Net, and DORN) significantly outperform the unsupervised

method [13]. Among the supervised methods, Stereo-based

methods [3, 35] are better than monocular-based DORN.

With these conclusions, we have the following observations

from Table 3: (1) The accuracy of 3D detection is higher

with better depth map. This is because that better depth

map can provide better scene geometry and local structure.

(2) As the quality of depth map increases, the growth of de-

tection accuracy becomes slower. (3) Even with the depth

maps obtained by unsupervised learning [13], our method

achieves state-of-the-art results. Compared to the pseudo-

lidar based method [33], our method relies less on the qual-

ity of depth maps (19.63 vs. 15.45 using MonoDepth).

4.3.3 Multi-Class 3D Detection

Since a person is a non-rigid body, its shape varies and its

depth information is hard to accurately estimate. For this

reason, 3D detection of pedestrians and cyclists becomes

particularly difficult. Note that all pseudo-LiDAR based

methods [33, 50, 48] fail to detect these two categories.

However, as shown in Table 4, our method still achieves sat-

isfactory performance on 3D detection of pedestrians and

Filter No.41: adaptive dilated weights 0.14, 0.60 0.26 

Filter No.89: adaptive dilated weights 0.05, 0.03, 0.92 Filter No.70: adaptive dilated weights 0.96, 0.02, 0.02

Input Image

Figure 5. Visualization of active maps corresponding to different

filters of block 3 of our D4LCN. Each filter learns three weights

representing dilation rate of 1, 2, 3, respectively. Different filters

have different functions in our model to handle the scale problem

adaptively. For example, filter 89 has large receptive fields for

large-scale cars, while filter 70 deals with the small-scale cars.

cyclists. Moreover, we also show the active maps corre-

sponding to different filters of our D4LCN in Figure 5. Dif-

ferent filters on the same layer of our model use different

sizes of receptive fields to handle objects of different scales,

including pedestrians (small) and cars (big), as well as dis-

tant cars (big) and nearby cars (small).

5. Conclusion

In this paper, we propose a Depth-guided Dynamic-

Depthwise-Dilated Local ConvNet (D4LCN) for monocular

3D objection detection, where the convolutional kernels and

their receptive fields (dilation rates) are different for differ-

ent pixels and channels of different images. These kernels

are generated dynamically conditioned on the depth map

to compensate the limitations of 2D convolution and nar-

row the gap between 2D convolutions and the point cloud-

based 3D operators. As a result, our D4LCN can not only

address the problem of the scale-sensitive and meaningless

local structure of 2D convolutions, but also benefit from the

high-level semantic information from RGB images. Exten-

sive experiments show that our D4LCN better captures 3D

information and ranks 1st for monocular 3D object detec-

tion on the KITTI dataset at the time of submission.

6. Acknowledgements

This work was partially supported by HKU Seed Fund

for Basic Research, Start-up Fund and Research Dona-

tion from SenseTime. Zhiwu Lu is partially supported by

National Natural Science Foundation of China (61976220,

61832017, and 61573363), and Beijing Outstanding Young

Scientist Program (BJJWZYJH012019100020098). Thank

Dr. Guorun Yang for his careful proofreading.

11679



References

[1] Garrick Brazil and Xiaoming Liu. M3d-rpn: Monocular 3d

region proposal network for object detection. In ICCV, pages

9287–9296, 2019. 2, 3, 5, 7

[2] Florian Chabot, Mohamed Chaouch, Jaonary Rabarisoa,

Céline Teulière, and Thierry Chateau. Deep manta: A

coarse-to-fine many-task network for joint 2d and 3d vehicle

analysis from monocular image. In CVPR, pages 2040–2049,

2017. 3

[3] Jia-Ren Chang and Yong-Sheng Chen. Pyramid stereo

matching network. In CVPR, pages 5410–5418, 2018. 8

[4] Xiaozhi Chen, Kaustav Kundu, Ziyu Zhang, Huimin Ma,

Sanja Fidler, and Raquel Urtasun. Monocular 3d object de-

tection for autonomous driving. In CVPR, pages 2147–2156,

2016. 1, 2

[5] Xiaozhi Chen, Kaustav Kundu, Yukun Zhu, Andrew G

Berneshawi, Huimin Ma, Sanja Fidler, and Raquel Urtasun.

3d object proposals for accurate object class detection. In

NeurIPS, pages 424–432, 2015. 1, 6

[6] Xiaozhi Chen, Huimin Ma, Ji Wan, Bo Li, and Tian Xia.

Multi-view 3d object detection network for autonomous

driving. In CVPR, pages 1907–1915, 2017. 3

[7] Yilun Chen, Shu Liu, Xiaoyong Shen, and Jiaya Jia. Fast

point r-cnn. In ICCV, 2019. 3

[8] Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong

Zhang, Han Hu, and Yichen Wei. Deformable convolutional

networks. In ICCV, pages 764–773, 2017. 3

[9] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical image

database. In CVPR, pages 248–255, 2009. 3

[10] Huan Fu, Mingming Gong, Chaohui Wang, Kayhan Bat-

manghelich, and Dacheng Tao. Deep ordinal regression net-

work for monocular depth estimation. In CVPR, pages 2002–

2011, 2018. 1, 6, 8

[11] Peng Gao, Hongsheng Li, Shuang Li, Pan Lu, Yikang Li,

Steven CH Hoi, and Xiaogang Wang. Question-guided hy-

brid convolution for visual question answering. In Pro-

ceedings of the European Conference on Computer Vision

(ECCV), pages 469–485, 2018. 3

[12] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we

ready for autonomous driving? the kitti vision benchmark

suite. In CVPR, pages 3354–3361, 2012. 2, 6

[13] Clément Godard, Oisin Mac Aodha, and Gabriel J. Bros-

tow. Unsupervised monocular depth estimation with left-

right consistency. In CVPR, 2017. 1, 8

[14] David Ha, Andrew Dai, and Quoc V Le. Hypernetworks.

arXiv preprint arXiv:1609.09106, 2016. 3, 4

[15] Kaiming He, Jian Sun, and Xiaoou Tang. Guided image fil-

tering. In ECCV, pages 1–14, 2010. 2

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,

pages 770–778, 2016. 3

[17] Tong He and Stefano Soatto. Mono3d++: Monocular 3d ve-

hicle detection with two-scale 3d hypotheses and task priors.

arXiv preprint arXiv:1901.03446, 2019. 1, 2

[18] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry

Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-

dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-

tional neural networks for mobile vision applications. arXiv

preprint arXiv:1704.04861, 2017. 2, 4, 5

[19] Hou-Ning Hu, Qi-Zhi Cai, Dequan Wang, Ji Lin, Min Sun,

Philipp Krahenbuhl, Trevor Darrell, and Fisher Yu. Joint

monocular 3d vehicle detection and tracking. In ICCV, pages

5390–5399, 2019. 1, 2

[20] Xu Jia, Bert De Brabandere, Tinne Tuytelaars, and Luc V

Gool. Dynamic filter networks. In NeurIPS, pages 667–675,

2016. 2, 3, 4

[21] Eskil Jörgensen, Christopher Zach, and Fredrik Kahl.

Monocular 3d object detection and box fitting trained end-

to-end using intersection-over-union loss. arXiv preprint

arXiv:1906.08070, 2019. 3, 7

[22] Jason Ku, Melissa Mozifian, Jungwook Lee, Ali Harakeh,

and Steven L Waslander. Joint 3d proposal generation and

object detection from view aggregation. In 2018 IEEE/RSJ

International Conference on Intelligent Robots and Systems

(IROS), pages 1–8, 2018. 3

[23] Jason Ku, Alex D Pon, and Steven L Waslander. Monocular

3d object detection leveraging accurate proposals and shape

reconstruction. In CVPR, pages 11867–11876, 2019. 3, 7

[24] Abhijit Kundu, Yin Li, and James M Rehg. 3d-rcnn:

Instance-level 3d object reconstruction via render-and-

compare. In CVPR, pages 3559–3568, 2018. 3

[25] Alex H Lang, Sourabh Vora, Holger Caesar, Lubing Zhou,

Jiong Yang, and Oscar Beijbom. Pointpillars: Fast encoders

for object detection from point clouds. In CVPR, pages

12697–12705, 2019. 3

[26] Buyu Li, Wanli Ouyang, Lu Sheng, Xingyu Zeng, and Xiao-

gang Wang. Gs3d: An efficient 3d object detection frame-

work for autonomous driving. In CVPR, pages 1019–1028,

2019. 1, 2, 7

[27] Yanghao Li, Yuntao Chen, Naiyan Wang, and Zhaoxiang

Zhang. Scale-aware trident networks for object detection.

In ICCV, 2019. 3

[28] Ming Liang, Bin Yang, Yun Chen, Rui Hu, and Raquel Urta-

sun. Multi-task multi-sensor fusion for 3d object detection.

In CVPR, pages 7345–7353, 2019. 3

[29] Ming Liang, Bin Yang, Shenlong Wang, and Raquel Urtasun.

Deep continuous fusion for multi-sensor 3d object detection.

In ECCV, pages 641–656, 2018. 3

[30] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and

Piotr Dollár. Focal loss for dense object detection. In ICCV,

pages 2980–2988, 2017. 6

[31] Lijie Liu, Jiwen Lu, Chunjing Xu, Qi Tian, and Jie Zhou.

Deep fitting degree scoring network for monocular 3d object

detection. In CVPR, pages 1057–1066, 2019. 3, 7

[32] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian

Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C

Berg. Ssd: Single shot multibox detector. In ECCV, pages

21–37, 2016. 5

[33] Xinzhu Ma, Zhihui Wang, Haojie Li, Pengbo Zhang, Wanli

Ouyang, and Xin Fan. Accurate monocular 3d object detec-

tion via color-embedded 3d reconstruction for autonomous

driving. In ICCV, pages 6851–6860, 2019. 1, 3, 7, 8

11680



[34] Fabian Manhardt, Wadim Kehl, and Adrien Gaidon. Roi-

10d: Monocular lifting of 2d detection to 6d pose and metric

shape. In CVPR, pages 2069–2078, 2019. 3, 5, 7

[35] Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer,

Daniel Cremers, Alexey Dosovitskiy, and Thomas Brox. A

large dataset to train convolutional networks for disparity,

optical flow, and scene flow estimation. In CVPR, pages

4040–4048, 2016. 8

[36] Arsalan Mousavian, Dragomir Anguelov, John Flynn, and

Jana Kosecka. 3d bounding box estimation using deep learn-

ing and geometry. In CVPR, pages 7074–7082, 2017. 1, 2

[37] Andretti Naiden, Vlad Paunescu, Gyeongmo Kim, Byeong-

Moon Jeon, and Marius Leordeanu. Shift r-cnn: Deep

monocular 3d object detection with closed-form geometric

constraints. arXiv preprint arXiv:1905.09970, 2019. 7

[38] Charles R Qi, Wei Liu, Chenxia Wu, Hao Su, and Leonidas J

Guibas. Frustum pointnets for 3d object detection from rgb-d

data. In CVPR, pages 918–927, 2018. 3

[39] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.

Pointnet: Deep learning on point sets for 3d classification

and segmentation. In CVPR, pages 652–660, 2017. 3

[40] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J

Guibas. Pointnet++: Deep hierarchical feature learning on

point sets in a metric space. In NeurIPS, pages 5099–5108,

2017. 3

[41] Zengyi Qin, Jinglu Wang, and Yan Lu. Monogrnet: A geo-

metric reasoning network for monocular 3d object localiza-

tion. In AAAI, volume 33, pages 8851–8858, 2019. 1, 2,

7

[42] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali

Farhadi. You only look once: Unified, real-time object de-

tection. In CVPR, pages 779–788, 2016. 5

[43] Thomas Roddick, Alex Kendall, and Roberto Cipolla. Ortho-

graphic feature transform for monocular 3d object detection.

arXiv preprint arXiv:1811.08188, 2018. 3, 7

[44] Shaoshuai Shi, Xiaogang Wang, and Hongsheng Li. Pointr-

cnn: 3d object proposal generation and detection from point

cloud. In CVPR, pages 770–779, 2019. 3

[45] Andrea Simonelli, Samuel Rota Rota Bulò, Lorenzo Porzi,

Manuel López-Antequera, and Peter Kontschieder. Dis-

entangling monocular 3d object detection. arXiv preprint

arXiv:1905.12365, 2019. 6, 7

[46] Jie Tang, Fei-Peng Tian, Wei Feng, Jian Li, and Ping Tan.

Learning guided convolutional network for depth comple-

tion. arXiv preprint arXiv:1908.01238, 2019. 3

[47] Bei Wang, Jianping An, and Jiayan Cao. Voxel-fpn: multi-

scale voxel feature aggregation in 3d object detection from

point clouds. arXiv preprint arXiv:1907.05286, 2019. 3

[48] Yan Wang, Wei-Lun Chao, Divyansh Garg, Bharath Hariha-

ran, Mark Campbell, and Kilian Q Weinberger. Pseudo-lidar

from visual depth estimation: Bridging the gap in 3d object

detection for autonomous driving. In CVPR, pages 8445–

8453, 2019. 1, 3, 7, 8

[49] Zhixin Wang and Kui Jia. Frustum convnet: Sliding frustums

to aggregate local point-wise features for amodal 3d object

detection. arXiv preprint arXiv:1903.01864, 2019. 3

[50] Xinshuo Weng and Kris Kitani. Monocular 3d object

detection with pseudo-lidar point cloud. arXiv preprint

arXiv:1903.09847, 2019. 1, 3, 7, 8

[51] Bichen Wu, Alvin Wan, Xiangyu Yue, Peter Jin, Sicheng

Zhao, Noah Golmant, Amir Gholaminejad, Joseph Gonza-

lez, and Kurt Keutzer. Shift: A zero flop, zero parameter

alternative to spatial convolutions. In CVPR, pages 9127–

9135, 2018. 4

[52] Jialin Wu, Dai Li, Yu Yang, Chandrajit Bajaj, and Xiangyang

Ji. Dynamic filtering with large sampling field for convnets.

In ECCV, pages 185–200, 2018. 3

[53] Yu Xiang, Wongun Choi, Yuanqing Lin, and Silvio Savarese.

Data-driven 3d voxel patterns for object category recogni-

tion. In CVPR, pages 1903–1911, 2015. 3, 6

[54] Bin Xu and Zhenzhong Chen. Multi-level fusion based 3d

object detection from monocular images. In CVPR, pages

2345–2353, 2018. 2

[55] Yan Yan, Yuxing Mao, and Bo Li. Second: Sparsely embed-

ded convolutional detection. Sensors, 18(10):3337, 2018. 3

[56] Fisher Yu and Vladlen Koltun. Multi-scale context

aggregation by dilated convolutions. arXiv preprint

arXiv:1511.07122, 2015. 5

[57] Muhammad Zeeshan Zia, Michael Stark, and Konrad

Schindler. Are cars just 3d boxes?-jointly estimating the 3d

shape of multiple objects. In CVPR, pages 3678–3685, 2014.

3

[58] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun.

Shufflenet: An extremely efficient convolutional neural net-

work for mobile devices. In CVPR, pages 6848–6856, 2018.

4

[59] Yin Zhou and Oncel Tuzel. Voxelnet: End-to-end learning

for point cloud based 3d object detection. In CVPR, pages

4490–4499, 2018. 3

11681


