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Abstract

We propose minimal solutions to relative pose estima-

tion problem from two views sharing a common direction

with unknown focal length. This is relevant for cameras

equipped with an IMU (inertial measurement unit), e.g.,

smart phones, tablets. Similar to the 6-point algorithm for

two cameras with unknown but equal focal lengths and 7-

point algorithm for two cameras with different and unknown

focal lengths, we derive new 4- and 5-point algorithms for

these two cases, respectively. The proposed algorithms can

cope with coplanar points, which is a degenerate configu-

ration for these 6- and 7-point counterparts. We present a

detailed analysis and comparisons with the state of the art.

Experimental results on both synthetic data and real images

from a smart phone demonstrate the usefulness of the pro-

posed algorithms.

1. Introduction

Estimating relative camera motion from two views us-

ing minimal point correspondences is a classical problem in

computer vision. For example, given internally calibrated

cameras, it is well known that the relative pose can be es-

timated using the 5-point algorithm [16, 21, 28]. An im-

portant case arises when the only unknown camera intrinsic

parameter is the focal length (semi-calibrated case). It is im-

portant in practice since most modern CCD or CMOS cam-

eras have square-shaped pixels and central principal point.

If two cameras have shared and unknown focal length, the

relative motion and common focal length can be estimated

using six point correspondences [16, 21, 22, 30]. If the fo-

cal lengths of the two cameras are different and unknown,

at least seven point correspondences are needed to recover

the relative motion and focal lengths [3, 15]. Minimal-case
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Figure 1: Visualization of the coordinate used in this pa-

per. The cameras have a common gravity direction. The

gravity vector g = [gx, gy, gz] can be obtained form IMU

readings, and the roll and pitch angles w.r.t the world co-

ordinate (gravity) can be extracted. Then the points can be

rotated so that the y-axis matches the gravity direction.

algorithms can be used with RANSAC [10] in for exam-

ple, SfM (structure-from-motion) pipelines. Using as few

points as possible is of extreme importance to reduce pro-

cessing time. However, this usually requires additional con-

straints or data. For example, if the common gravity di-

rection between the two views are known, the number of

needed points for the relative pose estimation can be re-

duced [9, 12, 27, 29, 31].

In this paper, we assume that the views have a common

direction. This case is relevant for smart devices, e.g., smart

phones, tablets, which have IMUs to measure the gravity

direction. We can align one of the axes (e.g., y-axis) of the

cameras with this direction (Figure 1). Then there is only

one unknown rotation parameter so that we can use fewer

point correspondences.

Given this assumption, we propose minimal solutions to

the two-view relative pose problems with unknown focal

length. The main contributions of this paper are:

• For two cameras with the same unknown focal length,

we propose a 4-point algorithm to estimate the camera
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motion and focal length.

• For two cameras with different and unknown focal

lengths, we show that only five points are required to

recover the camera motion and the focal lengths.

• We present both the polynomial eigenvalue solution

and action matrix solution to the proposed problems.

The most closely related work to ours is by Ding et al. [9],

which solves the relative pose problem with unknown focal

length using a homography and the gravity direction. Un-

like them, we do not need to assume coplanar points, and

the proposed methods are more general. Compared to the

standard 6- and 7-point algorithms, the proposed approach

has two advantages. (i) It requires fewer correspondences,

which is important for RANSAC, (ii) They are more accu-

rate with noisy data. In addition, the proposed 4- and 5-

point algorithms can deal with the case that points are on a

plane in 3D space, which is a degenerate configuration for

existing 6- and 7-point algorithms [18].

2. Problem statement

Let mi = [ui, vi, 1]
T and m′

i = [u′

i, v
′

i, 1]
T be the ho-

mogeneous coordinates of corresponding points in the first

and second images. The Euclidean transformation (R, T )
of SE(3) between the two frames can be expressed as:

λ2K
−1
2 m′

i = λ1RK−1
1 mi + T, (1)

where λ1, λ2 are the depths of the image points mi,m
′

i, and

K1,K2 are the camera intrinsic matrices of the first and sec-

ond cameras, respectively.

In this paper, we assume that the views have a common

reference direction. We can use the gravity direction com-

puted by an IMU on mobile phones or tablets for this ref-

erence direction. Without loss of generality, we can align

the y-axis of the two cameras with the common reference

direction. Using this direction, we can compute the roll

and pitch angles of the two correspondence cameras for the

alignment. Usually if we want to know the extrinsic param-

eters between the camera and the IMU, we need to know

the intrinsic parameters of the camera first. However, smart

devices such as smart phones and tablets are special, be-

cause the relationship between the axes of the camera and

the IMU are usually approximate to 0◦, ±90◦, 180◦ [9, 14].

In this case, we can directly obtain the rotation between

the camera and the IMU. Let’s denote the rotation matri-

ces from the roll and pitch angles of the two camera frames

as (Rr, Rp) ↔ (R′
r, R

′
p). In this case, (1) can be written as

λ2R
′

pR
′

rK
−1
2 m′

i = λ1RyRpRrK
−1
1 mi + T̃ , (2)

where Ry is the rotation from the yaw angle (around the

y-axis), and T̃ = R′
pR

′
rT is the translation after the align-

ment. For most modern CCD or CMOS cameras, it is rea-

sonable to assume that the cameras have square-shaped pix-

els, and the principal point coincides with the image cen-

ter [16]. Hence, we can let K−1
1 = diag(1, 1, f1),K

−1
2 =

diag(1, 1, f2) for the first and second cameras. Since the

cross product of λ2R
′
pR

′
rK

−1
2 m′

i and λ1RyRpRrK
−1
1 mi

is perpendicular to the translation T̃ , we obtain

(R′

pR
′

r[u
′

i, v
′

i, f2]
⊤)×(RyRpRr[ui, vi, f1]

⊤) · T̃ = 0. (3)

In this case, the depth parameters λ1, λ2 are eliminated. The

rotation matrix Ry can be written as

Ry =

⎡
⎣
cos θ 0 sin θ
0 1 0

-sin θ 0 cos θ

⎤
⎦ , (4)

where θ is the rotation angle around the gravity direction.

The rotation matrix Ry can thus be rewritten as

Ry =
1

1 + s2

⎡
⎣
1−s2 0 2s
0 1+s2 0

−2s 0 1−s2

⎤
⎦ , (5)

where s = tan θ
2 . This formulation introduces a degeneracy

for a 180◦ rotation, which can almost be ignored in real ap-

plication. Since (3) is homogeneous, the scale factor 1
1+s2

in (5) can be omitted. Our aim is to estimate the rotation,

translation and focal lengths of the cameras using the mini-

mal number of point correspondences.

3. Shared and unknown focal length - E4f

The first situation is that the two cameras have the same

focal length. For example, the scenes are captured by

a smart phone with constant focal length. In this case,

we have a 4-DOF problem with respect to {s, f, tx, ty, tz}
(there are 5 unknowns, but the translation is up to a scale

factor). Since each point correspondence gives one con-

straint, we need at least 4 points. By stacking the constraint

rows for 4 point correspondences, constraint (3) can be writ-

ten as

A T̃ = 0, (6)

where A is a 4× 3 data matrix and the ith row of A is

Ai = (R′

pR
′

r[u
′

i, v
′

i, f ]
⊤)× (RyRpRr[ui, vi, f ]

⊤). (7)

Since (6) has non-trivial solutions, the matrix A must be

rank-deficient, which means that every determinant of all

its 3× 3 submatrices must vanish.

Property 1. The determinant of the 3 × 3 submatrices of

A can be written as det(Aijk) = (1 + s2)h(s, f), where

h(s, f) are polynomials in {s, f} (subscripts ijk indicate

the rows of the matrix A).

One can verify this property using Matlab or other sym-

bolic computation softwares. In this case, we can reduce
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the degrees of the polynomials. In particularly, we obtain

C4
3 = 4 polynomials of degree 8 (the highest degree term is

s4f4) in the two unknowns {s, f}

h1(s, f) = det(A123)/(1 + s2),

h2(s, f) = det(A124)/(1 + s2),

h3(s, f) = det(A134)/(1 + s2),

h4(s, f) = det(A234)/(1 + s2).

(8)

Next we describe how to solve this system of equations us-

ing the polynomial eigenvalue method and action matrix

method, respectively.

3.1. Polynomial eigenvalue solution

Polynomial eigenvalue methods have been successfully

used for many minimal problems in computer vision, such

as the 9-point one-parameter radial distortion problem [11],

the 5- and 6-point relative pose problems [21], the 6-

point one unknown focal length problem [4], and the self-

calibration problems [17]. We show that the system of poly-

nomials (8) can be efficiently solved using the polynomial

eigenvalue method with some modifications.

As shown in [2], polynomial eigenvalue problems are

problems of the form

M(λ)v = 0, (9)

where M(λ) is a square matrix parameterized by λ, and v

is a vector of monomials in all variables without λ. M(λ) is

defined as

M(λ) ≡ λlCl + λl−1Cl−1 + · · ·+ λC1 +C0, (10)

where Cl,Cl−1, ...,C1,C0 are square coefficient matrices.

Note that, first (8) can be written as

BX = 0, (11)

where B is a 4× 25 coefficient matrix and

X = (1, f, f2, f3, f4, s, sf, sf2, sf3, sf4, s2, s2f, s2f2, s2f3,

s2f4, s3, s3f, s3f2, s3f3, s3f4, s4, s4f, s4f2, s4f3, s4f4)

is a vector of all the 25 monomials. The unknowns s and

f both appear in degree four monomials, so we can choose

either of them, e.g., s as λ in (9). The four polynomials can

be rewritten as

M(s)v = 0, (12)

where v = (1, f, f2, f3, f4)⊤ is a 5 × 1 vector of mono-

mials in f . There are four polynomials, but v has five el-

ements. Therefore, we need to add additional polynomials

by multiplying the original ones with f (it is enough for this

problem). We obtain four additional polynomials and select

two of them. In this case, (11) and (12) can be rewritten as

B′
X

′ = 0, (13)

where B′ is a 6× 30 coefficient matrix and X
′ is a vector if

all the 30 monomials, and (12) can be rewritten as

(s4C4 + s3C3 + s2C2 + sC1 +C0)v = 0, (14)

where v = (1, f, f2, f3, f4, f5)⊤, C4,C3,C2,C1, and C0

are 6× 6 coefficient matrices:

C0 ≡ (b1, b2, b3, b4, b5, b6),

C1 ≡ (b7, b8, b9, b10, b11, b12),

C2 ≡ (b13, b14, b15, b16, b17, b18),

C3 ≡ (b19, b20, b21, b22, b23, b24),

C4 ≡ (b25, b26, b27, b28, b29, b30),

(15)

where bn is the nth column of the 6× 30 matrix B′. Based

on [2], the solutions of s are the eigenvalues of the 24× 24
matrix:

D =

⎡
⎢⎢⎣

0 I 0 0
0 0 I 0
0 0 0 I

-C−1
4 C0 -C−1

4 C1 -C−1
4 C2 -C−1

4 C3

⎤
⎥⎥⎦ . (16)

We obtain 24 eigenvalues which are the solutions to s. The

corresponding eigenvectors contain solutions for f , i.e., the

second rows of the eigenvectors divided by the first rows.

However, four of the solutions do not satisfy the inner con-

straints of the vector v, e.g., v3 = v
2
2. It is because we are

solving a relaxed version of the original one so that there

are redundant solutions. Hence, there are up to 20 possible

solutions (include complex ones). The computer algebra

system Macaulay2 [13] also shows that there are in gen-

eral 20 solutions. Once {s, f} are calculated, the transla-

tion can be extracted from the null space of the matrix A.

In practice, we only need to calculate the null space of one

of the 3× 3 submatrices of A. Then we may obtain 20 pos-

sible focal lengths (including negative and complex ones)

and rotations, which correspond to 40 possible translations

(each rotation corresponds to two possible opposite transla-

tions). Among the solutions we are only interested in the

real ones with positive focal length. Finally the full rotation

and translation between the two views are given by

R = R
′
⊤

r R
′
⊤

p RyRpRr,

T = R
′
⊤

r R
′
⊤

p T̃ .
(17)

3.2. Action matrix solution

The system of polynomials (8) can also be solved us-

ing the action matrix method [6]. We present only the

simple implementation of the method and refer the reader

to [6, 19, 5, 23, 25] for details. As described in [5], in

order to create the action matrix, we need to generate ad-

ditional polynomials by multiplying the initial polynomials
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with monomials. The degree of the additional polynomi-

als are up to ten, which means that we need to multiply the

original polynomials with {s, f, s2, sf, f2}. Then there are

totally 24 polynomials with 46 monomials. After removing

8 unnecessary polynomials and 10 monomials which are not

used in the action matrix, we obtain a 16× 36 template for

the Gauss-Jordan elimination.

4. Different and unknown focal lengths - E5f1f2

The other important case is when the two cameras have

different and unknown focal lengths, e.g., scenes are cap-

tured by multiple smart phones or a smart phone with a

zoom camera. It is a 5-DOF problem with respect to

{s, f1, f2, tx, ty, tz}. In this case, we need at least 5 points.

The ith row of A5×3 can be formulated as

Ai = (R′

pR
′

r[u
′

i, v
′

i, f2]
⊤)× (RyRpRr[ui, vi, f1]

⊤). (18)

Since every determinant of the 3× 3 submatrices of A must

vanish, we can obtain C5
3 = 10 polynomials:

h1(s, f) = det(A123)/(1 + s2),

h2(s, f) = det(A124)/(1 + s2),

...

h10(s, f) = det(A345)/(1 + s2).

(19)

Based on Property 1, the polynomials are of degree 8 (the

highest degree term is s4f2
1 f

2
2 ).

Polynomial eigenvalue solution

We can first rewrite the system of ten polynomial equa-

tions as

BX = 0, (20)

where B is a 10× 45 coefficient matrix and X = {sif j
1f

k
2 |

i = 0, 1, 2, 3, 4; j = 0, 1, 2; k = 0, 1, 2} is the vector

formed by all 45 monomials. We still choose s as λ in (9).

The ten polynomials can be rewritten as M(s)v = 0, where

v = (1, f2, f
2
2 , f1, f1f2, f1f

2
2 , f

2
1 , f

2
1 f2, f

2
1 f

2
2 )

⊤ is a vector

of all 9 monomials in f1, f2. There are ten polynomials, and

v has only nine elements. It seems that we can choose nine

polynomials to build a solver just as Sec. 3.1. However, we

find that the maximum rank of both the 9×9 coefficient ma-

trices C4,C0 is 8, which makes the system ill-conditioned.

So we need to add additional polynomials to obtain well-

conditioned matrices C4,C0. In practice, multiplying the

original polynomials with f1 (or f2) is enough. In this case,

there are 20 polynomials and 60 monomials in total and we

can select 12 of polynomials to ensure that C4,C0 are well-

conditioned. Then, these 12 polynomials can be written as

B′
X

′ = 0, (21)

where B′ is a 12×60 coefficient matrix and X
′ = {sif j

1f
k
2 |

i = 0, 1, 2, 3, 4; j = 0, 1, 2, 3; k = 0, 1, 2} is a vector of all

the 60 monomials. Eq (21) can be rewritten as

(s4C4 + s3C3 + s2C2 + sC1 +C0)v = 0, (22)

where v = (1, f2, f
2
2 , f1, f1f2, f1f

2
2 , f

2
1 , f

2
1 f2, f

2
1 f

2
2 , f

3
1 ,

f3
1 f2, f

3
1 f

2
2 )

⊤ is a vector of 12 monomials, and C4, C3, C2,

C1, and C0 are 12× 12 coefficient matrices

C0 ≡ (b1, b2, ..., b12),

C1 ≡ (b7, b8, ..., b24),

C2 ≡ (b13, b14, ..., b36),

C3 ≡ (b19, b20, ..., b48),

C4 ≡ (b25, b26, ..., b60),

(23)

where bn is the nth column of the 12 × 60 matrix B′. We

obtain the solutions of s as the 48 eigenvalues of a 48× 48
matrix (similar to D in (16)). After normalizing the first en-

try of the eigenvector to 1, the second and the fourth ones

are the solutions to f2 and f1. The computer algebra system

Macaulay2 [13] shows that there are in general 24 solutions.

The redundant solutions can be eliminated by checking the

inner constraints of the vector v as before, e.g., v3 = v
2
2.

Finally, there are up to 24 possible solutions (include com-

plex ones). The solutions with negative focal lengths can be

eliminated. Once {s, f1, f2} are calculated, the remaining

steps are equal to the shared and unknown focal length case.

Action matrix solution

The system of polynomials (19) can also be solved using

the action matrix method. Since the polynomials are much

more complex, we recommend using an online automatic

generator, e.g., [25]. We obtain a template of size 67 × 91
for the Gauss-Jordan elimination.

5. Degenerate configurations

Degenerate configurations may be caused by data or crit-

ical motions. Four or more collinear points will be redun-

dant, since there are up to three linearly independent con-

straints for collinear points [12]. This case is quite unusual

in practice and can be handled by robust estimators, such

as RANSAC [10]. Arbitrary planar motions when the op-

tical axes lie in the plane are critical motions for the stan-

dard 6 and 7-point algorithms [18]. For the proposed 4- and

5-point algorithms, the degenerate configuration can be ex-

pressed as Rr = Rp = I and R′
r = R′

p = I , which means

that the y-axes of the two cameras are coincided with the

gravity direction. This leads to a different system of poly-

nomials (smaller degree), which will make the matrices C4

and C0 singular. However, the probability for the roll and

pitch angles to be both equal to zero is very low, so we do

not discuss this case. On the other hand, our 5-point algo-

rithm has an extra degenerate case: Rr = R′
r and R′

p = R′
p,

i.e., the roll and pitch angles are equal for the two views. It
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is a special case for the optical axes intersect, which is a

degenerate case for the different and unknown focal lengths

problem [18]. Pure rotation, which makes the essential ma-

trix become zero matrix, is also a degenerate case for the

standard essential matrix based algorithms. By contrast, our

methods can deal with pure rotation since the constraints are

direct on the rotation matrix. Experimental results are pro-

vided in Sec. 6.2.

6. Simulation results

In this section, we evaluate the performance of the pro-

posed algorithms on synthetic data under increased image

and IMU noise. The synthetic data are generated in the

following setup. We randomly sample 200 3D points dis-

tributed on a 3D cube [−3, 3] × [−3, 3] × [3, 8]. On the

other hand, to illustrate that the proposed methods can cope

with planar scenes, we also sample 200 3D points dis-

tributed on a plane. The focal length of the camera is set

to fg ∈ [300, 3000] pixels, and the resolution of the image

is set to 2f×2f . Each 3D point is observed by two cameras

with random but feasible poses. Similar to [28, 12, 29, 9],

we focus on two important practical motions: sideways mo-

tion (parallel to the scene) and forward motion (along the z-

axis). The distance between the two cameras is set to be 10

percent of the average scene depth. Additionally, the first

and second cameras are rotated around every axis. We gen-

erate 10,000 pairs of images with different transformations.

Note that all the algorithms have multiple solutions, so we

need to choose the solution which can be recovered in real

applications. So we calculate the geometry error of each so-

lution with respect to the set of points, and choose the one

with the minimum error.

6.1. Numerical stability

We first evaluate the numerical stability of the proposed

algorithms with noise-free data. The rotation error ξR,

translation error ξt and focal length error ξf are defined as

follows

• ξR = arccos((trace(RgR
T
e )− 1)/2),

• ξt = arccos((tTg te)/(‖tg‖‖te‖)),

• ξf = |fe − fg|/fg ,

where Rg, tg, fg represent the ground-truth rotation, trans-

lation and focal length, and Re, te, fe are the correspond-

ing estimated rotation, translation and focal length, respec-

tively. We measure the angular error between the estimated

translation direction and the true direction since the esti-

mated translation is up to scale. For the different and un-

known focal lengths problems, we compute the geomet-

ric mean of the focal length errors ξf =
√

ξf1ξf2 . This

measurement has been widely used in camera pose estima-

tions [28, 4, 21, 29, 24, 9]. In this experiment, 4pt-polyeig

-16 -12 -8 -4 0 4

0

20

40

-16 -12 -8 -4 0 4

0

20

40

Figure 2: Kernel smoothed histograms of the focal length

errors for 10,000 runs of the proposed algorithms with

noise-free data. The polynomial eigenvalue solution is

slightly better than the action matrix solution.

and 4pt-action denote the 4-point polynomial eigenvalue so-

lution and 4-point action matrix solution, 5pt-polyeig and

5pt-action denote the proposed 5-point polynomial eigen-

value solution and 5-point action matrix solution, respec-

tively. To save space we only show the errors in the fo-

cal length for stability evaluation since the other errors are

qualitatively similar. Figure 2 shows the kernel smoothed

histograms of the focal length errors under sideways mo-

tion (left) and forward motion (right) for both the shared

and unknown focal length and different and unknown focal

lengths problems. As we can see, all the proposed algo-

rithms are numerically stable and do not contain large er-

rors. The polynomial eigenvalue solutions perform slightly

better than the action matrix solutions, so we use them in

our next experiments.

6.2. Pure rotation

In this section, we show that the proposed solvers are

compatible with the pure rotation case without knowing the

prior knowledge of the motion. Figure 3 reports the fo-

cal length and rotation errors of our polynomial eigenvalue

solvers with noise-free data under pure rotation. It seems

that the precision is not as good as the sideways motion or

forward motion, but they are good enough for real applica-

tions. On the other hand, the translation may not be exactly

equal to zero in practice, so the performance is acceptable.

-10 -5 0 5

0

50

100

-10 -5 0 5

0

20

40

60

Figure 3: Kernel smoothed histograms of the errors for

10,000 runs with noise-free data under pure rotation. Left:

Shared and unknown focal length. Right: Different and un-

known focal lengths.
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Figure 4: Performance under forward motion with different noisy conditions. Top row: Shared and unknown focal length.

Bottom row: Different and unknown focal lengths. From left to right: (a)(d) Increased image noise; (b)(e) Increased roll

noise with constant image noise of 0.5 pixel standard deviation; (c)(f) Increased pitch noise with constant image noise of 0.5

pixel standard deviation.

6.3. Noise resilience

To evaluate the sensitivity to image noise, we add Gaus-

sian noise with standard deviation ranging from 0 to 1 pixels

to the image points. In addition, the gravity direction mea-

sured by the IMU readings is not perfect in real applications.

Errors might be introduced by dynamics in the accelerome-

ter readings and rotation alignment of the camera and IMU.

Since the angular accuracy of roll and pith angle in low cost

IMUs is about 0.5◦, and is less than 0.02◦ in high accu-

racy IMUs [20]. We also simulate the noisy case where the

(roll, pitch) noise ranging from 0 to 0.5 degrees standard

deviation with constant image noise of 0.5 pixel standard

deviation. To compare with the standard algorithms fairly,

we use (17) to compute the error of the full rotation and

translation for our algorithms.

In this experiment, 4pt and 5pt denote the 4-point

and 5-point polynomial eigenvalue solutions, respectively.

6pt denotes the state-of-the-art 6-point algorithm proposed

in [22], 7pt denotes the 7-point algorithm which extracts

two different focal lengths from the fundamental matrix us-

ing Bougnoux formula [3], 3.5pt and H4pt denote the state-

of-the-art homography-based algorithms for the shared and

unknown and varying focal lengths problems proposed

in [9], respectively. The suffixes -general and -plane de-

note that the methods are evaluated with general and planar

scenes, respectively. To save space, we only show the re-

sults of the focal length errors under forward motion since

other errors are qualitatively similar. Results for the rotation

and translation errors and sideways motion are given in the

supplemental material.

Shared and unknown focal length

Figure 4(a) shows the boxplot of the focal length errors

with increased image noise under forward motion for the

shared and unknown focal length problem. For perfect pla-

nar scenes without image noise, the standard 6-point algo-

rithm fails since it is a degenerate case. Our 4-point al-

gorithm performs better than the 6-point algorithm under

different levels of image noise for both general and planar

scenes. The 3.5-point homography-based algorithm per-

forms best with planar scenes, but it needs to assume that

points lie on a plane. Figure 4(b) and Figure 4(c) show the

focal length errors under increased roll and pitch noise, re-

spectively. When the roll or pitch noise is up to 0.5 degrees,

our 4-point algorithm is still better than the 6-point algo-

rithm, and comparable to the homography-based algorithm

with planar scenes.

Different and unknown focal lengths

Figure 4(d) shows the boxplot of the focal length errors

with increased image noise under forward motion for the

different and unknown focal lengths problem. Our 5-point
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Algorithm SVD QR Eigen Time (us)
Max No. of

real solutions

Iterations with outliers (1− w)

0.30 0.50 0.70 0.90

4pt-polyeig - 6× 6 24× 24 110 20 17 72 566 4.6×104

3.5pt [9] 8× 9 152× 152 24× 24 1200 20 17 72 566 4.6×104

6pt [22] 6× 9 21× 21 15× 15 72 15 37 292 6315 4.6×106

5pt-polyeig - 12× 12 48× 48 310 24 25 145 1893 4.6×105

H4pt [9] 8× 9 33× 33 8× 8 50 8 17 72 566 4.6×104

7pt [3] 7× 9 - - 11 3 54 587 21055 4.6×107

Table 1: Efficiency comparison of the proposed algorithms (gray) vs. state of the art.

algorithm performs better than the 7-point algorithm under

different levels of image noise for both general and planar

scenes. It also has advantage over the 4-point homography-

based algorithm with planar scenes. Figure 4(e) and Fig-

ure 4(f) show the focal length errors under increased roll

and pitch noise, respectively. It seems that our 5-point al-

gorithm is slightly sensitive to roll noise. When the pitch

noise is up to 0.5 degrees, our 5-point algorithm is still bet-

ter than the 7-point algorithm and the 4-point homography-

based algorithm. In general, with accurate gravity informa-

tion the proposed methods are better than the standard 6-

and 7-point algorithms, and can cope with coplanar points.

Note that the 6- and 7-point algorithms are general meth-

ods, while ours need gravity information, which is largely

motivated by its availability for smart phones, tablets.

6.4. Computational Complexity

Table 1 reports the major steps and run-time (averaged

by 10,000 trials) of all the algorithms on an Intel i7-8700K

3.7GHz based desktop using Matlab. We used C++-mex

implementations for all the polynomial solvers (based on

Eigen linear algebra library). For the shared and unknown

focal length problem, the timing of 4pt-polyeig for one hy-

pothesis estimation is 110µs. For the different and unknown

focal lengths problem, the timing of 5pt-polyeig is 310µs.

The high run-time of the our 5-point algorithm is due to the

large size of matrix for the eigenvalue computation, but it

is fast enough for real applications. The fewer max number

of real solutions the better, since every real solution needs

to be evaluated with a set of points within RANSAC. How-

ever, since we have constraints on the focal length, many

meaningless real solutions can be abandoned.

Since in practice the algorithms need to be used within

RANSAC or other robust statistics to reject outliers, the

number of necessary iterations is very important for ef-

ficiency consideration. We also report the theoretical

RANSAC iteration number based on
log(1−p)
log(1−wq) with p =

0.99, where p is the desired probability that the RANSAC

provides a useful result after running, w is the percent of

inliers in data and q is the number of point correspondences

needed for the algorithm. With the rate of outliers increased,

the proposed algorithms significantly reduce the number of

iterations. We show that the improvement holds up in the

real experiments as well. Although the homography based

algorithms only need 4 points, they are based on the as-

sumption that points are coplanar.

7. Real data from a smart phone

To evaluate the proposed algorithms on real data, we

have recorded 8 sequences at the resolution of 1920×1080

and the IMU data with an iphone 6s. Then we syn-

chronize the frames and IMU data based on their times-

tamps. The raw data contains both the gravity and the

acceleration, so we need to apply a high-pass filter to

isolate the force of gravity from the raw accelerometer

data [8, 7]. We used every 10th image from each sequence

(i.e., {1,11},{2,12},{3,13},· · · ), since the relative transla-

tion may be very small for consecutive frames. Example

images of the sequences are shown in Figure 5. We ex-

tract SIFT [26] feature points and descriptors of the images.

Since we only want to give a fair comparison, we use the

standard RANSAC [10] without any optimizations to es-

timate the focal length and relative pose. The RANSAC

confidence is set to 0.99 and the maximum number of iter-

ations is set to 5000. The distance threshold is set to 2 pix-

els for fundamental matrix and 2.5 pixels for homography,

respectively. We use the focal length calculated from the

CMOS parameters (1610 pixels) and the motion parameters

obtained from RealityCapture [1] (the intrinsic parameters

were fixed based on the focal length and central principal

point) as the ground truth. Due to the page limitation, we

only show the results of the first sequence. Results for other

sequences are given in the supplemental material.

Table 2(a) shows the median and mean errors in the es-

timated rotation, translation and focal length for the shared

and unknown focal length case. As we can see, the proposed

4-point algorithm outperforms the standard algorithms. We

also report the mean number of iterations and inliers. For
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3.5pt [9] 6pt [22] 4pt

Rotation error in degree
median

mean

0.5311

3.2840

0.8607

1.0708

0.1465

0.2224

Translation error in degree
median

mean

5.0219

10.2042

3.9352

5.9041

1.2284

1.7173

Focal length error (%)
median

mean

24.72

42.02

38.03

41.15

5.21

11.31

Number of iterations mean 5000+12 1423 237

Number of inliers mean 156 733 730

(a)

H4pt [9] 7pt [3] 5pt

1.1858

2.8567

3.4309

4.0895

0.3793

0.5607

9.5434

16.8343

7.7842

13.5088

2.8436

4.8110

52.21

57.47

44.18

43.35

26.11

31.37

5000+11 2474 (85) 452 (180)

157 696 707

(b)

Table 2: Comparison of different algorithms on the first sequence (1162 images) under forward motion. (a) Shared and

unknown focal length. (b) Different and unknown focal lengths. The best results are marked bold. See text for details.

the homography-based method, we first use the standard

4-point homography algorithm to reject outliers as sug-

gested by [9]. Then we use the 3.5-point homography-based

solver to find the best solution within the inliers. Since the

scene is general and does not contain a dominant plane,

RANSAC for the standard 4-point homography algorithm

always reaches the maximum (5000). However, the 3.5-

point homography-based algorithm only need 12 iterations

using the inliers. Compared to the 6-point algorithm, our 4-

point algorithm needs many fewer iterations: 237 vs 1423,

and the number of inliers are almost the same. Our 4-point

algorithm has three fewer inliers on the average, which

might be due to the noise in the IMU readings.

Table 2(b) shows the results for the different and un-

known focal lengths problem. In this case, the proposed

algorithm still performs better than the 7-point algorithm

and the homography-based 4-point algorithm. However, we

find that the focal length error is large without the equal con-

straint on the focal length. It is possibly due to the motion,

which used to capture the sequence, is close to the degen-

erate configuration (see Sec. 5) and the translation is much

smaller than the scene depth. Note that, for the 7-point al-

gorithm, sometimes the inliers and the fundamental matrix

seem to be correct, but the extracted focal lengths are in-

valid. So we also report the number of samples yield physi-

cally possible focal length (positive and larger than one fifth

of the image width). Compared to the 7-point algorithm,

Figure 5: Example images of the 8 sequences recorded with

an iphone 6s.

our 5-point algorithm needs many fewer iterations: 452 vs

2474. Among the samples, 180 of ours have physically pos-

sible focal length, while there are only 85 for the 7-point al-

gorithm. On the other hand, our 5-point algorithm has more

inliers than the 7-point algorithm. It is because that some-

times the fundamental matrix has good inliers, but the focal

length is meaningless. In this case, such solutions should

be abandoned. In short, the proposed algorithms are more

accurate and need fewer iterations, but recall of course that

the standard algorithms are general methods, while the pro-

posed algorithms use the gravity direction, which is widely

available for smart devices.

8. Conclusion

In this paper we propose minimal solutions to estimate

relative pose for the case of sharing a common direction

with unknown focal length. It is a practically relevant case

for smart devices which can provide the gravity direction

using IMU readings. We have discussed both the shared and

unknown, and different and known focal lengths cases. The

synthetic evaluation and the real experiments with smart

phone show that the proposed algorithms are stable enough

for real applications. We believe that the proposed algo-

rithms are promising, since it is conceivable that cameras

will always be coupled with IMU’s in the future.
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