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Abstract

Deep Neural Networks are vulnerable to adversarial
samples, which can fool classifiers by adding small per-
turbations onto the original image. Since the pioneering
optimization-based adversarial attack method, many fol-
lowing methods have been proposed in the past several
years. However most of these methods add perturbations
in a “pixel-wise” and “global” way. Firstly, because of
the contradiction between the local smoothness of natural
images and the noisy property of these adversarial pertur-
bations, this “pixel-wise” way makes these methods not
robust to image processing based defense methods and
steganalysis based detection methods. Secondly, we find
adding perturbations to the background is less useful than
to the salient object, thus the “global” way is also not op-
timal. Based on these two considerations, we propose the
first robust superpixel-guided attentional adversarial attack
method. Specifically, the adversarial perturbations are only
added to the salient regions and guaranteed to be the same
within each superpixel. Through extensive experiments, we
demonstrate our method can preserve the attack ability even
in this highly constrained modification space. More impor-
tantly, compared to existing methods, it is significantly more
robust to image processing based defense and steganalysis
based detection.

1. Introduction

Deep neural networks(DNNs) have achieved great
achievements on many artificial intelligence tasks such as
image recognition [15, 19], object detection [33] and natural
language processing [40]. But recent works [37] found that
DNNSs are vulnerable to adversarial samples. Adversarial
samples are carefully crafted images by making small and

*Dongdong Chen is the corresponding author.

Original Image I-FGM

SAI-FGM(ours)
Figure 1. Original image and corresponding adversarial samples
generated by SAI-FGM(proposed method) and [-FGM. Mean-
while, we enlarge part of the images to show the difference of
smoothness between the three images.

invisible perturbations on the original images. Although
they are indistinguishable to the original images by human
being, they can make DNNs make totally wrong predic-
tions. Adversarial samples reveal the defect and sensitivity
of DNN, but can also help us to get better understanding of
DNNs and train more robust models.

First proposed by [37], methods to generate adversar-
ial sample are various. Among all of them, gradient-based
methods [9, 17] which calculate the modification pattern by
taking the gradient with respect to the input sample are sim-
ple and effective. Fast Gradient Sign Method(FGSM) pro-
posed in [9] using the gradient of classification loss with
respect to the input image as the adversarial noise to fool
the recognition models. It provides a quick solution to
get adversarial samples. Then [17] proposes iterative ver-
sion of FGSM(I-FGSM) to get better attack performance.
[5] further adds a momentum term to improve the trans-
ferability of adversarial sample to unseen models. Other
works [41, 6] provide various methods to get more robust
adversarial sample to unknown even defensive models.

Notwithstanding their success, all of these methods add
adversarial perturbations in a “pixel-wise” and “global”
way. Here “pixel-wise” means these adversarial perturba-
tions are added onto each pixel independently, thus very
noisy in most cases. By contrast, from the statistic perspec-
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Figure 2. Pipeline of generating background and foreground ad-
versarial samples. Background and foreground noise are gener-
ated by splitting the adversarial noise to two equal size parts with
the attention map.

Attention Map

tive, natural images often have the local smoothness prop-
erty. As illustrated in Figure 1, comparing with original
image, adversarial samples generated by I-FGSM are much
noisy and rough. Such contradiction makes these methods
not robust to existing image processing based defense meth-
ods and steganalysis based detection methods. For image
processing based defense methods, they often process the
adversarial samples in a local way (e.g., smoothing, resiz-
ing) and destroy the original noisy adversarial pattern. Sim-
ilarly, the reason why steganalysis based detection methods
can detect adversarial samples is also because steganalysis
features can detect the small adversarial perturbations that
do not follow the local smoothness property.

For “global”, it means that most existing methods treat
all the pixels in one image equally and add perturbations to
all pixels. In this paper, we argue this “global” way is not
optimal and has two obvious drawbacks. Firstly, as shown
in Figure 2, we split the adversarial noise to two equal size
parts as the foreground object part and the background part
and we find that adding adversarial noise to foreground ob-
ject is more useful than to the background. Because the
target classifier only focuses on the foreground part, which
is demonstrated by its activation map. Secondly, foreground
objects often contain more textures than background re-
gions (e.g., sky, lake) statistically, so perturbations in the
background regions are also much easier to be detected.

Based on the above two considerations, we propose the
first robust superpixel-guided attentional adversarial attack
method. Specifically, given an input image, we first lever-
age traditional superpixel generation method [32] to get the
over-segmented superpixel map, where pixels in each su-
perpixel have similar colors and follow the local smooth-
ness property. Then we generate the adversarial perturba-
tions in a superpixel manner, i.e., the perturbation within
each superpixel must be the same. To further ensure the lo-
cal smoothness, we improve the original superpixel method
[32] by adaptively merging similar superpixels. For the
above “global” problem, we replace it with an “attentional”
way by using the auxiliary information from the class acti-
vation map [43]. In other words, we constrain that the per-

turbations are only added onto the foreground object (i.e.,
the class activated regions) rather than the whole image.

With the above locally smooth and attentional constraint,
though the adversarial perturbation space of our method is
much smaller than previous “pixel-wise and global” meth-
ods, extensive experiments demonstrate our method can still
preserve the attack ability with dedicated designs. More im-
portantly, we show that the proposed superpixel-guided at-
tentional adversarial attack is significantly more robust to
image processing based defense and steganalysis based de-
tection methods by a large margin.

To summarize, our contributions are threefold as below.

e We clearly analyze the limitations of existing “pixel-
wise and global” adversarial attack methods, and clar-
ify the underlying reason of why they are not robust to
image processing and steganalysis.

e Based on the analysis, we propose the first superpixel-
guided attentional adversarial attack method, which
not only guarantees the local smoothness but also mod-
ifies the image in a more effective way.

e Extensive experiments demonstrate the proposed
method can preserve the original attack ability and
achieve superior robustness simultaneously.

2. Related Work

Adversarial Attack. Current adversarial sample methods
can be categorized into three types: optimization-based [37,
2], gradient-based [9, 17], and generation-based [1, 31, 14].
Optimization-based methods model the generation of adver-
sarial samples as an optimization problem and use optimiz-
ers like box-constrained L-BGFS or Adam to solve it, which
are powerful but quite slow. Goodfellow /etal [9] proposed
the first gradients-based method Fast Gradient Sign Method
(FGSM) and following work [17] performed small step
size iteratively to get better attack performance (I-FGSM).
Generation-based methods aim to train a model to gener-
ate adversarial samples with a single forward path, which
is very fast but requires extra training time. Different from
their “pixel-wise and global” way, the proposed method is
the first super-pixel level and foreground only adversarial
sample generation method.

Adversarial Detection. There are roughly four different
types of adversarial detection methods: model-based [11,
8], PCA-based [16, 20], preprocessing-based [22, 42] and
steganalysis-based [24]. Model-based methods view adver-
sarial samples as an additional category and retrain the net-
work to classify adversarial samples to this new category.
PCA-based methods leverage the fact that adversarial sam-
ples place a higher weight on the larger principal compo-
nents compared with clean images. Preprocessing-based
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methods apply some image transformation on the input im-
ages and check the prediction variance. Recently, motivated
by steganalysis, [24] proposes to use steganalysis features
to detect adversarial samples, because these features are
sensitive to the change of image statistics and small pertur-
bations such as C&W [2]. Our idea is partially inspired by
this method, and this method is also used as one important
metric to evaluate the robustness of adversarial samples.
Adversarial Defense. Compared with adversarial detec-
tion, adversarial defense is another active way to protect the
target model against adversarial attack. Adversarial train-
ing proposed by [9] is one of the most popular way to train
a robust network by adding the adversarial sample into the
training set. In [12, 28, 3, 23, 44], they add one prepro-
cessing step to remove the adversarial noise of the input
images before feeding into the target model. For example,
method [25] proposes DNN-Oriented JPEG compression
with the idea of feature distillation to remove adversarial
noise. Another work [13] proposes to use JPEG compres-
sion, total variance minimization(TVM) and image quilting
to defence adversarial attack. Another type of methods like
[38, 29, 30] use some regularizers or smooth labels to make
the target model more robust to the perturbation on input
images. Among the aforementioned methods, image pre-
processing is the most lightweight method as it does not
need to change model architecture or parameters. In this
paper, we also use this type of methods to evaluate the final
adversarial robustness.

Superpixels. In the era before deep learning, superpixel
segmentation [32, 27] aims to oversegment the image by
grouping pixels that share similar properties. It captures the
redundancy of image and is regarded as representative prim-
itive for computing image features. They are widely used in
many computer vision algorithms, such as image compres-
sion [34], depth estimation [26], and stereo matching [10].
Motivated by the smooth property within each superpixel,
we are the first who leverages superpixel as the guidance
to add adversarial perturbations. This helps us to generate
local smooth and robust adversarial samples.

3. Method
3.1. Problem Definition.

We denote x as the source image and y as the corre-
sponding ground-truth label. Let H be the target model
with parameters 6. Then H(x;#) is the probability pre-
diction for each class. For an ideal model we should get
arg max, H(x;0). = y. For a real model, the equation
is also satisfied for most samples. An adversarial sample
x% = x 4 r is generated by adding noise r to the origi-
nal image x and satisfies arg max, H(x*%; ). # y. In the
mean time, the noise r should be small enough to guarantee
the adversarial sample is similar to the original one. In most

cases r is measured by {,, norm and the constraint ||r|[, < €
is proposed to fulfill the similarity requirement. Here € is a
predefined threshold constant.

White-Box vs. Gray-Box vs. Black-Box. If we have the
full knowledge about the target model to attack, including
the model architecture and parameters, such an attack is
called as white-box attack. In this case, we can generate ad-
versarial samples with back-propagated gradients directly.
If we have the full access to the model, but there are some
unknown input transformations before feeding images into
the model, we call such an attack as gray-box attack. For
black-box attack, we have no knowledge about the target
model, so adversarial samples are often generated by other
white-box models and fool the target model with transfer-
ability.

3.2. Motivation

As briefly described in the introduction part, our method
is motivated from the below two observations:
1). The contradiction between the local smoothness of nat-
ural images and the noisy property of adversarial pertur-
bations. Although previous attack methods can generate
strong adversarial samples, most of them add adversarial
perturbations in a “pixel-wise” way and do not consider the
original neighborhood information. This causes the gener-
ated adversarial perturbations to be noisy as shown in the
Figure 1(Right). However, pixels in natural images often
have the local smooth property, which implies neighboring
pixels often have similar pixel values. This is also the theo-
retical building block for many image processing tasks like
image compression. Therefore, adding pixel-wise perturba-
tions will destroy the original local statistics such as first-
order and second-order Markov process statistics. This also
motivates the method [24] to use steganalysis features to
detect adversarial samples as steganalysis features consid-
ers such types of local statistics. Besides, this contradiction
also makes these adversarial attack methods not robust to
image processing based defense methods. This is because
processing techniques like resizing or smoothing are based
on the local smooth property and will destroy the original
noisy pattern of adversarial perturbations. Take I-FGSM as
an example, if we use the local averge smoothing with 3 x 3
kernel as the processing step before feeding the white-box
model, the attack success rate will decrease from 99.40% to
73.67%. Hence, the local smooth property should be con-
sidered when adding the adversarial perturbations.
2). It is more effective to add adversarial perturbations to
salient object the classifier focuses on. Another observa-
tion is that most existing adversarial sample methods treat
all the pixels equally and add perturbations to the image
globally, but we argue this global way is not optimal. To
verify it, we conduct one simple experiment that only keeps
the perturbations of background regions and the foreground
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Figure 3. Pipeline of Generating Superpixel Adversarial Samples. We first use SLIC [32] to generate superpixel image x’ from x as the
noise template t. Then we calculate the noise vector n and use a mapping function f(n;t) to map it to superpixel-level noise with the
template t. Then we crop it with the binarized attention mask m™ and scale it to the threshold € to get the final adversarial noise.

regions respectively. For 'TFGM(d = 2), the attack success
rates of foreground/background regions adversarial noise
are 94.03% and 46.35% respectively. This means adding
perturbations to the foreground objects is more effective and
can get better attack performance under the global distance
measurement. In fact, this phenomenon is also consistent
with the attention map the classifier focuses.

Another intuition is that foreground regions often have
more textures than the background regions (e.g., sky, ocean)
statistically, which implies hiding perturbations in the fore-
ground regions is much easier. To support this hypothe-
sis, we randomly select 2000 images from the ImageNet [4]
dataset and use the smoothness metric HILL [18] to mea-
sure the texture richness. The average HILL of foreground
regions and background regions are 5269.94 and 18853.42
respectively, here larger HILL indicates less textures.

3.3. Superpixel-Guided Attentional Adv Attack

Inspired by the above two observations, we propose
the first superpixel-guided attentional adversarial attack
method. Rather than adding pixel-wise adversarial pertur-
bations, we use the oversegemented superpixels as guid-
ance and constrain the perturbations within each superpixel
should be same. In this way, the generated perturbations are
also locally smooth in the superpixel level. Another guid-
ance we use is the foreground attention map, which ensures
the perturbations are only added to the foreground objects.

Figure 3 is the overall pipeline of our method, which
consists of three steps: 1) Generate the superpixel-guided
noise template t and initialize the adversarial noise n whose
length equals to the superpixel number. 2) Crop and en-
hance the adversarial perturbations based on the attention
map. 3) Use the generated adversarial sample to update n
iteratively.

Template Generation. Instead of generating the template

by sampling pixels with grid steps, we use superpixel al-
gorithms to get the segmentation map as the modification
template. It can help to ensure local smoothness and reduce
the statistical difference between the source image and the
adversarial sample. In this paper, the superpixel algorithm
SLIC [32] is used by default. Specifically, both the percep-
tual color distance and spatial distance are considered as the
distance measure:

. p
dis =d.+ =dg
18 + g

de. = \/(lk - ll)2 + (ak - CL,’)Q + (bk — b,)z ey
ds = /(zr — )2 + (yr — )?

where dis is the distance between the iy, pixel and the &y,
superpixel cluster. Denote IV, K as the total pixel number
and the pre-defined superpixel number, then each superpixel
cluster Cy, is represented as the tuple (lg, ag, bk, Tk, yi).
Here I, ay, by is the pixel values of Cj in the CIELAB
color space and xy,yy is the spatial coordinate. S =
v/N/K is the grid interval, and p is the parameter to con-
trol the compactness of a superpixel. By sampling pixels at
regular grid steps S as initialization, SILC updates the clus-
tering result by using a linear iterative clustering algorithm
to cluster every pixel to it’s proximate super-pixel center.

One weakness of SLIC is that the clustering number K
is fixed, which means a large smooth region will be clus-
tered into many different small superpixels. If we use it
as the template of adversarial noise, different perturbations
will be added to each small superpixel. This will influence
both the visual quality and statistics of the adversarial sam-
ples. To overcome this shortcoming, we propose an adap-
tive combination strategy to combine neighboring superpix-
els with similar pixel values. If the color difference between
two neighboring superpixels is smaller than 8, we combine
them as a new superpixel.
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Attention Mask. In this paper, we use Class Activation
Mapping (CAM) [43] method to generate the attention map
of the input image. A class activation map for a particular
category indicates the discriminative image regions used by
CNN to identify that category. CAM calculates this map
by simply projecting back the output layer on to the con-
volutional feature maps. However, all pixel values in the
attention map generated by CAM [43] are between O to 1,
so it cannot be used to guide the noise cropping directly. We
use a binarization factor ¢ to transform the attention map to
a binarized map. The binarization can be expressed as

« {0 m;; < @

= 2
“ L mi;2¢ @

where m is the attention map and m* is the binarized atten-
tion map, m; ; and m; ; are the value of them at the position
i, 7. With the binarized attention map m* as the mask, we
crop the adversarial noise to realize attentional attack.

Adversarial Perturbation Generation. To describe how
to generate the target adversarial perturbation, we first use
I-FGM [17] as the baseline and propose the Superpixel-
guided attentional version I-FGM called SAI-FGM by us-
ing the superpixel and attention map guidance.

For the baseline I-FGM, adversarial noises are generated
by calculating the gradient of the loss function with the in-
put image. However, we find calculating gradients for all
superpixel is non-trivial. If we simply use the average or
max gradient of all pixels within a superpixel as its gradi-
ent, it is neither efficient nor effective, which will be verified
in the ablation part. Inspired by optimization based meth-
ods, we propose a substitute method to generate adversarial
noise. We initialize a noise vector n whose length equals
to the superpixel number, and calculate the gradient with
respect to n directly. During each iteration, one mapping
function f is first used to fill n into the superpixel level
noise template t to get filled noise f(n;t). Then f(n;t) is
cropped and scaled to the threshold ¢ before adding to the
original sample x. At each iteration step ¢ + 1, n will be
updated from n; to n;;; with gradient asscent. Formally,
our SAI-FGM can be expressed as

XG0 = x + f(mo;t)

adv (3)
x2 = x + Scale {Cropm(f(ni;t))}

VaL(x3,y,0)
VoL, y,0)]2

Njt; =0 +o- “4)
where L(x24V,y,6) is the loss function and
VaL(x24V,y,0) is the gradient of L(x24V,y,6) with
respect to n;. C'rop and Scale represent the crop operation
based on the attention map m and scale operation based on
the perturbation scale factor € respectively.

Attack | Inc-v3* | Inc-v4 ‘ IncRes-v2 | Inc-v3adv

FGM 84.00 | 54.75 56.75 56.05
SA-FGM(Ours) 73.80 | 56.20 51.55 56.75
I-FGM 99.80 | 40.65 38.00 30.70
SAI-FGM(Ours) | 100.00 | 68.35 64.95 65.05
MI-FGM 99.90 | 66.45 67.95 62.40

M-SAI-FGM(Ours) | 99.95 | 68.50 66.10 67.45
Table 1. The attack success rate (%) of adversarial attack on the
ImageNet [4] dataset. * indicates the white-box attacks.

M-SAI-FGM. Our method is general to most existing
gradient-based methods. So we can extend our method
with other attack methods to get more powerful attack
ability. For example, when combining our method with
MI-FGSM [5] by integrating the momentum term, we get
Momentum Superpixel-guided Attentional Version I-FGM
called M-SAI-FGM. Comparing with SAI-FGM, we up-
date n; by replacing Eq.4 with:

an(X?dva Y, 9)

. — - o+
gi+1 = K- 8i ||VnL(Xiadv’ v, 9)“1 )
8i+1
. ' lgit1ll2

4. Experiments

As introduced above, the adversarial perturbations of our
method have two key constraints: superpixel level and only
added to attentional regions, so our perturbation space is
much smaller. Considering such a constrained space, the
first question to answer is that “whether the original attack
ability can be preserved or not”. After answering this ques-
tion, another key question would be “whether the proposed
method can boost the adversarial robustness” .

Therefore in this section, the proposed method is evalu-
ated from two aspects: attack ability and attack robustness.
In the following experiments, we use Lo norm as the dis-
tance measurement, threshold of the Lo norm e is calculated
by 0v/N, where N = C' x H x W is the dimension of input
images x. Inception-V3 [36] is adopted as the default target
attack model. Unless specified, ¢ = 4/12,a = 6v/N/T
and the total iteration number 7" = 10.

4.1. Attack Ability Comparison

To evaluate the attack ability, we compare the basic at-
tack performance on the ImageNet [4] dataset, including
white-box attack success rate and black-box attack success
rate. As shown in Table 1, we compare three baselines
FGM [9], I-FGM [17], MI-FGM [5] with our correspond-
ing superpixel-guided attentional version SA-FGM, SAI-
FGM, M-SAI-FGM. The column “Inc-v3” is white-box
attack results while another three “Inc-v4”, “IncRes-v2”,
“Inc-v3,4," represent black-box attack results on model
Inception-v4 [35], Inception Resnet-v2 [35], Inception-
V3,40 respectively. Here Inc-v3,4, is Inception-v3 [36]
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Generationmethod‘6=2‘6=4|6=6|6:8
FGM 94.32 | 95.59 | 96.28 | 97.09
I-FGM 94.11 | 94.74 | 95.45 | 96.01
SAI-FGM(3 = 0) | 75.50 | 82.10 | 85.00 | 87.20
SAI-FGM(3 = 2) | 72.40 | 78.20 | 82.00 | 84.20
SAI-FGM(3 = 4) | 63.30 | 72.10 | 76.40 | 80.90

Table 2. Detect rate (%) of steganalysis-based detection. Lower

success rate indicate the adversarial samples are more robust.
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Figure 4. Attack success rate of adversarial samples with image

resizing. Resize factor v varies from 1.0 to 3.0.

model with ensemble adversarial training [38]. Here we set
0 = 16.

Result shows that the single step attack method FGM
performs better than our SA-FGM , this means the influence
of constrained perturbation space is inevitable. However, if
we use multiple step attack method I-FGM or MI-FGM, our
SAI-FGM and M-SAI-FGM can achieve similar white-box
attack success rate (nearly 100%). This implies that our
method can preserve the attack ability once multiple steps
are used. For black-box attack, we find that our method
performs better than baseline methods in most cases. For
example, our SAI-FGM outperforms I-FGM by nearly 30%
for all the black-box models. When we introduce momen-
tum into the attack iterations, we find that performance of
our method slightly increases, similar to MI-FGM.

4.2. Attack Robustness Comparison

To evaluate the attack robustness, we do comparisons on
two different types of methods: steganalysis based adver-
sarial detection methods and image processing based ad-
versarial defense methods.

Robustness to Steganalysis based Detection Methods

Steganalysis-based adversarial detection method [24] uses
steganalysis features as the main indicators to detect adver-
sarial samples. We follow their experiment setting and train
detector for every adversarial sample generation method in-
cluding ours for § = 2,4,6,8 respectively. As shown in
Table 2, our SAI-FGM outperforms the baseline methods
by a large margin for different §. For example, if adversar-
ial samples are generated with § = 2, detect success rate on
SAI-FGM with 8 = 0 are only 75.50%, while pixel-wise
baselines like FGM and I-FGM are 94.32% and 94.11% re-
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T 80 Y 1 “a, 'Y

- < 90 N
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(b) DNN-Oriented JPEG
. ) quality factor g
Figure 5. (a) Relation between attack success rate and JPEG qual-

ity factor ¢. (b) Relation between attack success rate and DNN-
Oriented JPEG quality factor q.

(a) JPEG quality factor q

spectively, nearly 20% higher than SAI-FGM. This proves
the superiority of the proposed superpixel-guided adversar-
ial samples over the pixel-wise ones.

We further compare SAI-FGM with different 3 to eval-
uate the proposed superpixel combination strategy. Ob-
viously, by combining adjacent similar superpixels, SAI-
FGM can further reduce the detect success rate for all 4.
For example, when § = 8, detect success rate on SAI-FGM
with 8 = 0 s 87.20%, while on SAI-FGM with 8 = 4, the
detect success rate decreases to 80.90%. This is because
the statistical difference between adversarial samples and
source images is significantly reduced when adjacent simi-
lar superpixels are merged.

Robustness to Image Processing based Defense Methods
Another important type of adversarial defense methods
leverage image processing techniques to remove the adver-
sary before feeding images into the target model. Their un-
derlying hypothesis is similar, i.e., the noisy distribution of
perturbations does not match the distribution of real images.
In this part, many different image processing techniques are
utilized for robustness evaluation, including resizing, JPEG
compression [7], DNN-Oriented JPEG Compression [25],
pooling, total variance minimization (TVM)[13] and Bit-
depth Reduction [42]. To ensure the mis-classification are
caused by the adversary of adversarial samples instead of
these image processing themselves. We select 2000 robust
images from the ImageNet [4] dataset which can be classi-
fied correctly after image processing.

Resizing. Resizing is a common and easy image processing
method, it can reduce the effectiveness of adversarial sam-
ples with local interpolation. Given an adversarial sample
with size H x W, we first downscale its size into 2 x %
then upscale back to the origin size H x W. Figure 4 1s
the attack success rate curve when varying the scale factor
~ from 1 to 3 with step 0.1. Obviously, for different per-
turbation scales § = 4, 8,16 and different baseline meth-
ods, our superpixel-guided attentional versions “SA*” are
always much more robust and achieve a higher attack suc-
cess rate. Especially when § = 16, the success rate of our
SAI-FGM is always at a high level over 80% while that of
the baseline I-FGM decreases quickly when +y increases.
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Operation | Threshold | Attack method 3 K|erne:;)1 Si|ze =
WY | Sairom | 9527 6saa ] 3691

NG| SN | aTEM | 9ad| 996 | 5803

VY | shLroM | 997 | otas | 7735

WY | shirom |03 | 3920|3467

MAX | SV | garrom | ssio)| eles | 573

VN | SxiroM | 938 | 8829 | 1982

Table 3. The gray-box attack success rate (%) of adversarial sam-
ples after average/max pooling operation on the ImageNet [4]
dataset with different e and different kernel size .

JPEG Compression and DNN-Oriented JPEG Com-
pression. Based on the local smoothness property, JPEG
compression significantly compresses the high-frequency
components of one image while ensuring similar visual
quality. As adversarial perturbations are also of high fre-
quency, their attack ability will be weakened by JPEG com-
pression in most cases. As shown in Figure 5 (a), when the
images are only compressed a little with high quality fac-
tor ¢ = 95, both I-)FGM and SAI-FGM can still achieve a
quite high attack success rate. But as the quality factor de-
creases from 95 to 5, attack success rate of I-FGM decrease
quickly while SAI-FGM still keep a high success rate. For
example, when ¢ = 55, success rate of I-FGM with § = 4
decrease 31%(from 99.4% to 68.4%) and SAI-FGM only
decrease 7.5%. Especially at low quality regions(q < 25),
performance of both I-FGM and SAI-FGM decrease greatly
as the low quality compression removes most detail of the
images, but our method still performs better than I-FGM.
For DNN-Oriented JPEG compression shown in Figure 5
(b), the superiority of our method is even more obvious.

Pooling. Pooling is a popular operation in DNNs, which is
often conducted by sampling the maximum or average pix-
els within each grid kernel. Similar to smoothing/resizing,
this operation will change the original distribution of ad-
versary, so it can reduce the attack ability especially for
large grid kernel size. As shown in Table 3, the proposed
superpixel-guided attentional adversaril attack is always
much better than the baseline methods for different kernel
sizes and perturbation levels. For example, when 6 = 16
and the kernel size is 5, our SAI-FGM can still achieve
79.82% attack success rate while the baseline I-FGM only
has 30.38% success rate, far behind us with about 50%.

TVM. TVM [13] randomly selects a small set of pixels and
reconstructs the “simplest” image that is consistent with the
selected pixels. Here we follow the setting in [13] with
pixel drop rate as 0.5 and tvm weight as 0.03. From Fig-
ure 6(a), it can be seen that SAI-FGM outperforms I-FGM
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) (d) Thrcsl}old ) b) Bit reduce depth d
Figure 6. (a) Relation between attack success rate and threshold €

after TVM operation. (b) Relation between attack success rate and
image reduce depth d.

Method | White-Box | Detection | Resizing ‘ JPEG | TVM
I-FGM 99.40 94.74 46.05 | 68.40 | 44.60
SLIC-adv 98.90 82.10 82.17 | 91.40 | 82.00
LSC-adv 98.90 82.75 83.10 |91.80 | 83.50
SEEDS-adv 98.75 82.00 81.65 |91.21 |81.70

Table 4. Attack ability and robustness of adversarial samples gen-
erated by SAI-FGM with different superpixel algorithms.

in all settings. For example, when § = 4, attack success
rate of SAI-FGM are 82.00%, while attack performance of
I-FGM dropped from 99.48% to 44.60%.

Bit-depth Reduction. Bit-depth Reduction [42] is a sim-
ple quantization method to remove small adversarial noises.
Here we vary the depth factor d from 2 to 4(64 colors to
4096 colors). In all the cases as shown in Figure 6 (b), our
method outperforms baseline methods consistently.

4.3. Visual Results

Besides the visual result shown in Figure 1, we fur-
ther show several adversarial samples generated by our
method SAI-FGM and the baseline I-FGM with 6 = 4,16
in Figure 7. It can be seen that these adversarial samples
look overall similar, but the adversarial perturbations of our
method are more attentional and superpixel-wise smooth.

4.4. Ablation Study

Superpixel Size S. In this experiment, we study the rela-
tionship between the superpixel size S and the attack per-
formance. Intuitively, large S leads to better robustness
while small S leads to better attack ability. To prove it, we
adopt the attack success rate of original adversarial samples
and resized adversarial samples (downscale and upscale) as
the indicators of attack ability and attack robustness respec-
tively. To have a clearer difference, 6 = 4 is used here. As
shown in Figure 8(a), when S varies from 2 to 8, the attack
ability decreases slightly while the robustness first increases
then decreases (best at S = 5). The reason why the robust-
ness of too large S is worse is because the absolute attack
ability decreases a lot in such case.

Binarization Factor ¢. Here we explore the influence of
the binarization factor ¢. Intuitively, if ¢ is too small, most
parts of the image are modified so the attentional attack is
meaningless. And if ¢ is too large, only a small part of the
image will be modified and it performs badly. To show the
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Figure 7. Some visual comparison about the adversarial samples gen
with § = 4 (left) and § = 16 (right) respectively.
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Figure 8. (a) Relation between superpixel size S and attack success
rate. Success rate is evaluated by both original and scaled adver-
sarial samples with scale factor v = 3.0. (b) Relation between
binarization factor k£ and black-box attack success rate.

performance difference, we use the black-box attack suc-
cess rate as the indicator and vary ¢ from 0 to 11/12. It can
be seen from Figure 8(b) that the attack success rate first
increases then decreases. The best performance is achieved
when ¢ = 4/12, which is better than the case that does not
use attention (¢ = 0) by 10%. When ¢ is too large, the per-
turbation space is too small to achieve good attack ability.
Superpixel Algorithms. To evaluate the influence of ro-
bustness of different superpixel algorithms, besides the
default SLIC used in Sec.4, we further consider another
two classic superpixel segmentation methods LSC [21] and
SEEDS[39]. In the following, we denote SLIC-adv, LSC-
adv, and SEEDS-adv as the adversarial samples generated
with the corresponding method. We follow the setting in
Sec.4 with § = 4. For the robustness to resizing, we set
v = 2.0, and for the robustness to JPEG Compression, we
set ¢ = 55. As shown in Table.4, we can find that the per-
formance of adversarial samples generated with different
superpixel methods are very similar. It indicates that our
method is very robust and insensitive to different superpixel
segmentation methods. Because the inherent key reason for
our robustness is based on the local consistency constraint,
as long as the superpixel results follow the rule that pix-
els within each cluster have similar pixel values (satisfy the
requirement of local consistency), our method can always
achieve very good performance.

Image Gradient vs. Noise Gradient. As we stated in the
method part, calculating max or average gradient of pixels
within one superpixel as the gradient of the superpixel(here
we denote these two method as MAX and AVG respec-

erated by the baseline method I-FGM (top) and our SAI-FGM (bottom)

tively) is neither efficient nor effective. In this section, we
use the white-box performance to prove that our proposed
method are better. When § = 4, success rate of our method
are 98.90%, while success rate of MAX are only 84.20%
and AVG are 95.95%. Meanwhile, it’s hard to calculate
max or average value of irregular image parts parallelly, so
we have to use a large memory cost method as substitute,
this leads to the result that both MAX and AVG are nearly
30 times slower than our noise gradient method under the
same computation resources.

5. Conclusion

In this paper, the limitations of existing “pixel-wise and
global” adversarial attack methods are analyzed, which are
shown to be the reasons why they are not robust to image
processing based defense and steganalysis based detection
methods. To address these limitations, we propose the first
superpixel-guided attentional adversarial attack method. It
constrains the perturbations are only added into the fore-
ground regions and pixels within each superpixel have the
same perturbation. Even with such a highly constrained per-
turbation space, experiments demonstrate that the proposed
method can still preserve the original attack ability. Because
of better statistical consistency between adversarial samples
and source images, our method shows much better robust-
ness to both adversarial detection and defense.
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