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Abstract

Analyzing human posture and precisely comparing it

across different subjects is essential for accurate under-

standing of behavior and numerous vision applications such

as medical diagnostics or sports. Motion magnification

techniques help to see even small deviations in posture that

are invisible to the naked eye. However, they fail when com-

paring subtle posture differences across individuals with di-

verse appearance. Keypoint-based posture estimation and

classification techniques can handle large variations in ap-

pearance, but are invariant to subtle deviations in posture.

We present an approach to unsupervised magnification of

posture differences across individuals despite large devia-

tions in appearance. We do not require keypoint annotation

and visualize deviations on a sub-bodypart level. To trans-

fer appearance across subjects onto a magnified posture,

we propose a novel loss for disentangling appearance and

posture in an autoencoder. Posture magnification yields ex-

aggerated images that are different from the training set.

Therefore, we incorporate magnification already into the

training of the disentangled autoencoder and learn on real

data and synthesized magnifications without supervision.

Experiments confirm that our approach improves upon the

state-of-the-art in magnification and on the application of

discovering posture deviations due to impairment.

1. Introduction

Automatic analysis of human posture, movement, and

behavior is a key problem of computer vision with nu-

merous applications such as autonomous driving [37, 57,

39, 20, 42], surveillance [11, 30, 47, 56], and health-care

[7, 32, 54, 2]. A main challenge is to compare related be-

havior across different subjects despite vast differences in

appearance. Typical approaches towards behavior under-

standing include action classification [8, 38, 18, 9, 3], pos-

ture estimation [1, 29, 44, 6, 5, 45] and tracking [25, 10, 1].

However, as a consequence of being invariant to appear-

ance variability, these methods neglect subtle differences in

∗Indicates equal contribution

Figure 1. Magnification of Posture Deviations Across Subjects.

We visually emphasize subtle posture deviations between a query

x
q and reference frame x

r by magnifying their differences in the

posture encoding. xq walks with its legs apart, highlighted by the

red line in comparison to the green line of xr . We first disentangle

posture from appearance (the blue boxes show visualization of Eπ ,

Eα). Then, we extrapolate in the posture encoding the distance of

x
r and x

q in the direction of xq . The magnified images (bottom

right) are generated by combining the appearance encoding of xq

and the magnified posture encoding using different magnification

intensities λ. The generated images allow a user to easier see dif-

ferences.

posture. At the opposite end are motion magnification tech-

niques [35, 55, 16, 52, 53, 50, 58, 43] that compare frames

of the same video to visually amplify their subtle differ-

ences. Even recent learning-based approaches [43] are de-

signed to magnify the intra-video differences of the same

subject. Being trained for invariance to synthetic appear-

ance changes, they can handle intra-video appearance vari-

ability, but fail at the differences across subjects and videos.

What we are lacking is the best of both worlds: a mi-

croscope that can selectively amplify subtle posture differ-

ences across subjects while suppressing their vast devia-

tions in appearance. Evidently, human vision is easily over-

whelmed by the inter-subject appearance differences and,

consequently, fails at discovering subtle posture differences

across different individuals. Numerous applications ranging

from sports (comparing and identifying suboptimal move-

ment) to medicine (discovering impairment of motor behav-

ior) would therefore benefit from such a detailed analysis.
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We propose an unsupervised approach to magnification

of subtle posture differences across diverse subjects that re-

quires no keypoint annotation. Being markerless, our ap-

proach can truly discover deviations and localize them on a

sub-bodypart level—without having to identify the relevant

body parts a priori. To transfer appearance across individ-

uals onto the synthesized image of magnified posture dif-

ferences, we explicitly disentangle posture and appearance

in an autoencoder. In contrast to [43], we additionally pro-

pose a novel loss that better enforces disentanglement de-

spite large appearance deviations. Magnification typically

aims at generating new, exaggerated postures that are not in

the training set and therefore difficult to synthesize. Conse-

quently, we need to integrate the magnification process al-

ready into the training of the autoencoder. In contrast to [43]

whose training works on synthetic data, our approach can

directly train on inferred magnifications of real data with-

out requiring supervision.

Experiments demonstrate that our method leads to

more detailed and realistically looking magnifications. It

also quantitatively improves state-of-the-art performance in

terms of quality and on the downstream task of discovering

posture deviation due to impairment.

The main contributions of our work are as follows: (1)

We introduce the novel application scenario of magnifying

posture deviations across subjects; (2) we present an unsu-

pervised approach that separates posture from the remaining

image components and enables us to directly train the mag-

nification on real data; (3) we introduce three new datasets

and evaluate our model on several applications.

2. Related Work

Magnification. Magnification is a valuable tool to en-

hance differences on images or a set of images, in order

to automatically detect and visualize small deformations.

Tali et al. [12] and Tlusty et al. [49] visualize non-local

variations between repeating structures in a single image

or for multiple views. Wadhwa et al. [51] exaggerates

the geometric deviation between an object of interest and

an ideal geometry. Video motion magnification techniques

[35, 55, 16, 52, 53, 50, 58, 43] amplify the subtle motion of

objects in the same video. The first attempt of motion mag-

nification [35] computes optical flow between video frames

and then amplifies every pixel separately given the optical

flow information. Following works [55, 52, 16, 53, 58, 43]

do not alter pixels directly, but they decompose the video

into an alternative representation, e.g., by using the fre-

quency domain. The desired motion is then selected and

used to generate the image. Oh et al. [43] proposed the

first deep learning based approach to video motion magni-

fication using an encoder-decoder architecture. The mag-

nification is performed by a specialized non-linear module,

trained using a synthetic dataset. We also amplify differ-

ences using video frames as input, however, we amplify the

deviation in posture across individuals and videos. More-

over, our approach is trained directly on the target dataset in

an unsupervised manner.

Disentanglement. Disentangling factors of variation in

an image has been proposed for more than two decades

[21, 15, 19]. Recent works show successful results using

deep generative neural networks [23, 24, 48, 33, 27, 17, 40,

14, 36, 28, 34, 46]. Hu et al. [27] proposed an unsupervised

approach which separates the encoding vector into multiple

chunks and forces each part to have meaningful informa-

tion using an invariance objective. There is, however, no

control over the characteristics of the image extracted by

each chunk which is essential for magnifying posture devi-

ations. Denton et al. [13] trained a pose and content encoder

by exploiting temporal information of videos. The pose en-

coder is trained by fooling a content discriminator using an

adversarial loss. Given two frames from the same video,

the content encoder minimizes the distance between them.

Our appearance encoder also exploits videos to be invariant

to pose, however we do not need a content and pose loss.

Moreover, we propose a novel disentanglement loss which

enforces that both encodings contribute equally to the gen-

eration.

3. Approach

First, we define the problem of magnifying posture de-

viations. Then, we present our unsupervised approach for

separating posture and appearance to assure that the mag-

nification only alters the posture and not the appearance.

Finally, we describe our method that enables us to directly

train the magnification on real data.

3.1. Problem Definition

Given a frame xq of a query video showing a subject

performing a particular action, the objective is to amplify

the differences of xq to a reference frame xr and to generate

the magnified image

xm = m(xq|xr, λ) (1)

with m a magnification function, λ the amplification inten-

sity and xr a frame from a different video and subject. This

problem requires a more detailed representation than a pixel

space can offer. In fact, we require a model which explic-

itly learns an encoding space conditioned on the input im-

age and is able to decode the encoding back to the image

space. Hence, an autoencoder (AE) is the architecture of

choice. An AE consists of an encoder E and a decoder D.

E extracts a lower dimensional representation of the input

image xq , and D translates the representation back to the in-

put space by generating the reconstructed image x̂q . We ad-

ditionally require a model that explicitly separates posture
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Figure 2. Disentanglement for Magnification. A: The input image xq is reconstructed by using the color transformed image τ(xq) as input

to the posture encoder and a random frame x
q′ (same video as xq) as input to the appearance encoder. The reconstruction loss minimizes

the distance between x
q and the reconstruction x̂

q . B and C: To enforce meaningful information in both encoders, we force the network

to generate deficient images when only one of the two encodings is used. We exchange one of the two encodings with Gaussian noise,

producing ”fake” images and require a distance t• between the original and the fake image.

from the remaining image components (appearance) since

we only want to magnify the differences in posture. Hence,

we use an autoencoder with two encoders, Eπ for extract-

ing posture and Eα for appearance (see Fig. 2 A). The query

image xq is then reconstructed as follows:

x̂q = D
(

Eπ(x
q), Eα(x

q)
)

. (2)

We apply the same separation for xr.

Given the AE with two encoders, we can now magnify

xq with respect to xr by only magnifying in the posture en-

coding. xm is then generated from the appearance encoding

Eα(x
q) and the magnified posture encoding mπ by the de-

coder D. Eq. 1 updates as follows:

xm = D
(

mπ

(

Eπ(x
q)|Eπ(x

r), λ
)

, Eα(x
q)
)

(3)

In the next section, we introduce our unsupervised approach

to disentangle posture and appearance.

3.2. Disentanglement for Magnification

Magnifying posture deviations involves the comparison

of subjects with different appearances. To transfer the pos-

ture from xr to xq it is crucial to obtain a posture encoding

Eπ that does not contain any subject-specific information.

Furthermore, we require a pure appearance representation

Eα of xq for generating the magnified frame.

The posture and appearance encoders are considered to

be disentangled if the posture encoding is invariant to ap-

pearance changes and vice-versa. The state-of-the-art in

motion magnification [43] induces this invariance by intro-

ducing a regularization loss that enforces the posture repre-

sentation of a color perturbed frame to be the same as the

original frame. We also apply a color transformation τ to

the input image xq , but we additionally alter the posture

by choosing a random frame xq′ from the same video as

xq (xq′ contains the same appearance as xq , but a differ-

ent posture). We input τ(xq) into the posture encoder, xq′

into the appearance encoder and generate the reconstruction

with the decoder (see Fig. 2 A). A perfect reconstruction

is only possible if the AE extracts the posture information

from τ(xq) and the appearance information from xq′. We

train our model by minimizing the reconstruction loss

Lrec = d(x̂q, xq) (4)

with x̂q = D(Eπ(τ(x
q)), Eα(x

q′)) the reconstruction and

d(•, •) the perceptual distance [31]. Oh et al. [43] also em-

ploy the reconstruction loss but require an additional regu-

larization objective to enforce invariance.

Despite the color transformation, the input τ(xq) to the

posture encoder contains appearance information such as

the background scene or the type of clothes worn by the

subject. This would allow the decoder to find a lazy so-

lution by mainly leveraging Eπ to reconstruct xq as good

as possible without considering the appearance encoding

Eα(x
q). In contrast to motion magnification of single ob-

jects, the magnification of posture deviations transfers pos-

tures across subjects with different appearances. Hence, it

requires a stronger separation of posture and appearance.

For that reason, we introduce a novel loss discouraging

our model to correctly reproduce the image if one of the two

encodings is ignored. In practice, we generate ‘fake’ images

by exchanging the encoding of either appearance or posture

with random Gaussian noise. Then we teach the network

that an image reconstructed without one of the two encod-

ings (fake image) is lacking an important component, and

should therefore not be able to fully represent the original

input image. We define the reconstruction with fake posture
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as

x̂q′
α = D

(

N (0, σ), Eα(x
q′)

)

(5)

and with fake appearance as

x̂q
π = D

(

Eπ(τ(x
q)),N (0, σ)

)

. (6)

The generation with fake images is visually illustrated in

Fig. 2 B and C. We enforce a distance between the input

and fake image to be close to a target value tα, tπ > 0.

These values represent the lower bound on how close x̂q′
α

and x̂q
π are allowed to approach the original input xq during

training. We update our model using the loss

Ldis = ‖d(xq, x̂q
π)− tπ‖1 + ‖d(xq, x̂q′

α )− tα‖1 (7)

with d(•, •) being the perceptual distance. Note, that for the

distance to x̂q′
α we compare with xq since xq and xq′ contain

the same appearance and therefore x̂q′
α should be equal to x̂q

α

after optimizing the network.

At this point, both terms of Ldis are optimized indepen-

dently from each other and one might be easier to mini-

mize than the other. However, to successfully generate x̂q

we require both the posture and appearance encoding to be

equally advanced. Therefore, we balance the encoders by

relating the target values tα and tπ with the reconstruction

quality of the opposite terms,

tπ = d(xq, x̂q′
α ) + γπ, (8)

tα = d(xq, x̂q
π) + γα. (9)

with γπ and γα being fixed margins. If, for example, the re-

construction quality of x̂q′
α increases (and therefore the dis-

tance to xq decreases), tπ decreases as well according to Eq.

9 and forces therefore d(xq, x̂q
π) in Eq. 7 to be smaller than

x̂q′
α by a margin of γπ .

In the next section, we introduce our approach that en-

ables us to directly train the magnification of posture devia-

tions on the data.

3.3. Learning to Magnify

The magnification in the posture space usually leads to

novel poses. However, it is difficult for a generative model

to produce valid postures never seen during training. In par-

ticular, we require a model that is (i) able to precisely trans-

fer the magnified posture mπ into the image domain and (ii)

sensitive to small encoding differences. Thus, the magnifi-

cation needs to be included directly into the training pro-

cess. Since ground-truth magnifications are not available,

we cannot simply employ the reconstruction loss. Oh et al.

[43] tackled this problem by creating a synthetic dataset to

simulate the magnification of motion. We propose an al-

ternative approach that allows us to directly train magnifi-

cation on real data without requiring ground-truth images.

Figure 3. Learning to Magnify. Our magnification loss forces the

decoder to precisely transfer the magnification mπ into the im-

age space by re-encoding the magnified image x
m and minimiz-

ing the distance between the original magnified posture (yellow

filled point) and its re-encoded posture (orange filled point). The

same is applied for the appearance encodings (orange empty point

and dark red empty point). Finally, an adversarial discriminator C

enforces the generation of realistically looking magnified images.

This way, our model produces more fine-grained and realis-

tically looking results as demonstrated in the experimental

section.

As defined in Eq. 3, we generate a magnified frame xm

by combining the magnified posture encoding mπ with the

appearance encoding Eα(x
q). For computing mπ we first

calculate the difference between xq and xr in the posture

encoding. Then, we amplify the posture deviation in the

direction of Eπ(x
q). This procedure can be practically re-

alized by extrapolating the posture differences,

mπ(Eπ(x
q)|Eπ(x

r), λ) = Eπ(x
r) + λ (Eπ(x

q)− Eπ(x
r))

(10)

with λ > 1 being the magnification factor. Fig. 1 and 3

visually depict this procedure.

During training, we require a reference frame xr con-

taining a slightly different posture as xq since we aim to

amplify subtle posture differences. This can be chosen au-

tomatically by using the k-th Nearest Neighbor (NN) of xq

(excluding frames from the same video) with k randomly

chosen from the range [10, 20]. We can now generate a

magnified frame xm for each xq with respect to the sampled

reference frame xr. The magnification of posture deviations

requires a decoder able to precisely transfer the magnified

posture encoding mπ to the pixel space without distorting

or losing any information about the new posture. In partic-

ular, our model should reach a fixpoint with respect to mπ ,

i.e. mπ should be equal to the re-encoded decoded mπ ,

mπ
!
= Eπ

(

D(mπ, •)
)

. (11)
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To meet this requirement, we introduce a fixpoint loss that

minimizes the distance between the re-encoded magnified

frame Eπ(x
m) = Eπ

(

D(mπ, Eα(x
q))

)

and the origi-

nal magnification mπ (see Fig. 3). We also minimize

the distance between the respective appearance encodings

Eα(x
m) and Eα(x

q) to ensure a consistent appearance de-

coding. Our model is then updated with the following fix-

point loss

Lfix =‖Eπ(x
m)−mπ

(

Eπ(x
q)|Eπ(x

r), λ
)

‖22

+ ‖Eα(x
m)− Eα(x

q)‖22 .
(12)

We only update the decoder with Lfix since its purpose is to

improve the generation of magnified images.

To encourage the decoder to produce realistically look-

ing images, we introduce an adversarial loss. A discrimina-

tor C is trained to distinguish between real images xq and

magnified images xm by maximizing the adversarial loss

LA(C,D) proposed by [22],

LA(C,D) = Ex∼pdata(x) [log C(x)]

+ Ex̂∼pmag(x) [log (1− C(x̂)]
(13)

with pdata the data distribution and pmag the distribution of

magnified images. The decoder is then trained by addition-

ally minimizing LA. The adversarial loss allows us to vi-

sualize the differences in posture with higher magnification

factors without generating artifacts or unrealistic images.

We summarize the losses described in this section as

Lmag =LA + βLfix (14)

with β = 2.

Our model is then updated with the following final loss:

L = Lrec + Ldis + γLmag (15)

with γ = 0.5 and Lmag is only being used to update the

decoder.

4. Experiments

We evaluate our approach on three datasets and com-

pare our results with previous work on motion magnifica-

tion. First, we introduce the datasets, perform qualitative

and quantitative evaluations and demonstrate the applica-

bility of our model on a medical scenario. Finally, we show

that every component of our model is important for gen-

erating meaningful magnifications through ablation studies.

The implementation details are provided in the supplemen-

tary material.

4.1. Datasets

Magnifying posture deviations is a challenging and new

task that has never been tackled before. We propose three

datasets showing three different actions for the specific task

of magnifying posture deviations across subjects. It is par-

ticularly important that the datasets contain subjects with

different appearances to analyze the abilities of transferring

posture from one subject to another. Our datasets cover the

following actions: (1) walking on a treadmill, (2) swinging

a golf club and (3) moving the pupil of a person’s eye.

Human Gait Dataset to Study Disfunctional Behav-

ior (HG2DB). In collaboration with clinicians from Uni-

versity Hospital Zurich, we introduce a medical dataset for

comparing postures between human subjects walking on a

treadmill. The recorded patients are affected by different

diseases debilitating their walking motor skills. The dataset

contains also videos of healthy subjects which are used as

a reference and have been recorded in the same setup. The

videos display the legs of the subjects. The dataset contains

59 impaired and 10 healthy subjects with multiple record-

ings per subject, resulting in 229 videos with around 700

frames each, leading to a total number of 172,288 frames.

Golf Swing. We collected videos from Youtube showing

golfers from different tournaments. The videos are recorded

in slow-motion making them suitable for our scenario since

many subtle differences in posture are represented. Our

dataset has an overlap with the videos collected by Guha

et al. [4] with the main difference that we use purely videos

with a high frame rate. Overall, we employ 48 videos with

a total number of 7000 frames. Golf Swing is more chal-

lenging than HG2DB since the videos were recorded from

different tournaments (i.e., different backgrounds, lightning

etc.) and they contain the full body of the person (i.e., more

degrees of freedom regarding posture changes).

Close-Up Human Eye Dataset (CUEye). Even though

eyes seem to be static if no direct movement is triggered by

the person, the pupil still moves in a very subtle manner,

often referred to as ‘wobbling’. Magnifying posture devi-

ations is an excellent tool to increase the visibility of this

motion. We collected 10 videos showing close-up record-

ings of the eye from 10 different subjects (one video each)

with three different eye-colors (brown, blue, green). The

subjects first move their eyes to allow the generative model

to differentiate between pose and appearance. This is fol-

lowed by a few seconds of starring used for evaluating if

our approach is able to magnify the ’wobbling’ effect.

4.2. Qualitative Comparison

Fig. 4, 5 and 6 show magnified images generated by our

model for all three datasets. We additionally provide videos

in the supplementary material and on our project page1 to

further demonstrate the benefit of our magnifications.

Fig. 4 demonstrates our results on magnifying posture

deviations on HG2DB (5th row; yellow border) given a ref-

erence and query frame (first row). We show the output

1https://compvis.github.io/magnify-posture-deviations/
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Figure 4. Qualitative Comparison on HG2DB. We show the magnification of posture deviations between a reference and query frame (first

row) using the approach by Oh et al. [43] (2nd row), our model without Ldis and without Lmag (3rd row), our model without Lmag (4th row)

and our final model (5th row). We manually superimposed red markers to facilitate the perception of the small differences and changes in

the magnified images. The markers represent the posture of the query subject and are the same throughout a specific example. Left: The

query subject keeps its legs more parallel than the reference subject. Our model exaggerates this behavior until the legs of the query subject

are completely parallel. Middle: The query subject does not raise its left foot properly. Our magnifications visualize the differences until

the left foot completely touches the treadmill. Right: The query subject performs bigger steps and our model further increases the distance.

with three different magnification intensities λ. Our model

is able to detect the posture differences and represent the

magnifications on realistically looking images.

In Fig. 5 we show our results (3rd row) on Golf Swing.

Even though the dataset is very challenging due to the pos-

sible posture changes in arms and legs, our model is able

to magnify the differences between the reference and query

frame. In particular, the example in the middle shows that

our model can even magnify arms and legs at the same time.

Fig. 6 displays the magnification of the subtle move-

ments of a pupil while the eye is in idle state. Instead of

comparing the posture deviations across different subjects,

we first compute the pupil’s movement in time of a query

subject (top left) and transfer this motion to several target

subjects with different appearances (right). Our model suc-

cessfully detects the very subtle motion of the query subject

and is able to transfer this motion to other subjects.

Comparison with Previous Work. To the best of our

knowledge, this is the first approach to address the mag-

nification of posture deviations across individuals. Previ-

ous work dealt with the task of magnifying subtle motion

within the same video [35, 55, 16, 52, 53, 50, 58, 43], but

not across subjects with different appearances. Considering

all motion magnification approaches, [43] has the highest

potential to address the more complex scenario due to their

usage of a generative model with a shape and texture repre-

sentation. Therefore, we qualitatively compare our results

in Fig. 4 and Fig. 5 (and quantitatively in Tab. 1) with [43]

on the task of magnifying posture differences. We use the

official implementation of [43] from their repository. Both

figures show that Oh et al. [43] is not specialized on magni-

fying posture deviations across subjects. Their model also

modifies the background and appearance of the subject and

therefore generates very blurry and unrealistic images. In

contrast, our approach is able to precisely magnify the pos-

ture differences without altering the appearance.

4.3. Quantitative Analysis

Classification of Impairment. Our model generates

novel magnified postures not present in the given dataset.

Hence, we cannot directly evaluate our magnified images

due to missing ground-truth magnifications. As an alter-

native, we introduce a quantitative evaluation based on the

health condition of patients in HG2DB.

We train two linear (binary) classifiers, both on healthy

vs unhealthy samples. One classifier is trained with the

original images (Original) and the second one with the mag-

nified generations (Ours). The goal is to evaluate if the

magnification improves the classification of impairment and

thus whether our model can support doctors during the anal-

ysis of the condition of a patient.

The classification should be subject independent and
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Figure 5. Qualitative Comparison on Golf Swing. We show the magnifications produced by our model and compare with previous work

[43] (best viewed by zooming in on the digital version). The red markers represent the posture of the query subject and are the same

throughout a specific example. Left: The legs of the query subject are further apart and the arm is kept lower. Our model further increases

the distance of the legs and lowers the arms on the generated images. Middle: The right knee of the query is twisted inside and the arms

are kept higher. Our approach magnifies both by further twisting the knee and raising the arms. Right: The reference subject is holding its

arms more centered than the query subject. Our model magnifies the deviation by slowly moving the arms of the query subject to the left.

Figure 6. Magnification Results on CUEye. Detection of subtle

posture differences in the pupil given a query movement (top left)

and a target appearance (right). Bottom left shows a close up of

the pupil with a blue grid as guide. The zoom shows a tiny motion

from left to right. Given one of the target appearances shown on

the right, our model can transfer the left-right movement from the

query to the target appearance.

only based on posture information. For this specific experi-

ment, we employ keypoints to represent postures since these

correspond best to how humans perceive postures. In par-

ticular, we use DeepLabCut [41] for detecting the following

8 keypoints: left/right hip, left/right knee, left/right toe and

left/right heel. The detector is trained with manually an-

notated frames of HG2DB. The keypoints are normalized

using ‘left hip’ as origin to assure that they are comparable

across different videos.

We sample 10 diverse linearly-spaced postures from a

complete walking cycle sequence and perform the quan-

titative analysis independently per posture. We provide a

visual example of the postures in the supplementary ma-

terial. For every posture and subject we collect 10 Near-

est Neighbors resulting in 10×number of subjects samples

Figure 7. Magnifying Posture Deviations as Medical Tool. Devi-

ations between healthy (first row) and impaired (second) is am-

plified in the generated images (third) for a better analysis of the

disease status. The patient only shows difficulties during the right

step. Increasing λ emphasizes the deviation. We manually super-

imposed markers to facilitate the perception of the differences.

per posture for training and testing (in total 6900 frames).

Different postures require different magnification intensi-

ties to render visible posture discrepancies between healthy

and impaired subjects. Therefore, we generate the magni-

fied images with in total 25 different magnification factors

(λ), where λ ∈ [1.2, 6] with a step size of 0.2, and train one

classifier per λ and posture.

The optimal λ per posture has been found using cross-

validation and Tab. 1 reports the accuracy on the test set. We

do not expect the accuracy to be ∼ 100% since not all im-

paired patients have issues with each posture, i.e., for spe-

cific posture-subject pairs no differences to healthy subjects

should be detected. This behavior can be also observed in

Fig. 7. The patient (2nd row) only shows difficulties during

the right step. Our model detects the deviation to an healthy
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Classifier Postures
AVG ± STD

trained with 1 2 3 4 5 6 7 8 9 10

Original 58.9 61.3 63.2 53.3 55.9 51.7 58.3 50.3 50.7 61.2 56.5 ± 4.5

Oh et al. [43] 60.2 61.5 64.1 53.5 56.1 52.0 59.4 52.8 51.2 61.4 57.2 ± 4.4

Ours 70.4 66.7 72.0 68.3 71.8 67.6 69.6 65.3 59.5 65.7 67.7 ± 3.5
Table 1. Classification of Impairment. We report the test accuracies (%) per posture achieved by binary classifiers (healthy vs impaired)

trained and tested on the key-points of (i) the original data , (ii) the magnified images generated by previous work on motion magnification

and (iii) our magnified images. A visual example of postures 1 to 10 can be found in the supplementary material.
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Figure 8. Quality of Visualizations - FID. We display the absolute

FID increase relative to λ = 1 for different intensity values λ us-

ing the generation of Oh et al. [43] (dark blue), our model without

Ldis and without Lmag (light blue), our model without Lmag (pur-

ple) and our final model (orange). In contrast to our final model,

the generation quality of Oh et al. and our incomplete models de-

creases significantly (FID increase) with increasing λ.

subject (1st row) and only magnifies the inaccurate posture

during the right step.

We also compare our quantitative results with previous

work on motion magnification. We performed the same ex-

periment explained above using the magnified generations

of Oh et al. [43] and report the accuracies in Tab. 1.

Most of the classifiers trained on the original data stay

close to random performance and are not able to distin-

guish healthy from impaired. Compared to the approach of

[43], our magnified images can increase the accuracy sig-

nificantly. We show especially for posture 4,5 and 8 a large

boost and improve the classification accuracy on average

by more than 10%. This experiment demonstrates that our

model is a valuable tool for discovering impairment of mo-

tor behavior.

Quality of Visualizations - FID. The Fréchet Inception

Distance (FID) was originally proposed by Heusel et al.

[26] and aims to evaluate the quality of generated images.

It measures the distance between multivariate Gaussians for

real and generated images. We have empirically found that

the change in the distribution through magnification is neg-

ligible. Therefore, the FID allows us to evaluate the gener-

ation quality of our magnified images using different mag-

nification intensities without requiring ground-truth magni-

fications. In Fig. 8 we show the absolute FID increase rel-

ative to λ = 1. This experiment shows that with increasing

λ our final model achieves the best results and only forfeits

a small decrease in quality even with higher λ. Please note

that this experiment evaluates the generation quality, not if

the magnifications correspond to the actual amplification of

the posture deviations.

4.4. Ablation Studies

In Fig. 4 and 8 we evaluate the importance of our pro-

posed losses. We compare the magnified images produced

by our full model with the generations of our model with-

out Lmag and/or without Ldis. Fig. 4 shows that our model

without Ldis and Lmag generates, similar to [43], blurry and

unrealistically looking images. Our model trained with the

disentanglement loss Ldis improves the generations espe-

cially for smaller λ, but fails in producing valuable mag-

nifications for larger λ. Instead, our final model is able to

precisely display the magnification of posture deviations on

the generated images even for large λ. Similar conclusions

can be drawn from Fig. 8. The quality of the magnified

images decreases for our incomplete models for λ > 3, but

stays almost constant for our final model. This shows that

every component of our model is important.

5. Conclusion

In this paper, we have introduced the problem of mag-

nifying posture deviations across subjects and presented an

approach to tackle the challenging task. Our unsupervised

disentanglement allows us to only magnify posture differ-

ences while keeping the appearance unaltered. Moreover,

our method enables us to integrate the magnification into the

training and learn on real data without supervision. We have

shown on three datasets that our approach produces valu-

able magnifications and improves greatly upon the perfor-

mance of the state-of-the-art in motion magnification. Fi-

nally, ablation studies have demonstrated the importance of

every component of our model.
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