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Abstract

We present a method to learn a representation for ad-

verbs from instructional videos using weak supervision from

the accompanying narrations. Key to our method is the fact

that the visual representation of the adverb is highly depen-

dant on the action to which it applies, although the same

adverb will modify multiple actions in a similar way. For

instance, while ‘spread quickly’ and ‘mix quickly’ will look

dissimilar, we can learn a common representation that al-

lows us to recognize both, among other actions.

We formulate this as an embedding problem, and

use scaled dot-product attention to learn from weakly-

supervised video narrations. We jointly learn adverbs as in-

vertible transformations operating on the embedding space,

so as to add or remove the effect of the adverb. As there is

no prior work on weakly supervised learning of adverbs,

we gather paired action-adverb annotations from a subset

of the HowTo100M dataset for 6 adverbs: quickly/slowly,

finely/coarsely, and partially/completely. Our method out-

performs all baselines for video-to-adverb retrieval with

a performance of 0.719 mAP. We also demonstrate our

model’s ability to attend to the relevant video parts in or-

der to determine the adverb for a given action.

1. Introduction

Instructional videos are a popular type of media watched

by millions of people around the world to learn new skills.

Several previous works aimed to learn the key steps neces-

sary to complete the task from these videos [1, 30, 45, 62].

However, identifying the steps, or their order, is not all one

needs to perform the task well; some steps need to be per-

formed in a certain way to achieve the desired outcome.

Take for example the task of making a meringue. An expert

would assure you it is critical to add the sugar gradually and

avoid over-beating by folding the mixture gently.

This is related to recent efforts on assessing the perfor-

mance of daily tasks [10, 11, 26], however, these works do

not assess individual actions or identify whether they have

been performed as recommended by, say, a recipe. As in

Figure 1. We learn a joint video-text embedding space from in-

structional videos and accompanying action-adverb pairs in the

narration. Within this space, we learn adverbs as action modifiers

— that is transformations which modify the action’s embedding.

the example before, steps with such caveats are often in-

dicated by adverbs describing how actions should be per-

formed. These adverbs (e.g. quickly, gently, ...) generalize

to different actions and modify the manner of an action. We

thus learn these as action modifiers (Fig. 1).

To learn action modifiers for a variety of tasks and ac-

tions, we utilize the online resource of instructional videos

with accompanying narrations. However, this form of su-

pervision is weak and noisy. Not only are the narrations

just roughly aligned with the actions in the video, but often

the narrated actions may not be captured in the video alto-

gether. For example, a YouTube instructional video might

be narrated as “pour in the cream quickly” but the visuals

only show the cream already added. In this case the video

would not be useful to learn the adverb ‘quickly’.

As the main contribution of this paper, we propose the
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first method for weakly supervised learning from adverbs,

in which we embed relevant video segments in a latent

space and learn adverbs as transformations in this space.

We collect action-adverb labels from narrations of a subset

of tasks in the HowTo100M dataset [33]. The method is

evaluated for video-to-adverb retrieval, as well as adverb-

to-video retrieval and shows significant improvements over

baselines. Additionally, we present a comprehensive abla-

tion study demonstrating that jointly learning a good action

embedding is key to learning action modifiers.

2. Related Work

We review works which learn from instructional videos,

followed by works using parts-of-speech in video. We then

review the related task of object attributes in images and

methods which learn embeddings under weak supervision.

Instructional Videos. Movies accompanied by subtitles

and scripts have been used for learning from video [12, 13,

25, 47]. However, movies typically focus on talking heads

with few object interactions. More recently, instructional

videos are a popular source of datasets [1, 33, 44, 60] with

hundreds of online videos of the same task. Narrations are

used to learn steps of complex tasks [1, 18, 30, 42, 45, 62],

and more recently for video retrieval [33], visual ground-

ing [17, 19], action segmentation [60] and learning actions

through object state changes [2, 14].

In this work, we offer a novel insight into how these

instructional videos can be used beyond step identifica-

tion. Our work utilizes videos from the recently released

HowTo100M dataset [33], learning adverbs and their rele-

vance to critical steps in these tasks.

Learning from Parts-of-Speech in Video. Several prob-

lems are at the intersection between language and video:

captioning [24, 38, 55, 59], retrieval [9, 16, 21, 31, 33, 52,

54] and visual question answering [15, 56, 57, 61]. The

majority of these works use LSTMs or GRUs to combine

words into sentence-level features. While some works use

learned pooling [32] or attention [55, 56, 57], they do not

use knowledge of the words’ parts-of-speech (PoS).

A few recent works differentiate words by their PoS tags.

Xu et al. [54] learn a joint video-text embedding space after

detecting (subject, verb, object) triplets in the input caption.

Wray et al. [52] perform fine-grained action retrieval by

learning a separate embedding for each PoS before combin-

ing these embeddings. Both works focus on verb and noun

PoS, as they target action recognition. Alayrac et al. [1]

also use verb-noun pairs; the authors use direct object re-

lations to learn unsupervised clusterings of key steps in in-

structional videos.

While some adverbs are contained in video captioning

datasets [24, 59], no prior captioning work models or recog-

nizes these adverbs. The only prior work to utilize adverbs

is that of Pang et al. [39] where many adverbs in the ADHA

dataset model moods and facial expressions (e.g. ‘happily’,

‘proudly’). The work uses full supervision including action

bounding boxes. Instead, in this work we target adverbs that

represent the manner in which an action is performed, using

only weak supervision from narrations.

Object Attributes in Images. Adverbs of actions are anal-

ogous with adjectives of objects. Learning adjectives for

nouns has been investigated in the context of recognizing

object-attribute pairs [4, 7, 20, 34, 36, 37, 50, 51] from im-

ages. Both [7, 34] tackle the problem of contextuality of

attributes, where the appearance of an attribute can vastly

differ depending on the object it applies to. Chen and Grau-

man [7] formulate this as transfer learning to recognize un-

seen object-attribute compositions. Misra et al. [34] learn

how to compose separate object and attributes classifiers

for novel combinations. Instead of using classifiers to rec-

ognize attributes, Nagarajan and Grauman [36] model at-

tributes as a transformation of an object’s embedding. Our

work is inspired by this approach.

While some works learn attributes for actions [28,

43, 58], these detect combinations of specific attributes

(e.g. ‘outdoor’, ‘uses toothbrush’) to perform zero shot

recognition and do not consider adverbs as attributes.

Weakly Supervised Embedding. Learned embeddings

are commonly used for retrieval tasks, however few works

have attempted to learn embeddings under weak supervi-

sion [3, 35, 46, 53]. In [3], weak supervision is overcome

using a triplet loss that only optimizes distances to the defi-

nite negatives and identifies the best matching positive. Two

works [35, 46] perform video moment retrieval from text

queries without temporal bounds in training. Similar to our

approach, both use a form of text-guided attention to find

the relevant portion of the video, however these use the full

sentence. In our work, we simultaneously embed the rele-

vant portion of the video while learning how adverbs mod-

ify actions. We detail our method next.

3. Learning Action Modifiers

The inputs to our model are action-adverb narrations and

the accompanying instructional videos. Fig. 2(a) shows a

sample instructional video, narrated with “...start by quickly

rolling our lemons...”, from which we identify the action roll

and the adverb quickly (see Sec. 4 for NLP details). After

training, our model is able to assess whether videos in the

test set, of the same or different action, have been achieved

quickly, among other learned adverbs.

We present an overview of our method in Fig. 2. We

learn a joint video-text embedding shown in Fig. 2(b),

where the relevant video parts are embedded (blue dot)

close to the text representation of the adverb-modified ac-

tion ‘roll quickly’ (yellow dot). We review how joint video-
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Figure 2. (a) Our input is a video x with the weak label (a,m) for the action and adverb respectively. (b) We aim to learn a joint video-text

embedding space for adverb and video retrieval where the embedded video (blue) and action-adverb text representation (yellow) are close.

(c) We learn adverbs as action modifiers which are transformations in the embedding space. (d) We embed f ′(x, a), a visual representation

of the relevant video parts using multi-head scaled dot-product attention where the query is a projection of the action embedding g(a).

text embeddings are typically learned in Sec. 3.1. This sec-

tion also introduces the notations for the rest of the paper.

Two prime challenges exist in learning the embedding

for our problem, i.e. learning from adverbs in instructional

videos. The first is disentangling the representation of the

action from the adverb, allowing us to learn how the same

adverb applies across different actions. We propose to learn

adverbs as action modifiers, one per adverb, as in Fig. 2(c).

In Sec. 3.2 we introduce these action modifiers, which we

represent as transformations in the embedding space.

The second challenge is learning the visual represen-

tation from the relevant parts of the video in a weakly-

supervised manner, i.e. without annotations of temporal

bounds. In Sec. 3.3, we propose a weakly-supervised em-

bedding function that utilizes multi-head scaled dot-product

attention. This uses the text embedding of the action as the

query to attend to relevant video parts, as shown in Fig. 2(d).

3.1. Learning an Action Embedding

Our base model is a joint video-text embedding, as

in [32, 52, 54]. Specifically, given a set of video clips x ∈ X

with corresponding action labels a ∈ A, our goal is to ob-

tain two embedding functions, one visual and one textual,

f : X → E and g : A → E such that f(x) and g(a) are

close in the embedding space E and f(x) is distant from

other action embeddings g(a′). These functions f and g

can be optimized with a standard cross-modal triplet loss:

Ltriplet = max(0,d(f(x), g(a))

−d(f(x), g(a′)) + β) s.t. a′ 6= a (1)

where a′ is an action different to a, d is the Euclidean dis-

tance and β is the margin, set to 1 in all experiments. We

use g(a) as the GloVe [41] embedding of the action’s verb,

and explain how we replace f(x) by f ′(x, a) in Sec. 3.3.

3.2. Modeling Adverbs as Action Modifiers

While actions exist without adverbs, adverbs are by defi-

nition tied to the action, and only gain visual representation

when attached to one. Although adverbs have a similar ef-

fect on different actions, the visual representation is highly

dependent on the action. Therefore, we follow prior work

from [36] on object-attribute pairs and model adverbs as

learned transformations in the video-text embedding space

E (Sec. 3.1). As these transformations modify the embed-

ding of the action, we call them action modifiers. We learn

an action modifier Om for each adverb m ∈ M , such that

Om(z) = Wmz (2)

where z is any point in the embedding space E and

Om : E → E is a learned linear transform by a weight ma-

trix Wm. In Sec. 5, we test other geometric transformations:

fixed translation, learned translation and nonlinear transfor-

mation. Each transformation Om can be applied to any text

representation Om(g(a)) or video representation Om(f(x))
in E to add the effect of the adverb m.

A video x ∈ X , labeled with action-adverb pair (a,m),
contains a visual representation of the adverb-modified ac-

tion. We thus aim to embed f(x) close to Om(g(a)). This

is equivalent to embedding the inverse of the transformation

O−1

m (f(x)) near the action g(a). We thus jointly learn our

embedding, with the action modifiers Om, using the sum of

two triplet losses. The first focuses on the action:

Lact = max(0,d(f(x), Om(g(a)))

−d(f(x), Om(g(a′))) + β) s.t. a′ 6= a (3)

where a′ is a different action and d and β are the distance

function and margin as in Sec. 3.1. Similarly, we have a
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triplet loss that focuses on the adverb, such that:

Ladv = max(0,d(f(x), Om(g(a)))

−d(f(x), Om(g(a))) + β) (4)

where m is the antonym of the labeled adverb m (e.g. when

m = ‘quickly’, the antonym m = ‘slowly’). We restrict the

negative in Ladv to only the antonym to deal with adverbs

not being mutually exclusive. For instance, a video labeled

‘slice quickly’ does not preclude the slicing being also done

‘finely’. However, it surely has not been done ‘slowly’. We

demonstrate the effect of this choice in Sec. 5.

3.3. Weakly Supervised Embedding

All prior works that learn attributes of objects from im-

ages [7, 20, 34, 36, 37] utilize fully annotated datasets,

where the object the attributes relate to is the only object

of interest in the image. In contrast, we aim to learn action

modifiers from video in a weakly supervised manner. Our

input is untrimmed videos containing multiple consecutive

actions. To learn adverbs, we need the visual representa-

tion to be only from the video parts relevant to the action

(e.g. ‘roll’ in our Fig. 2 example). We propose using scaled

dot-product attention [49], where the embedded action of

interest acts as a query to identify relevant video parts.

For each video x, we use a temporal window of size T ,

centered around the timestamp of the narrated action-

adverb pair, containing video segments {x1, x2, ..., xT }.

We start from the visual representation of all segments

f(x) = {f(x1), ..., f(xT )}, where f(·) is an I3D network.

From this, we wish to learn an embedding of the visual fea-

tures relevant to the action a, which we call f ′(x, a). In-

spired by [49], we project f(x) into keys K and values V :

K = WKf(x); V = WV f(x) (5)

We then set the query Q = WQg(a) to be the projection

of the action embedding, to weight video segments by their

relevance to that action. The attention weights are obtained

from the dot product of the keys K and the action query Q.

These then pool the values V . Specifically:

H(x, a) = σ

(

(WQg(a))⊤WKf(x)√
T

)

WV f(x) (6)

where H(x, a) is a single attention head and σ is the soft-

max function. We train multiple attention heads such that,

f ′(x, a) = WH [H1(x, a), ..., Hh(x, a)] (7)

where WH projects the concatenation of the multiple at-

tention heads Hi(x, a) into the embedding space. We learn

h attention head weights: W
Q
i ,WK

i ,WV
i as well as WH

parameters for our weakly-supervised embedding.

It is important to highlight that these weights are jointly

trained with the embedding space E, so that f ′(x, a) is used

instead of f(x) in Equations 3 and 4. We opted to explain

our embedding space before detailing how it can be learned

in a weakly-supervised manner, to simplify the explanation.

3.4. Weakly Supervised Inference

Once trained, our model can be used to evaluate cross-

modal retrieval of videos and adverbs. For video-to-adverb

retrieval, we consider a video query x and the narrated ac-

tion a, and we wish to estimate the adverb m. For example,

we have a video and wish to find the manner in which the

action ‘slice’ was performed. We use the learned function

f ′(x, a) to embed the relevant visual representation for ac-

tion a in E. We then rank adverbs by the distance from this

embedding to all modified actions ∀m : Om(g(a)).
For adverb-to-video retrieval, we consider an action-

adverb pair (a,m) as a query, embed Om(g(a)), e.g. ‘slice

finely’, and calculate the distance from this text representa-

tion to all relevant video segments ∀x : f ′(x, a). For both

cases, this allows us to use a to query to the weakly super-

vised embedding, so as to attend to the relevant video parts.

4. Dataset

HowTo100M [33] is a large scale dataset of instruc-

tional videos collected from YouTube. Each video has a

corresponding narration from manually-entered subtitles or

Automatic Speech Recognition (ASR). No ground-truth is

available in terms of correct actions or temporal extents.

To test cross-task generalization, we use the same 83

tasks previously used in [62]. These come from cooking,

DIY and car maintenance, and are divided into 65 tasks for

training and a disjoint set of 18 tasks for testing. However,

in [62], only 30 videos per task were used in training. In-

stead, we use all videos available for these 65 training tasks,

where each task consists of 100-500 videos. In total, we

have 24,558 videos in training and 1,280 videos in the test

set. For these we find action-adverb pairs as follows.

We use the accompanying narrations to discover action-

adverb pairs, for both training and testing. First we em-

ploy T-BRNN [48] to punctuate the subtitles1, then per-

form Part-of-Speech (POS) tagging with SpaCy’s English

core web model. We search for verb→adverb relationships

with the advmod dependency, indicating the adverb modi-

fies the verb. We exclude verbs with VBD (past tense) and

VBZ (third person singular) tags as these correlate with ac-

tions not being shown in the video. For example, in ‘sprin-

kle some finely chopped coriander’, ‘chopped’ is tagged

with VBD. Similarly, in ‘everything fits together neatly’,

the verb ‘fits’ is tagged as VBZ. Examples of the (action, ad-

verb) pairs obtained from the pipeline with the correspond-

1Note: YouTube ASR lacks punctuation
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Figure 3. Log-scaled y-axis shows instances of each adverb plotted per action. We display adverbs against their paired antonym (+/- axis).

Figure 4. Example videos and narrations, highlighting the action

and adverb discovered with our NLP pipeline. In some cases the

weak timestamp is a good localization of the action (top), how-

ever in others the action is long (second), the timestamp is a poor

match (third), or the action is not captured in the video (bottom).

ing video snippets are shown in Fig. 4. Additionally, we

manually filter actions and adverbs that are not visual, e.g.

‘recommend’ and ‘normally’, respectively. We explored au-

tomatic approaches such as word concreteness scores [5],

but found these approaches to be unreliable. We also group

verbs into clusters to avoid synonyms as in [8], i.e. we con-

sider ‘put’ and ‘place’ as the same action. From this pro-

cess, we obtain 15,266 instances of action-adverb pairs.

However, these have a long tail of adverbs that are men-

tioned only a handful of times. We restrict our learn-

ing to 6 commonly used adverbs, that come in 3 pairs of

antonyms: ‘partially’/‘completely’, ‘quickly’/‘slowly’ and

‘finely’/‘coarsely’. These adverbs appear in 263 unique

action-adverb pairs with 72 different actions. We show the

distribution of adverbs per action in Fig. 3. While our train-

ing is noisy, i.e. actions might not appear in the video (refer

to Fig. 4 bottom), we clean the test set for accurate evalua-

tion of the method. We only consider test set videos where

the action-adverb is present in the video and appears within

the 20 seconds around the narration timestamp. These cor-

respond to 44% of the original test set, which is comparable

to the 50% level of noise reported by the authors in [33].

This results in 5,475 action-adverb pairs in training and

349 in testing. We consider the mean timestamp between

the verb and adverb narrations as the weak supervision for

the action’s location. These action-adverb weak timestamp

annotations and accompanying code are publicly available2.

5. Experiments

We first describe the implementation details of our

method, followed by the metrics we use for evaluation. We

then present our results against those of baselines and eval-

uate the contribution of the different components.

Implementation Details. We sample all videos at 25fps

and scale to a height of 256 pixels. We use I3D [6] with 16

frame segments, pre-trained on Kinetics [22], for both RGB

and optical flow. We concatenate these to create 2048D fea-

tures, extracted once per second as in [62], for T = 20
seconds around the narration timestamp.

In all experiments, our embedding space E is 300D, the

same as the GloVe word representation [41]. We initialize

the action embeddings with the verb’s GloVe vector, pre-

trained on the Wikipedia and Gigaword corpora. The action

modifiers Om are initialized with the identity matrix such

that they have no effect at first. For our scaled dot-product

attention, Q is of size 75×1 and K and V are of size 75×T .

We use 4 attention heads in f ′(x, a).
All our models are trained with the Adam optimizer [23]

for 1000 epochs with a batch size of 512 and a learning rate

of 10−4. To aid disentangling the actions and adverbs, we

first let the model learn only actions (optimized by Ltriplet)

for 200 epochs before introducing the action modifiers. The

weights of the action modifiers Wm (Eq. 2) are then learned

at a slower rate of 10−5.

Evaluation Metric. We report mean Average Preci-

sion (mAP) for video-to-adverb and adverb-to-video re-

trieval. For video-to-adverb given a video and the narrated

2https://github.com/hazeld/action-modifiers
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action we rank the 6 adverbs’ relevance. For adverb-to-

video given an adverb query (e.g. ‘slowly’), we rank videos

by the distance of each video labelled with its associated

action (e.g. ‘put’) to the text embedding of the verb-adverb

(e.g. ‘put slowly’) and calculate mAP across the 6 adverbs.

We also report mAP where we restrict the retrieval to the

adverb and its antonym, which we refer to as the Antonym

setting. This ‘Antonym’ metric better represents the given

labels, therefore we use it for the ablation study. To clar-

ify, we may have a video narrated ‘cut coarsely’. We are

thus confident the cut was not performed ‘finely’, however

we cannot judge the speed of (‘quickly’ or ‘slowly’). In

Antonym video-to-adverb, there are only two possible ad-

verbs to retrieve, thus we report Precision@1 (P@1) which

is the same as binary classification accuracy. Similarly, we

report mAP Antonym for adverb-to-video retrieval, where

we only rank videos labeled with the adverb or its antonym.

5.1. Comparative Results

We first compare our work to baselines. Since ours is the

first work to learn from adverbs in videos, we adapt meth-

ods that learn attributes of objects in images for compari-

son, as this is the most similar existing task to ours. In this

adaptation, actions replace objects, and adverbs replace at-

tributes/adjectives.

We compare to RedWine [34] and AttributeOp [36] as

well as the LabelEmbed baseline proposed in [34] which

uses GloVe features in place of SVM classifier weights. We

replace the image representation by a uniformly weighted

visual representation of video segments. Similar to our eval-

uation, we report results when the action is given in testing,

referred to as the ‘oracle’ evaluation in [36]. Furthermore,

for a fair comparison, we use only the antonym as the neg-

ative in each method’s loss, as we do in Eq. 4. AttributeOp

proposes several linguistic inspired regularizers; we report

the best combination of regularizers for our dataset — the

auxiliary and commutative regularizers. We also compare

to random chance and a naive binary classifier per adverb

pair. This classifier is analogous to the Visual Product base-

line used in [34, 36]. We report on both versions of this

baseline, a Linear SVM which trains a binary one-vs-all

classifier per adverb (Classifier-SVM) and a 6-way MLP of

two fully connected layers (Classifier-MLP). In video-to-

adverb, we rank adverbs by classifiers’ confidence scores,

as in [36]. In adverb-to-video, we use the confidence of the

corresponding classifier or MLP output to rank videos.

Comparative results are presented in Table 1. Our

method outperforms all baselines for video-to-adverb re-

trieval, both when comparing against all adverbs and when

restricting the evaluation to antonym pairs. We see that At-

tributeOp is the best baseline method, generally perform-

ing better than both RedWine and LabelEmbed. The two

latter methods work on a fixed visual feature space, thus

Method
video-to-adverb adverb-to-video

Antonym All Antonym All

Chance 0.500 0.408 0.511 0.170

Classifier-SVM 0.605 0.532 0.563 0.264

Classifier-MLP 0.685 0.602 0.603 0.304

RedWine [34] 0.693 0.594 0.595 0.290

LabelEmbed [34] 0.717 0.621 0.618 0.297

AttributeOp [36] 0.728 0.612 0.597 0.350

Ours 0.808 0.719 0.657 0.329

Table 1. Comparative Evaluation. Best performance in bold and

second best underlined. We report results for both video-to-adverb

and adverb-to-video retrieval with results restricted to the adverb

and its antonym (Antonym) and when unrestricted (All).

are prone to errors when the features are non-separable in

that space. We can also see that LabelEmbed performs

better than RedWine across all metrics, demonstrating that

GloVe features are better representations than SVM clas-

sifier weights. While AttributeOp marginally outperforms

our approach on adverb-to-video ‘All’, it underperforms on

all other metrics, including our main objective, estimating

the correct adverb over its antonym for a video query.

5.2. Qualitative Results

Fig. 5 presents video examples. For each, we demon-

strate attention weights for several action queries. Our

method is able to successfully attend to segments relevant

to various query actions. The figure also shows predicted

actions, and predicted adverb when using the ground-truth

action as the query. Our method is able to predict the correct

adverb. In the last example, predicted actions are incorrect,

but the method correctly identifies a relevant segment and

that the action was done ‘slowly’. We provide further in-

sights into the learned embedding space in supplementary.

5.3. Ablation Study

We report 4 ablation studies on the various aspects of

the method: the choice of action modifier transformation

Om(·), our scaled dot-product attention, the contributions

of the loss functions, and the length of the video (T ). We

focus on video-to-adverb retrieval in the ablation using the

Antonym P@1 metric, as this allows us to answer questions

like: “was the ‘cut’ performed ‘quickly’ or ‘slowly’?”.

Action Modifier Representation. In Table 2 we exam-

ine different representations for the action modifiers Om(·)
(Eq. 2). We compare to a fixed translation from the GloVe

representation of the adverb (m), which is not learned, to

three learned representations. First, a learned translation
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Figure 5. Qualitative Results. Temporal attention values from several action queries. The intensity of the color indicates the attention

value. Recall that we use the narrated action to weight the relevance of video segments. Using that, we display the top-5 predicted actions,

as well as the correctly predicted adverb for all cases.

Om(z) = Dimension Learned P@1

z +GloV e(m) 1D 0.735

z + bm 1D X 0.749

Wmz 2D X 0.808

Wm2 ReLU(Wm1 z + bm) 2D X 0.742

Table 2. Comparison of action modifier representation Om (�). The

linear transformation choice clearly improves results.

vector bm initialized from the GloVe embedding is used.

Second, our chosen representation - a 2D linear transforma-

tion with matrix Wm as in Eq. 2. Third, we learn a non-

linear transformation implemented as two fully connected

layers, the first with a ReLU activation.

Results show the linear transformation clearly outper-

forms a vector translation or the non-linear transformation.

The translation vector does not having enough capacity to

represent the complexity of the adverb, while the nonlinear

transform is prone to over-fitting.

Temporal Attention. In Table 3, we compare our proposed

multi-head scaled dot-product attention (Sec. 3.3) with al-

ternative approaches to temporal aggregation and attention.

In this comparison, we also report action retrieval results,

with video-to-action mAP. That is, given the embedding of

the video f ′(x, a) queried by the ground-truth action, we

rank all actions in the embedding ∀a : g(a) by their dis-

tances to the visual query and evaluate the rank of the cor-

rect action. Our method does not aim for action retrieval as

it assumes knowledge of the ground-truth action, however

this metric evaluates the quality of the weakly supervised

embedding space. Results are compared to:

• Single: uses only a one-second clip at the timestamp.

• Average: uniformly weights the T features.

• Attention from [29]: widely used class agnostic at-

tention, calculating attention with two fully connected

layers, f ′(x, a) = σ(w1 tanh(W2f(x)))W3f(x).

• Class-specific Attention: a version of the above with

one attention filter per action class.

• Ours w/o two-stage optimization: our attention with-

out the first 200-epoch stage of learning action triplets

without learning adverbs/modifiers.

• Ours: our attention as described in Sec. 3.3.

Table 3 demonstrates superior performance of our method

for the learning of action embeddings and, as a conse-

quence, better learning of action modifiers. These results

also demonstrate the challenge of weak-supervision, with

video-to-action only performing at 0.246 mAP when con-

sidering only one second surrounding the narrated action.

This improves to 0.692 with our method.
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