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Abstract

Accurate bounding box estimation has recently attract-
ed much attention in the tracking community because tra-
ditional multi-scale search strategies cannot estimate tight
bounding boxes in many challenging scenarios involving
changes to the target. A tracker capable of detecting target
corners can flexibly adapt to such changes, but existing cor-
ner detection based tracking methods have not achieved ad-
equate success. We analyze the reasons for their failure and
propose a state-of-the-art tracker that performs correlation-
guided attentional corner detection in two stages. First, a
region of interest (Rol) is obtained by employing an efficient
Siamese network to distinguish the target from the back-
ground. Second, a pixel-wise correlation-guided spatial
attention module and a channel-wise correlation-guided
channel attention module exploit the relationship between
the target template and the Rol to highlight corner regions
and enhance features of the Rol for corner detection. The
correlation-guided attention modules improve the accura-
cy of corner detection, thus enabling accurate bounding
box estimation. When trained on large-scale datasets us-
ing a novel Rol augmentation strategy, the performance of
the proposed tracker, running at a high speed of 70 FPS, is
comparable with that of state-of-the-art trackers in meeting
five challenging performance benchmarks.

1. Introduction

Visual object tracking is one of the fundamental prob-
lems in computer vision, and it has attracted increasing at-
tention in recent years. The goal of object tracking is to
locate a target at any point in a video based on the state
of the target in the first frame. The ability to do this on-
line would have multiple applications in human-computer
interactions, video surveillance, and unmanned control sys-
tems. Although significant progress has been made, fac-
tors such as occlusion, deformation, and scale variation still
pose formidable challenges.
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A tracker is normally required both to locate the target
robustly and to estimate its state (frequently represented by
a bounding box) accurately. Most trackers focus on tar-
get location through the construction of robust classifiers,
ignoring target-state estimation. As a result, most track-
ers cannot handle severe target deformation, because they
rely on a multi-scale search strategy [25, 7] to obtain the
bounding box. Estimating the bounding box would solve
this problem, and a number of ways to do this have been
proposed, including the linear regression model [32], the re-
gion proposal network (RPN) [24], and the intersection over
union (IoU) overlap prediction network [6]. As a bounding
box is determined by its top-left and bottom-right corner-
s, one straightforward way to estimate it is to predict the
coordinates of these two points. GOTURN [15] directly es-
timates the corner coordinates using a fully connected net-
work. SATIN [12] employs a corner pooling strategy [22]
in a Siamese network [!] to predict heatmaps and location
offsets for target corners. By detecting corners, the tracker
can flexibly adapt to deformations and scale changes in the
target. However, approaches based on corner detection have
not yet achieved a level of performance comparable to that
of the other state-of-the-art trackers [46, 23, 0].

Existing corner detection-based tracking methods have
several limitations. First, methods that directly detect cor-
ners are complicated by the need to resolve ambiguities: ob-
jects in the background also have corners, and the tracker
may have difficulty distinguishing them from the corners of
the target being tracked. Second, existing methods do not
effectively explore the relationship between the template
and the test image. As the target is unknown beforehand,
template appearance information is often integrated into the
test image representations through an integration compo-
nent. In recent Siamese trackers [1, 37], a cross-correlation
operation is used to calculate similarity between the tem-
plate and the test image. The target center is located by find-
ing the maximum response. However, spatial information
about the corners is not explicitly encoded in the correla-
tion results. Third, existing methods do not benefit from the
powerful representation capacities of deeper networks (like
ResNet [14]), using either a shallow backbone network [15]
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or a light-weight hourglass network [ 2] instead.

In view of these limitations, we propose to learn
correlation-guided  attention,  including  pixel-wise
correlation-guided spatial attention and channel-wise
correlation-guided channel attention, in a two-stage corner
detection network for accurate visual tracking. In the first
stage, the target is distinguished from the background by
using a light-weight Siamese tracking module. An Rol
that is expected to contain the target is constructed at this
stage. In the second stage, the bounding box is accurately
estimated by detecting target corners in the constructed
Rol. Such two-stage detection significantly mitigates the
ambiguous corner localization problem.

The key innovation of this work is exploiting the rela-
tionship between the template and the Rol for improved
accuracy in corner detection. To achieve this, we propose
using a pixel-wise correlation-guided spatial attention mod-
ule and a channel-wise correlation-guided channel attention
module. Instead of the traditional cross-correlation, we em-
ploy pixel-wise correlation to calculate the similarity be-
tween each pixel of the template feature maps and all pixels
of the Rol feature maps, thereby encoding spatial informa-
tion about the corners in pixel-wise similarity maps. A s-
patial attention module is employed to learn spatial maps
that highlight regions corresponding to the corners by tak-
ing the pixel-wise similarity maps as input. As discussed
in [23], some channels have a high response to targets in a
specific category, while other channels have negligible re-
sponses. We employ channel-wise correlation to calculate
the channel-wise similarity maps, which encode the impor-
tance information of the various channels. A channel at-
tention module is then employed to learn a channel descrip-
tor that emphasizes informative channels and suppresses the
useless ones by taking the channel-wise similarity maps as
input. Through attentional learning, the relationship of the
template and the Rol can be better exploited to help in lo-
cating the corners and enhancing the features of the Rol. In
addition, target-specific information is incorporated via the
proposed attention module, further helping to distinguish
the target from the background in the Rol.

During training, the Siamese network generates several
Rols in all defined positive positions to train the attention
module and corner-detection network extensively. To boost
accuracy, we add some Rol augmentation during training.
This is similar to the data augmentation used in training
samples; however, our augmentation is conducted on Rols.
Our results show that Rol augmentation further increases
the accuracy of bounding box estimation.

Using ResNet-50 [14] as the backbone, we train our
tracker end-to-end on large-scale datasets. Extensive ex-
periments on five large tracking benchmarks, including OT-
B2015 [43], VOT2018 [21], UAV123 [30], LaSOT [10], and
TrackingNet [3 1], show that the performance of our tracker

is comparable with that of the recent state-of-the-art track-
ers, while running at a high speed of 70 FPS.

2. Related work

We provide a brief review of recent developments in vi-
sual tracking, and discuss bounding box estimation strate-
gies and attention mechanisms used in this field.

2.1. Visual tracking

There are two main kinds of tracker in current use: cor-
relation filter (CF)-based trackers [4, 16, 9, 5] and Siamese
network-based trackers [1, 37, 24]. CF-based tracker-

s learn the correlation filters by solving a ridged regres-
sion problem. Many other techniques, such as multi-scale
search [25, 7], boundary effects mitigation [8], multiple fea-
ture integration [9, 5], and multi-kernel training [36], have
been proposed to improve the performance of CF-based
trackers. However, these complex models and deep features
have an adverse impact on efficiency, and practical applica-
tions often require the tracker to be highly efficient.

Siamese network based methods have recently attract-
ed much attention in the tracking community. A Siamese
tracker learns a similarity matching function by performing
cross-correlation between feature representations learned
from template and test images [I]. These trackers are
usually very efficient, since they utilize the target in the
first frame as the template and do not perform online up-
dates. The Siamese architecture is widely used in the
literature[37, 38, 13, 24, 46].

2.2. Bounding box estimation strategy

Tracking results are often represented by a rectangular
bounding box. Most trackers fix the aspect ratio of the tar-
get, and resort to multi-scale search to estimate its state.
This strategy is feasible in situations where targets only un-
dergo scale changes. However, the pose and viewpoint of
the object may also change with time. It is therefore desir-
able that trackers should be able to estimate a tight bound-
ing box for the target. SiamRPN [24] and ATOM [6], using
respectively an offline trained bounding box regression net-
work and Intersection over Union (IoU) overlap maximiza-
tion architecture, have both shown the ability to estimate ac-
curate bounding boxes. GOTURN [15] and SATIN [12] de-
tect corners using, respectively, a fully connected network
and the cross-correlation operation, but these straightfor-
ward methods of tracking via corner detection have not per-
formed competitively. We analyze the reasons for their in-
ferior performance, and develop a high performance corner
detection-based tracking method by learning correlation-
guided attention in a two-stage corner detection network.
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Figure 1. Framework of the proposed method. An Rol is first constructed from the result of a Siamese tracking module. Features of the
template and the Rol are then extracted by two PrPool layers. The pixel-wise correlation-guided spatial attention module and channel-wise
correlation-guided channel attention module are exploited to highlight corner regions and obtain enhanced features. Feature maps are then
upsampled to obtain heatmaps for the two corners. Finally, two soft-argmax functions are employed to calculate corner coordinates.

2.3. Attentional mechanism

Attentional mechanisms are frequently suggested as a
means of improving classification-task performance. Hu et
al. [17] proposed a Squeeze-and Excitation module to learn
channel-wise attention. Woo et al. [42] proposed learning
spatial and channel attention simultaneously in a convolu-
tional block attention module. In the specific field of visu-
al tracking, CSR-DCF [28] constructs a foreground spatial
map to constrain correlation filter learning and calculates
the channel reliability values of weighted sum correlation
response maps. RASNet [39] proposed learning spatial and
channel-wise attention in a Siamese network. The purpose
of attentional learning in visual tracking is usually to em-
phasize especially informative channels or spatial regions,
so features are usually weighted in a channel-wise or a s-
patial manner. Most attention modules are self-contained,
meaning that attention is learned only from the features to
be weighted. In contrast, we learn attention from the corre-
lation result of the template and the Rol, and use this learned
attention to enhance features of the Rol. This strategy effec-
tively exploits the relationship between the template and the
Rol to highlight corner regions and to improve the discrim-
inative power of features.

3. Proposed method

The framework of the proposed tracker is illustrated in
figure 1. We take inspiration from the Grid R-CNN [27],
which utilizes a top-down two-stage detector for object de-
tection, first obtaining several Rols though an RPN mod-
ule and then extracting features from each Rol to pre-
dict grid points. As we only track one target, we use a
Siamese tracking module to estimate one Rol expected to
contain the target. We then employ a corner detection mod-
ule to predict the top-left and bottom-right corners of this
Rol. By this procedure, the target is distinguished from the

background, so corner detection is less affected by back-
ground distractors. For detecting corners, we propose a
two-fold correlation-guided attention module, consisting of
a pixel-wise correlation-guided spatial attention module and
a channel-wise correlation-guided channel attention mod-
ule. The two-fold module is able to integrate target-specific
information and enhance features by highlighting corner re-
gions and informative channels, significantly improving the
accuracy of corner detection. The coordinates of each cor-
ner are obtained by applying a soft-argmax function [29] on
an estimated heatmap. The Siamese tracking module and
the corner detection module share the same backbone net-
work (ResNet-50) and are trained end-to-end on large-scale
datasets.

3.1. Siamese tracking

In our two-stage tracker, the target is first distinguished
from the background with the help of a Siamese tracking
module. This module employs a light-weight Siamese ar-
chitecture to estimate the initial state of the target. The
target state is then utilized to construct the Rol for cor-
ner detection. Without the tracking module, the tracker
would have to search the whole image for the target, and
could easily drift away from the correct location because
of the ambiguous corner localization problem. One sim-
ple way to construct the Rol is to locate the target using
the SiamFC [1] network and draw an Rol based on its pre-
viously estimated size, but this will lead to accumulating
errors if the estimate is not accurate. Thus, we also perform
bounding box estimation in the first stage. The bounding
box regression branch is similar to that of [20], in which the
distance offset is directly mapped to the ground truth box
with the coordinates of the offset value. The detailed archi-
tecture of the Siamese tracking module is shown in the sup-
plementary material. Given a ground truth bounding box
G = (z1,y1,%2,Y2), the expected network outputs of an
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offset-map cell (z., y.) are:

te, = (8- 2 —x1)/k,
te, = (2 — s 20)/k,

tyl = (S “Ye — yl)/k>

1
ty, = (Y2 — 5 - ye) /K, M

where s denotes the stride of the network, k = s - sis a
normalization factor, and ¢, t,,, t,, t,, respectively de-
note the expected outputs of the cell (x., y.) in the four off-
set maps. This function maps the coordinates of the cell to
the test image, then finds the normalized distance offset be-
tween G and the projected coordinates. During training, the
widely used smooth L, loss function [24] is chosen to cal-
culate the loss L., between the expected and true network
outputs. Note that only cells in the positive area contribute
to the calculation of the regression loss. Denoting the pro-
jection of the ground truth bounding box on the distance
offset maps as G’ = (x1/s,y1/8,22/8,y2/s), the positive
area RP%S = (2f,y7, 28, y5) within G’ is given by:

oy = ¢, — 0.50pwe,  yi = ¢, — 0.5a5hy,

b = ¢, + 0.50pwy, Y4 = ¢y + 0.5a5hy,

2

where (¢, ¢,/) is the center of G’, w; and h; are respectively
the width and height of G’, and v, is the shrunk factor. To
train the similarity learning branch, we use another shrunk
factor «, to define a negative area R"*. Cells on the sim-
ilarity map that are outside the negative area are defined as
negative cells; any cells that are not defined are ignored dur-
ing training. With both positive and negative cells, we use
the conventional logistic loss L., [1] to train the similarity
learning branch.

We do not have feature pyramid representations as
in [20], so the bounding box estimation is not very accu-
rate (see section 4.1). In spite of this, it is effective at
distinguishing the target from surrounding distractors. Al-
though a more sophisticated tracking model can be used,
we employ this light-weight model for efficient tracking.
Because the estimated bounding box may not cover the en-
tire target, we construct an Rol by enlarging the box. Let
w, and h, denote the width and height of the estimat-
ed box; we construct a square Rol with a side of length
l=+/(w, +t,) x (h, +t,.), where t,. = (w, + h,.)/2.

3.2. Correlation-guided attention for corner detec-
tion

The bounding box of the target is obtained by predicting
the target corners of the initially estimated Rol. The archi-
tecture of the correlation-guided attentional corner detec-
tion module is illustrated in figure 1. The network has two
branches: the template branch and the test branch. The test
branch takes as input the test image x, which contains the
target we want to detect, and extracts general appearance
representations through a ResNet-50 backbone network.
This is followed by a PrPool (Precise Rol Pooling [19])

layer with the estimated Rol bounding box to extract fea-
ture ¢4 () for this Rol. In object detection, ¢4 (x) is direct-
ly used to predict target corners, as in [27]. However, this
is infeasible in generic visual tracking, because without the
supervision of the target template we lack information about
the nature of the tracked object. In some Siamese trackers,
concatenation and cross-correlation of features from the t-
wo branches are employed to integrate the template with the
test image. However, our experiments show that these naive
integration approaches for corner detection are suboptimal
(see section 4.1). We attribute this suboptimal performance
to the lack of effective features that not only have discrimi-
native power but also encode spatial information about cor-
ners. Thus, we argue, better exploitation of the relationship
between the template and the test image is the key to corner
detection-based tracking. In this paper, we propose a nov-
el correlation-guided attention architecture to achieve this.
Before involving the test image, however, the template ap-
pearance representations are extracted from a template im-
age z in the template branch. The architecture (ResNet-50
backbone followed by a PrPool layer) that has already been
described is employed to extract generic template features
Pq(2).

Channel-wise correlation-guided channel attention: A
convolutional feature channel is often activated by a certain
type of visual pattern. Some channels are of little impor-
tance when learning semantic features. Channel attention
can be viewed as a tool to recalibrate channel-wise feature
responses [|7], making the features more discriminative.
We first adopt a channel-wise correlation operation to learn
the similarity between the template and different regions of
the Rol in a channel-wise manner, and then learn channel at-
tention from the similarity maps. If one channel of the simi-
larity maps has a high response, it is useful in distinguishing
the tracked target and should receive a higher weight. Given
pg(z) € REXHXWe and ¢ (2) € REXH=XW= the result
of channel-wise correlation is

fC(Z,Z) = ¢g(z) *c ¢g(x)7 (3)

where *. denotes channel-wise correlation and f. €
RO (He—H=+1)x(Wa=W=+1) jg the correlation result. Af-
ter calculating f.(z,z), we squeeze the spatial dimension
of the result through a global max-pooling layer and a glob-
al average-pooling layer, generating two different channel
descriptors: the max-pooling feature f*** and the average-
pooling feature f%9. As suggested in [42], max-pooling
and average-pooling gather different clues about the chan-
nel importance. The pooled features are further fed into
a shared multi-layer perceptron (MLP) to capture channel-
wise dependencies, increasing the effectiveness of the re-
sulting channel descriptors. The learned descriptors are
merged using element-wise summation, and the final out-
put of the channel-wise attention is obtained by normalizing
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the output range to [0, 1] with a sigmoid activation function.
The learning process can be expressed by

A. = o(MLP(f™**) + MLP(f*9)), “)

RCxlxl is

where o denotes the sigmoid function and A, €
the channel-wise attention.

Pixel-wise correlation-guided spatial attention: Spatial
attention is learned to focus attention on informative spatial
regions. For corner detection, the network should focus on
the top-left and bottom-right regions of the target. However,
it is not easy to learn such an attentional map just by back-
propagation using the detection loss. In our work, we adopt
a pixel-wise correlation between the template and the Rol
to first calculate pixel-wise similarity. Before adopting the
correlation, we reshape the template feature ¢4 (z) to size
(H,W,) x C x 1 x 1. The template consists of H, x W,
pixels and the feature for each pixel has size C x 1 x 1.
Each feature is correlated with the feature maps ¢4(x) of
the test image, resulting in H, x W, similarity maps with
size H, x W,. The pixel-wise correlation is given by

fo(z,2) = dg(2) xp ¢g(), (%)

where x,, denotes the pixel-wise correlation operation and
fp € RU=W=)xHaexWe ig the correlation result. Each sim-
ilarity map of f, represents the similarity between the cor-
responding pixel in the template feature maps and all pix-
els in the Rol feature maps. The most similar regions will
be highlighted in each map, and the entire set of similarity
maps provides prior information on the outline of the tar-
get [41]. Unlike traditional cross-correlation [ 1], pixel-wise
correlation separately highlights different parts of the target
in different similarity maps. Thus, regions corresponding
to the top-left and bottom-right corners can be highlight-
ed in some of the similarity maps. Although the corners
are sometimes outside the target, the prior information of
the target outline can help guide the learning of the spatial
attention maps, which highlight informative regions corre-
sponding to the corners.

After pixel-wise correlation, we separately learn spatial
attention maps for each corner via two hourglass-like struc-
tures [33]. (An hourglass structure first downsamples fea-
tures to capture global information and increase the recep-
tive field, then upsamples them to increase the resolution.)
The network learns spatial attention maps from the pixel-
wise similarity maps, which adaptively attend to the top-
left and bottom-right corners. The spatial attention maps
are obtained by applying a sigmoid activation function to
normalize the network output:

AL =a(H'(fp)) (6)

where ¢ € {t,b} is the index distinguishing the two corner-
s, H denotes the hourglass network, and A, is the spatial
attention map.

After the channel-wise and spatial attentions are ob-
tained, feature ¢,4(z) of the Rol is enhanced by sequen-
tial multiplication with the channel-wise attention descrip-
tor and the spatial attention maps. The enhanced features
are separately given by

de(x) = dg(z) @ Ac ®@ AL, 7
PL(x) = dyla) ® Ac @ AL, (8)

where ® denotes broadcasting element-wise multiplication,
and ¢! (x) and ¢%(x) denote the features for the detection
of the top-left and bottom-right corners, respectively.

Our version of correlation-guided attention has two ad-

vantages. First, target-specific information is incorporated
to enhance features, which improves discriminative power.
Second, corner regions are highlighted, which helps to de-
tect the corners accurately.
Corner detection: After feature enhancement, we detec-
t the target corners by predicting a heatmap for each cor-
ner and then calculating the corner coordinates by a Soft-
argmax function [29]. The corner detection network em-
ploys an upsample structure to learn heatmaps for the two
corners. (As the network architecture is the same for the two
corners, we will describe only one of them.) We use sever-
al convolutional networks and nearest interpolation layer-
s to continuously upsample the features and decrease the
channel number. The heatmap for the corner is obtained
from the output of the final convolutional layer. Then a
Soft-argmax function is applied, which first normalizes the
heatmap through a Softmax function and then calculates the
expected value. The normalized heatmap can be viewed as
a map of the probability that the corner is at position (x, y).
The expected value of the position of the corner is obtained
by

Wpn Hp Hp Wy
P=0>> mhpm Y > nhum)’, O
m=1n=1 n=1m=1

where h is the normalized heatmap of size W}, x Hj, and
P = (Pz, Py) is the position of the corner. The Soft-argmax
function enables efficient sub-pixel localization. During
training, we adopt the commonly used elastic net loss func-

tion [29] L get-
3.3. Implementation

Network structure: We use ResNet-50 [14] pre-trained on
the ImageNet dataset as our backbone network and extrac-
t generic feature representations from the last layer of the
conv4 block. The backbone is the same as in [23]. Detailed
information about the network can be found in the supple-
mentary material.

Training: The network is end-to-end trained by optimizing
the loss function:

L= M\Lgm+ )\2Lreg + >\3Lcdet7 (10)
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where A1, A2 and A3 are respectively set to 1, 1 and 0.125
to balance the three losses. The shrunk factors ¢, and o,
are empirically set to 0.3 and 0.4.

The SGD optimizer is used to train the network. There
are a total of 20 epochs. We use a warmup strategy with
the learning rate increasing from 0.0005 to 0.001 in the first
5 epochs. In order to initialize the Siamese tracking mod-
ule, only parameters in this module are trained in the first
epoch. For the last 15 epochs, the learning rate decays ex-
ponentially from 0.001 to 0.0001. A weight decay of 0.0005
and momentum of 0.9 are used. During the first 10 epochs,
the parameters of the backbone are frozen; during the last
10 epochs, the conv4 and conv3 blocks are unfrozen and
fine-tuned with a learning rate 10 times smaller than other
parameters.

We sample image pairs from the Youtube-BB [34],
VID [35] and GOT-10k [18] datasets to train our network.
Some still images are sampled from the COCO [26] and
DET [35] datasets, as in [46]. To take into account a vari-
ety of target changes, we add various data augmentations,
including random color jittering, random grayscale conver-
sion, random translation within 64 pixels, and random re-
sizing in the range [0.82, 1.18].

Rol augmentation During training, we construct several
Rols based on the results of the Siamese tracking module,
which predicts one bounding box in each positively defined
cell. During the training procedure, the target is ordinari-
ly located in the center of the Rol. The result of the corner
detection module in this situation is reliable. However, in
the tracking process, the target is not always in the center
of the Rol, since the Siamese tracking module may be dis-
tracted. Thus, we propose an Rol augmentation strategy of
randomly augmenting half of the Rols in every batch. Ran-
dom translation within 8 pixels and resizing in the range
[0.9, 1.1] are applied. This strategy effectually improves
corner detection accuracy (see section 4.1).

Tracking: During tracking, the template image is cropped
from the first frame, and the features extracted from the tem-
plate image are fixed during the whole tracking process. As
in [24], a cosine window and a scale change penalty are
employed to select the best proposal from the output of the
Siamese tracking module. This proposal is used to construc-
t one Rol for corner detection in each frame. The tracking
result is obtained from the output of the correlation-guided
attentional corner detection module.

4. Experiments

In this section, we perform a detailed analysis of the pro-
posed tracker and compare our results with state-of-the-art
trackers on OTB2015 [43], VOT2018 [21], UAV123 [30],
LaSOT [10], and TrackingNet [31]. Our tracker is imple-
mented in Python using PyTorch. On a PC with a 3.5 GHz
CPU and Nvidia RTX 2080Ti GPU, the proposed tracker

Method Integration method  PS (%) AUC (%)

W/o template - 81.8 62.0
Concatlnte concatenation 83.1 62.5
SiamlInte cross-correlation 85.3 64.9
ConcatAtt concatenation attention  84.0 63.7
SiamAtt cross-correlation attention 85.2 65.1
Channel Att our channel attention 83.8 63.5
Spatial Att our spatial attention 85.4 65.3
Ours our full attention 86.7 66.3

Table 1. Comparison of different approaches to integrating tem-
plate and test image on the combined OTB2015 and UAV123
datasets. Our proposed template-guided attention module achieves
the best results.

achieves an average tracking speed of 70 FPS. The code
will be made publicly available.

4.1. Method analysis

Here, we describe extensive experiments to analyze the

impact of different components in the proposed tracker. Ex-
periments are conducted on the combined OTB2015 [43]
and UAV123 [30] datasets. There are a total of 223 chal-
lenging videos in this combined dataset, which enables a
thorough method analysis. We use the precision score (P-
S) and area-under-the-curve (AUC) score [43] as evaluation
metrics to compare different configurations of the proposed
tracker.
Exploitation of Relationship: Our goal is to exploit
the relationship between the template and the Rol to im-
prove detection accuracy. We achieve this by employing
our correlation-guided attention module as the integration
method. We compare the proposed attention module with
other integration methods to show its effectiveness. The re-
sults of different integration methods are shown in table 1.
Except for the integration method, other components are
kept the same.

First, we consider the case where integration of the tem-
plate is not performed at all; compared to our method, per-
formance drops by 4.9% in terms of PS and 4.3% in terms
of AUC. This indicates the importance of relationship ex-
ploitation. We also compare our method with concatenation
and cross-correlation, the integration methods respectively
used in [15] and [12]. In table 1, Concatlnte represents the
case in which we concatenate features from the template
and the constructed Rol in the channel dimension; the tem-
plate is cropped to a size similar to that of the Rol, and the
feature maps of both have the same resolution. Siamlnte
represents the case in which we use a channel-wise cross-
correlation operation to integrate the template and the Rol.
In both of these methods, the features lack sufficient dis-
criminative power, and spatial information about corners
is not explicitly explored; consequently, both show inferi-
or performances compared to our method.
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Structure of attention module: The proposed attention
module involves both spatial and channel-wise attention,
learned from the pixel-correlation and channel-wise corre-
lation results, respectively. We now compare our method
with different structures to show the effectiveness of our
attention module. As concatenation and cross-correlation
by themselves do not achieve high performance, we com-
pare our method to two alternative methods that respective-
ly use concatenation and cross-correlation results to guide s-
patial and channel attention learning, as in our own method.
As shown in table 1, ConcatAtt improves the Concatlnte
by 0.9% in PS and 1.2% in AUC. However, ConcatAtt is
still inferior to our method by 2.7% and 2.6% in PS and
AUC, respectively. Similarly, SiamAtt achieves a slight per-
formance improvement over Siamlinte, while being outper-
formed by our method: 1.5% lower in PS and 1.2% lower in
AUC. These results validate our choice of structure for the
correlation-guided attention module.

To analyze the combined contribution of our channel and
spatial modules, we show the results of using only channel-
wise attention (ChannelAtt) and only spatial attention (Spa-
tialAtt). The results in table 1 show that SpatialAtt achieves
better performance (85.4% and 65.3%) than ChannelAt-
t (83.8% and 63.5%), and that they both improve the per-
formance of W/o template. These results indicate that both
spatial and channel-wise attention play significant roles in
our method, but that spatial attention is the more important
of the two; this is reasonable since corner detection requires
rich spatial information. The combination of channel-wise
and spatial attention, however, leads to even better perfor-
mance (86.7% and 66.3%).

Siamese tracking module: The Siamese tracking module
can be solely trained without the corner detection module
to achieve a performance of 82.7% in PS and 61.5% in
AUC, which provides a good initial target state and achieves
the goal of effectively distinguishing the target from back-
ground distractors. However, our corner detection module
improves it by 4.0% in PS and 4.8% in AUC. The Siamese
tracking module can be replaced by a more efficient model
(SiamFC [1]). Without the regression branch, we use the
target size in the previous frame to construct the Rol dur-
ing tracking. The resulting tracker achieves 85.5% in PS
and 64.3% in AUC, a performance superior to that achieved
with the baseline SiamFC (80.9% and 55.9%), which shows
the effectiveness of our corner detection module.

Feature from different layers: We compare the perfor-
mance of trackers based on features from different layers
of the backbone network. Results in table 2 show that using
features from conv4 block achieves the best performance.
Impact of Rol augmentation: We propose that Rol aug-
mentation can further improve tracking accuracy. The re-
sults in table 2 show that our tracker using Rol augmenta-
tion achieves a gain of 0.5% in PS and 0.5% in AUC over

Conv3 Conv4 Conv5 Rol Aug. (Conv4)
PS (%) 83.5 86.7 83.8 87.2
AUC (%) 63.8 66.3 629 66.8

Table 2. Comparison of features from different layers on the com-
bined OTB2015 and UAV123 datasets. Using features from the
conv4 block, our method obtains the best result, which is further
improved by our Rol augmentation strategy.

SATIN UPDT DaSiamRPN MFT LADCF ATOM SiamRPN++ SiamMask DiMP-50 CGACD
(21 0ol [46] 21 5] (61 [23] 401
EAOT 0.282 0.378 0383  0.385 0.389 0.401 0.414 0.423 0440  0.449
Accuracyt 0490 0.536 0.586  0.505 0.503 0.590 0.600 0.615 0.597  0.615
Robustness]. - 0.184 0.276  0.140 0.159 0.204 0.234 0.248 0.153  0.173

Table 3. Comparison with state-of-the-art trackers on VOT2018.
Our approach achieves the best EAO and accuracy.
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Figure 2. Comparison results of trackers on OTB2015.

the un-augmented case.
In summary, the above experiments verify the effective-
ness of our proposed architecture.

4.2. State-of-the-art comparison

We compare the proposed Correlation-Guided Atten-
tional Corner Detection-based tracker (CGACD) to state-
of-the-art trackers on five challenging tracking datasets.
VOT2018 dataset [21]: This dataset includes 60 videos
for evaluating short-term object trackers in terms of ac-
curacy (average overlap), robustness (average number of
tracking failures), and expected average overlap (EAO), a
combination of the other two metrics that is used to rank
the trackers. We show the comparison results in table 3.
Our CGACD achieves the best EAO (0.449) and accuracy
(0.615). Compared with the best tracker in the VOT2018
challenge (LADCF [45]), CGACD achieves a performance
gain of 6.0%. The superior accuracy of CGACD relative to
ATOM [6] and SiamRPN++ [23] (which estimate bounding
boxes but do not detect corners) shows the importance of
corner detection. SATIN [12] does detect the corners of the
target, but its performance is significantly lower than that
of our tracker. Finally, although CGACD does not perform
online updates, it can still achieve a robustness comparable
to that of methods relying on online adaptation (MFT [21],
LADCEF [45], ATOM [6], and DiMP-50 [2]).

OTB2015 dataset [43]: This dataset consists of 100
videos; performance is evaluated using PS and AUC s-
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Figure 4. Comparison results of trackers on LaSOT.

cores. Figure 2 displays the comparison results. Our
CGACD achieves the best performance in both metric-
s (92.2% and 71.3%). CGACD outperforms recent top-
performer SiamRPN++ [23] by 0.7% in PS and 1.7% in
AUC; ATOM [6] by 4.0% in PS and 4.2% in AUC, and
DiMP-50 [2] by 2.3% in PS and 2.7% in AUC.

UAV123 dataset [30]: This dataset consists of 123 videos
captured by unmanned aerial vehicles; the average sequence
length is 915 frames. As in OTB2015, PS and AUC scores
are employed to evaluate different trackers, but the videos
in UAV123 are longer. Figure 3 shows the comparison re-
sults. Our CGACD achieves a PS of 83.3% and an AUC
of 63.3%. Compared with the recent state-of-the-art tracker
SiamRPN++ [23], we achieve a performance gain of 3.0%
in PS and 2.3% in AUC. Although our tracker lacks on-
line adaptation, it still achieves a performance comparable
to that of ATOM [6] or DiIMP-50 [2].

LaSOT dataset [10]: This is a recent large-scale and high-
quality dataset. The average sequence length of a video is
more than 2500 frames, which is very challenging for short-
term trackers. In figure 4, we show normalized precision
and success plots for 280 videos in the testing set. Our C-
GACD achieves 62.6% in normalized precision and 51.8%
in AUC score. Our tracker outperforms the best tracker re-
ported in the paper (MDNet [32]), by 16.6% and 12.1% in
terms of normalized precision and AUC, respectively. Com-
pared with SiamRPN++ [23], our tracker achieves a gain of
5.7% in normalized precision and 2.2% in AUC score. Al-
though ATOM [6] employs online adaptation, it achieves
a performance lower than that of our method by 5.0% in
normalized precision and 0.3% in AUC. These results show
that our method generalizes well to large-scale and chal-
lenging videos.

ECO SiamFC GFS-DCF DaSiamRPN C-RPN SPM-Tracker ATOM SiamRPN++ DiMP-50 CGACD
51 11 [44] [46] [ 381 (61 23] 21

PS (%) 492 533 56.6 59.1 61.9 66.1 64.8 69.4 68.7 69.3
PSnorm (%) 61.8 66.6 71.8 733 74.6 71.8 77.1 80.0 80.1 80.0
AUC (%) 554 571 60.9 63.8 66.9 71.2 70.3 73.3 74.0 71.1

Table 4. Comparison with state-of-the-art trackers on the Track-
ingNet test set.

TrackingNet dataset [31]: This large-scale dataset consists
of real-world videos sampled from YouTube. We evaluate
our tracker on the test set of 511 videos. Table 4 shows the
results of our method compared with recent state-of-the-art
trackers. Precision, normalized precision, and AUC scores
are used to evaluate these trackers. Our CGACD obtains a
precision of 69.3%, a normalized precision of 80.0, and an
AUC score of 71.1%. The results achieved by our tracker
are comparable with those achieved by other state-of-the-art
trackers on all the metrics.

In summary, comparative testing on five datasets shows
that our corner detection-based tracker achieves state-of-
the-art performance.

5. Conclusion

We propose a novel corner detection-based tracking
method that learns correlation-guided attention in a two-
stage corner detection network. In the first stage, a light-
weight Siamese network is exploited to distinguish the tar-
get from the background; in the second stage, it is used to
construct an Rol for corner detection. The relationship be-
tween the template and the Rol is exploited to enhance fea-
tures for corner detection by a correlation-guided attention
module. The pixel-wise correlation result encoding the spa-
tial information about the corners is exploited to guide the
learning of spatial attention, while the channel-wise correla-
tion result encoding the channel importance information is
exploited to guide the learning of channel-wise attention.
Target-specific information and spatial information about
the corners are encoded in the enhanced features with the at-
tention module, enabling accurate corner detection. The w-
hole network is trained end-to-end on large-scale data sets,
using an Rol augmentation strategy. Comprehensive exper-
iments on five benchmark datasets show that the proposed
tracker performs competitively with state-of-the-art tracker-
s. In the future, we plan to explore efficient online adap-
tation method to improve the robustness of the proposed
tracker.
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