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Abstract

Accurate bounding box estimation has recently attract-

ed much attention in the tracking community because tra-

ditional multi-scale search strategies cannot estimate tight

bounding boxes in many challenging scenarios involving

changes to the target. A tracker capable of detecting target

corners can flexibly adapt to such changes, but existing cor-

ner detection based tracking methods have not achieved ad-

equate success. We analyze the reasons for their failure and

propose a state-of-the-art tracker that performs correlation-

guided attentional corner detection in two stages. First, a

region of interest (RoI) is obtained by employing an efficient

Siamese network to distinguish the target from the back-

ground. Second, a pixel-wise correlation-guided spatial

attention module and a channel-wise correlation-guided

channel attention module exploit the relationship between

the target template and the RoI to highlight corner regions

and enhance features of the RoI for corner detection. The

correlation-guided attention modules improve the accura-

cy of corner detection, thus enabling accurate bounding

box estimation. When trained on large-scale datasets us-

ing a novel RoI augmentation strategy, the performance of

the proposed tracker, running at a high speed of 70 FPS, is

comparable with that of state-of-the-art trackers in meeting

five challenging performance benchmarks.

1. Introduction

Visual object tracking is one of the fundamental prob-

lems in computer vision, and it has attracted increasing at-

tention in recent years. The goal of object tracking is to

locate a target at any point in a video based on the state

of the target in the first frame. The ability to do this on-

line would have multiple applications in human-computer

interactions, video surveillance, and unmanned control sys-

tems. Although significant progress has been made, fac-

tors such as occlusion, deformation, and scale variation still

pose formidable challenges.
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A tracker is normally required both to locate the target

robustly and to estimate its state (frequently represented by

a bounding box) accurately. Most trackers focus on tar-

get location through the construction of robust classifiers,

ignoring target-state estimation. As a result, most track-

ers cannot handle severe target deformation, because they

rely on a multi-scale search strategy [25, 7] to obtain the

bounding box. Estimating the bounding box would solve

this problem, and a number of ways to do this have been

proposed, including the linear regression model [32], the re-

gion proposal network (RPN) [24], and the intersection over

union (IoU) overlap prediction network [6]. As a bounding

box is determined by its top-left and bottom-right corner-

s, one straightforward way to estimate it is to predict the

coordinates of these two points. GOTURN [15] directly es-

timates the corner coordinates using a fully connected net-

work. SATIN [12] employs a corner pooling strategy [22]

in a Siamese network [1] to predict heatmaps and location

offsets for target corners. By detecting corners, the tracker

can flexibly adapt to deformations and scale changes in the

target. However, approaches based on corner detection have

not yet achieved a level of performance comparable to that

of the other state-of-the-art trackers [46, 23, 6].

Existing corner detection-based tracking methods have

several limitations. First, methods that directly detect cor-

ners are complicated by the need to resolve ambiguities: ob-

jects in the background also have corners, and the tracker

may have difficulty distinguishing them from the corners of

the target being tracked. Second, existing methods do not

effectively explore the relationship between the template

and the test image. As the target is unknown beforehand,

template appearance information is often integrated into the

test image representations through an integration compo-

nent. In recent Siamese trackers [1, 37], a cross-correlation

operation is used to calculate similarity between the tem-

plate and the test image. The target center is located by find-

ing the maximum response. However, spatial information

about the corners is not explicitly encoded in the correla-

tion results. Third, existing methods do not benefit from the

powerful representation capacities of deeper networks (like

ResNet [14]), using either a shallow backbone network [15]
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or a light-weight hourglass network [12] instead.

In view of these limitations, we propose to learn

correlation-guided attention, including pixel-wise

correlation-guided spatial attention and channel-wise

correlation-guided channel attention, in a two-stage corner

detection network for accurate visual tracking. In the first

stage, the target is distinguished from the background by

using a light-weight Siamese tracking module. An RoI

that is expected to contain the target is constructed at this

stage. In the second stage, the bounding box is accurately

estimated by detecting target corners in the constructed

RoI. Such two-stage detection significantly mitigates the

ambiguous corner localization problem.

The key innovation of this work is exploiting the rela-

tionship between the template and the RoI for improved

accuracy in corner detection. To achieve this, we propose

using a pixel-wise correlation-guided spatial attention mod-

ule and a channel-wise correlation-guided channel attention

module. Instead of the traditional cross-correlation, we em-

ploy pixel-wise correlation to calculate the similarity be-

tween each pixel of the template feature maps and all pixels

of the RoI feature maps, thereby encoding spatial informa-

tion about the corners in pixel-wise similarity maps. A s-

patial attention module is employed to learn spatial maps

that highlight regions corresponding to the corners by tak-

ing the pixel-wise similarity maps as input. As discussed

in [23], some channels have a high response to targets in a

specific category, while other channels have negligible re-

sponses. We employ channel-wise correlation to calculate

the channel-wise similarity maps, which encode the impor-

tance information of the various channels. A channel at-

tention module is then employed to learn a channel descrip-

tor that emphasizes informative channels and suppresses the

useless ones by taking the channel-wise similarity maps as

input. Through attentional learning, the relationship of the

template and the RoI can be better exploited to help in lo-

cating the corners and enhancing the features of the RoI. In

addition, target-specific information is incorporated via the

proposed attention module, further helping to distinguish

the target from the background in the RoI.

During training, the Siamese network generates several

RoIs in all defined positive positions to train the attention

module and corner-detection network extensively. To boost

accuracy, we add some RoI augmentation during training.

This is similar to the data augmentation used in training

samples; however, our augmentation is conducted on RoIs.

Our results show that RoI augmentation further increases

the accuracy of bounding box estimation.

Using ResNet-50 [14] as the backbone, we train our

tracker end-to-end on large-scale datasets. Extensive ex-

periments on five large tracking benchmarks, including OT-

B2015 [43], VOT2018 [21], UAV123 [30], LaSOT [10], and

TrackingNet [31], show that the performance of our tracker

is comparable with that of the recent state-of-the-art track-

ers, while running at a high speed of 70 FPS.

2. Related work

We provide a brief review of recent developments in vi-

sual tracking, and discuss bounding box estimation strate-

gies and attention mechanisms used in this field.

2.1. Visual tracking

There are two main kinds of tracker in current use: cor-

relation filter (CF)-based trackers [4, 16, 9, 5] and Siamese

network-based trackers [1, 37, 24]. CF-based tracker-

s learn the correlation filters by solving a ridged regres-

sion problem. Many other techniques, such as multi-scale

search [25, 7], boundary effects mitigation [8], multiple fea-

ture integration [9, 5], and multi-kernel training [36], have

been proposed to improve the performance of CF-based

trackers. However, these complex models and deep features

have an adverse impact on efficiency, and practical applica-

tions often require the tracker to be highly efficient.

Siamese network based methods have recently attract-

ed much attention in the tracking community. A Siamese

tracker learns a similarity matching function by performing

cross-correlation between feature representations learned

from template and test images [1]. These trackers are

usually very efficient, since they utilize the target in the

first frame as the template and do not perform online up-

dates. The Siamese architecture is widely used in the

literature[37, 38, 13, 24, 46].

2.2. Bounding box estimation strategy

Tracking results are often represented by a rectangular

bounding box. Most trackers fix the aspect ratio of the tar-

get, and resort to multi-scale search to estimate its state.

This strategy is feasible in situations where targets only un-

dergo scale changes. However, the pose and viewpoint of

the object may also change with time. It is therefore desir-

able that trackers should be able to estimate a tight bound-

ing box for the target. SiamRPN [24] and ATOM [6], using

respectively an offline trained bounding box regression net-

work and Intersection over Union (IoU) overlap maximiza-

tion architecture, have both shown the ability to estimate ac-

curate bounding boxes. GOTURN [15] and SATIN [12] de-

tect corners using, respectively, a fully connected network

and the cross-correlation operation, but these straightfor-

ward methods of tracking via corner detection have not per-

formed competitively. We analyze the reasons for their in-

ferior performance, and develop a high performance corner

detection-based tracking method by learning correlation-

guided attention in a two-stage corner detection network.
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Figure 1. Framework of the proposed method. An RoI is first constructed from the result of a Siamese tracking module. Features of the

template and the RoI are then extracted by two PrPool layers. The pixel-wise correlation-guided spatial attention module and channel-wise

correlation-guided channel attention module are exploited to highlight corner regions and obtain enhanced features. Feature maps are then

upsampled to obtain heatmaps for the two corners. Finally, two soft-argmax functions are employed to calculate corner coordinates.

2.3. Attentional mechanism

Attentional mechanisms are frequently suggested as a

means of improving classification-task performance. Hu et

al. [17] proposed a Squeeze-and Excitation module to learn

channel-wise attention. Woo et al. [42] proposed learning

spatial and channel attention simultaneously in a convolu-

tional block attention module. In the specific field of visu-

al tracking, CSR-DCF [28] constructs a foreground spatial

map to constrain correlation filter learning and calculates

the channel reliability values of weighted sum correlation

response maps. RASNet [39] proposed learning spatial and

channel-wise attention in a Siamese network. The purpose

of attentional learning in visual tracking is usually to em-

phasize especially informative channels or spatial regions,

so features are usually weighted in a channel-wise or a s-

patial manner. Most attention modules are self-contained,

meaning that attention is learned only from the features to

be weighted. In contrast, we learn attention from the corre-

lation result of the template and the RoI, and use this learned

attention to enhance features of the RoI. This strategy effec-

tively exploits the relationship between the template and the

RoI to highlight corner regions and to improve the discrim-

inative power of features.

3. Proposed method

The framework of the proposed tracker is illustrated in

figure 1. We take inspiration from the Grid R-CNN [27],

which utilizes a top-down two-stage detector for object de-

tection, first obtaining several RoIs though an RPN mod-

ule and then extracting features from each RoI to pre-

dict grid points. As we only track one target, we use a

Siamese tracking module to estimate one RoI expected to

contain the target. We then employ a corner detection mod-

ule to predict the top-left and bottom-right corners of this

RoI. By this procedure, the target is distinguished from the

background, so corner detection is less affected by back-

ground distractors. For detecting corners, we propose a

two-fold correlation-guided attention module, consisting of

a pixel-wise correlation-guided spatial attention module and

a channel-wise correlation-guided channel attention mod-

ule. The two-fold module is able to integrate target-specific

information and enhance features by highlighting corner re-

gions and informative channels, significantly improving the

accuracy of corner detection. The coordinates of each cor-

ner are obtained by applying a soft-argmax function [29] on

an estimated heatmap. The Siamese tracking module and

the corner detection module share the same backbone net-

work (ResNet-50) and are trained end-to-end on large-scale

datasets.

3.1. Siamese tracking

In our two-stage tracker, the target is first distinguished

from the background with the help of a Siamese tracking

module. This module employs a light-weight Siamese ar-

chitecture to estimate the initial state of the target. The

target state is then utilized to construct the RoI for cor-

ner detection. Without the tracking module, the tracker

would have to search the whole image for the target, and

could easily drift away from the correct location because

of the ambiguous corner localization problem. One sim-

ple way to construct the RoI is to locate the target using

the SiamFC [1] network and draw an RoI based on its pre-

viously estimated size, but this will lead to accumulating

errors if the estimate is not accurate. Thus, we also perform

bounding box estimation in the first stage. The bounding

box regression branch is similar to that of [20], in which the

distance offset is directly mapped to the ground truth box

with the coordinates of the offset value. The detailed archi-

tecture of the Siamese tracking module is shown in the sup-

plementary material. Given a ground truth bounding box

G = (x1, y1, x2, y2), the expected network outputs of an
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offset-map cell (xc, yc) are:

tx1
= (s · xc − x1)/k, ty1

= (s · yc − y1)/k,

tx2
= (x2 − s · xc)/k, ty2

= (y2 − s · yc)/k,
(1)

where s denotes the stride of the network, k = s · s is a

normalization factor, and tx1
, ty1

, tx2
, ty2

respectively de-

note the expected outputs of the cell (xc, yc) in the four off-

set maps. This function maps the coordinates of the cell to

the test image, then finds the normalized distance offset be-

tween G and the projected coordinates. During training, the

widely used smooth L1 loss function [24] is chosen to cal-

culate the loss Lreg between the expected and true network

outputs. Note that only cells in the positive area contribute

to the calculation of the regression loss. Denoting the pro-

jection of the ground truth bounding box on the distance

offset maps as G′ = (x1/s, y1/s, x2/s, y2/s), the positive

area Rpos = (xp
1, y

p
1 , x

p
2, y

p
2) within G′ is given by:

xp
1 = cx − 0.5αpwt, yp1 = cy − 0.5αpht,

xp
2 = cx + 0.5αpwt, yp2 = cy + 0.5αpht,

(2)

where (cx, cy) is the center of G′, wt and ht are respectively

the width and height of G′, and αp is the shrunk factor. To

train the similarity learning branch, we use another shrunk

factor αn to define a negative area Rneg . Cells on the sim-

ilarity map that are outside the negative area are defined as

negative cells; any cells that are not defined are ignored dur-

ing training. With both positive and negative cells, we use

the conventional logistic loss Lsim [1] to train the similarity

learning branch.

We do not have feature pyramid representations as

in [20], so the bounding box estimation is not very accu-

rate (see section 4.1). In spite of this, it is effective at

distinguishing the target from surrounding distractors. Al-

though a more sophisticated tracking model can be used,

we employ this light-weight model for efficient tracking.

Because the estimated bounding box may not cover the en-

tire target, we construct an RoI by enlarging the box. Let

wr and hr denote the width and height of the estimat-

ed box; we construct a square RoI with a side of length

l =
√

(wr + tr)× (hr + tr), where tr = (wr + hr)/2.

3.2. Correlation­guided attention for corner detec­
tion

The bounding box of the target is obtained by predicting

the target corners of the initially estimated RoI. The archi-

tecture of the correlation-guided attentional corner detec-

tion module is illustrated in figure 1. The network has two

branches: the template branch and the test branch. The test

branch takes as input the test image x, which contains the

target we want to detect, and extracts general appearance

representations through a ResNet-50 backbone network.

This is followed by a PrPool (Precise RoI Pooling [19])

layer with the estimated RoI bounding box to extract fea-

ture ϕg(x) for this RoI. In object detection, ϕg(x) is direct-

ly used to predict target corners, as in [27]. However, this

is infeasible in generic visual tracking, because without the

supervision of the target template we lack information about

the nature of the tracked object. In some Siamese trackers,

concatenation and cross-correlation of features from the t-

wo branches are employed to integrate the template with the

test image. However, our experiments show that these naive

integration approaches for corner detection are suboptimal

(see section 4.1). We attribute this suboptimal performance

to the lack of effective features that not only have discrimi-

native power but also encode spatial information about cor-

ners. Thus, we argue, better exploitation of the relationship

between the template and the test image is the key to corner

detection-based tracking. In this paper, we propose a nov-

el correlation-guided attention architecture to achieve this.

Before involving the test image, however, the template ap-

pearance representations are extracted from a template im-

age z in the template branch. The architecture (ResNet-50

backbone followed by a PrPool layer) that has already been

described is employed to extract generic template features

ϕg(z).
Channel-wise correlation-guided channel attention: A

convolutional feature channel is often activated by a certain

type of visual pattern. Some channels are of little impor-

tance when learning semantic features. Channel attention

can be viewed as a tool to recalibrate channel-wise feature

responses [17], making the features more discriminative.

We first adopt a channel-wise correlation operation to learn

the similarity between the template and different regions of

the RoI in a channel-wise manner, and then learn channel at-

tention from the similarity maps. If one channel of the simi-

larity maps has a high response, it is useful in distinguishing

the tracked target and should receive a higher weight. Given

ϕg(x) ∈ R
C×Hx×Wx and ϕg(z) ∈ R

C×Hz×Wz , the result

of channel-wise correlation is

fc(z, x) = ϕg(z) ⋆c ϕg(x), (3)

where ⋆c denotes channel-wise correlation and fc ∈
R

C×(Hx−Hz+1)×(Wx−Wz+1) is the correlation result. Af-

ter calculating fc(z, x), we squeeze the spatial dimension

of the result through a global max-pooling layer and a glob-

al average-pooling layer, generating two different channel

descriptors: the max-pooling feature fmax
c and the average-

pooling feature favg
c . As suggested in [42], max-pooling

and average-pooling gather different clues about the chan-

nel importance. The pooled features are further fed into

a shared multi-layer perceptron (MLP) to capture channel-

wise dependencies, increasing the effectiveness of the re-

sulting channel descriptors. The learned descriptors are

merged using element-wise summation, and the final out-

put of the channel-wise attention is obtained by normalizing
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the output range to [0, 1] with a sigmoid activation function.

The learning process can be expressed by

Ac = σ(MLP(fmax
c ) +MLP(favg

c )), (4)

where σ denotes the sigmoid function and Ac ∈ R
C×1×1 is

the channel-wise attention.

Pixel-wise correlation-guided spatial attention: Spatial

attention is learned to focus attention on informative spatial

regions. For corner detection, the network should focus on

the top-left and bottom-right regions of the target. However,

it is not easy to learn such an attentional map just by back-

propagation using the detection loss. In our work, we adopt

a pixel-wise correlation between the template and the RoI

to first calculate pixel-wise similarity. Before adopting the

correlation, we reshape the template feature ϕg(z) to size

(HzWz) × C × 1 × 1. The template consists of Hz ×Wz

pixels and the feature for each pixel has size C × 1 × 1.

Each feature is correlated with the feature maps ϕg(x) of

the test image, resulting in Hz × Wz similarity maps with

size Hx ×Wx. The pixel-wise correlation is given by

fp(z, x) = ϕg(z) ⋆p ϕg(x), (5)

where ⋆p denotes the pixel-wise correlation operation and

fp ∈ R
(HzWz)×Hx×Wx is the correlation result. Each sim-

ilarity map of fp represents the similarity between the cor-

responding pixel in the template feature maps and all pix-

els in the RoI feature maps. The most similar regions will

be highlighted in each map, and the entire set of similarity

maps provides prior information on the outline of the tar-

get [41]. Unlike traditional cross-correlation [1], pixel-wise

correlation separately highlights different parts of the target

in different similarity maps. Thus, regions corresponding

to the top-left and bottom-right corners can be highlight-

ed in some of the similarity maps. Although the corners

are sometimes outside the target, the prior information of

the target outline can help guide the learning of the spatial

attention maps, which highlight informative regions corre-

sponding to the corners.

After pixel-wise correlation, we separately learn spatial

attention maps for each corner via two hourglass-like struc-

tures [33]. (An hourglass structure first downsamples fea-

tures to capture global information and increase the recep-

tive field, then upsamples them to increase the resolution.)

The network learns spatial attention maps from the pixel-

wise similarity maps, which adaptively attend to the top-

left and bottom-right corners. The spatial attention maps

are obtained by applying a sigmoid activation function to

normalize the network output:

Ai
s = σ(Hi(fp)) (6)

where i ∈ {t, b} is the index distinguishing the two corner-

s, H denotes the hourglass network, and As is the spatial

attention map.

After the channel-wise and spatial attentions are ob-

tained, feature ϕg(x) of the RoI is enhanced by sequen-

tial multiplication with the channel-wise attention descrip-

tor and the spatial attention maps. The enhanced features

are separately given by

ϕt
e(x) = ϕg(x)⊗Ac ⊗At

s, (7)

ϕb
e(x) = ϕg(x)⊗Ac ⊗Ab

s, (8)

where ⊗ denotes broadcasting element-wise multiplication,

and ϕt
e(x) and ϕb

e(x) denote the features for the detection

of the top-left and bottom-right corners, respectively.

Our version of correlation-guided attention has two ad-

vantages. First, target-specific information is incorporated

to enhance features, which improves discriminative power.

Second, corner regions are highlighted, which helps to de-

tect the corners accurately.

Corner detection: After feature enhancement, we detec-

t the target corners by predicting a heatmap for each cor-

ner and then calculating the corner coordinates by a Soft-

argmax function [29]. The corner detection network em-

ploys an upsample structure to learn heatmaps for the two

corners. (As the network architecture is the same for the two

corners, we will describe only one of them.) We use sever-

al convolutional networks and nearest interpolation layer-

s to continuously upsample the features and decrease the

channel number. The heatmap for the corner is obtained

from the output of the final convolutional layer. Then a

Soft-argmax function is applied, which first normalizes the

heatmap through a Softmax function and then calculates the

expected value. The normalized heatmap can be viewed as

a map of the probability that the corner is at position (x, y).
The expected value of the position of the corner is obtained

by

p̂ = (

Wh
∑

m=1

Hh
∑

n=1

mhn,m,

Hh
∑

n=1

Wh
∑

m=1

nhn,m)T , (9)

where h is the normalized heatmap of size Wh × Hh and

p̂ = (p̂x, p̂y) is the position of the corner. The Soft-argmax

function enables efficient sub-pixel localization. During

training, we adopt the commonly used elastic net loss func-

tion [29] Lcdet .

3.3. Implementation

Network structure: We use ResNet-50 [14] pre-trained on

the ImageNet dataset as our backbone network and extrac-

t generic feature representations from the last layer of the

conv4 block. The backbone is the same as in [23]. Detailed

information about the network can be found in the supple-

mentary material.

Training: The network is end-to-end trained by optimizing

the loss function:

L = λ1Lsim + λ2Lreg + λ3Lcdet , (10)
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where λ1, λ2 and λ3 are respectively set to 1, 1 and 0.125

to balance the three losses. The shrunk factors αp and αn

are empirically set to 0.3 and 0.4.

The SGD optimizer is used to train the network. There

are a total of 20 epochs. We use a warmup strategy with

the learning rate increasing from 0.0005 to 0.001 in the first

5 epochs. In order to initialize the Siamese tracking mod-

ule, only parameters in this module are trained in the first

epoch. For the last 15 epochs, the learning rate decays ex-

ponentially from 0.001 to 0.0001. A weight decay of 0.0005

and momentum of 0.9 are used. During the first 10 epochs,

the parameters of the backbone are frozen; during the last

10 epochs, the conv4 and conv3 blocks are unfrozen and

fine-tuned with a learning rate 10 times smaller than other

parameters.

We sample image pairs from the Youtube-BB [34],

VID [35] and GOT-10k [18] datasets to train our network.

Some still images are sampled from the COCO [26] and

DET [35] datasets, as in [46]. To take into account a vari-

ety of target changes, we add various data augmentations,

including random color jittering, random grayscale conver-

sion, random translation within 64 pixels, and random re-

sizing in the range [0.82, 1.18].

RoI augmentation During training, we construct several

RoIs based on the results of the Siamese tracking module,

which predicts one bounding box in each positively defined

cell. During the training procedure, the target is ordinari-

ly located in the center of the RoI. The result of the corner

detection module in this situation is reliable. However, in

the tracking process, the target is not always in the center

of the RoI, since the Siamese tracking module may be dis-

tracted. Thus, we propose an RoI augmentation strategy of

randomly augmenting half of the RoIs in every batch. Ran-

dom translation within 8 pixels and resizing in the range

[0.9, 1.1] are applied. This strategy effectually improves

corner detection accuracy (see section 4.1).

Tracking: During tracking, the template image is cropped

from the first frame, and the features extracted from the tem-

plate image are fixed during the whole tracking process. As

in [24], a cosine window and a scale change penalty are

employed to select the best proposal from the output of the

Siamese tracking module. This proposal is used to construc-

t one RoI for corner detection in each frame. The tracking

result is obtained from the output of the correlation-guided

attentional corner detection module.

4. Experiments

In this section, we perform a detailed analysis of the pro-

posed tracker and compare our results with state-of-the-art

trackers on OTB2015 [43], VOT2018 [21], UAV123 [30],

LaSOT [10], and TrackingNet [31]. Our tracker is imple-

mented in Python using PyTorch. On a PC with a 3.5 GHz

CPU and Nvidia RTX 2080Ti GPU, the proposed tracker

Method Integration method PS (%) AUC (%)

W/o template - 81.8 62.0

ConcatInte concatenation 83.1 62.5

SiamInte cross-correlation 85.3 64.9

ConcatAtt concatenation attention 84.0 63.7

SiamAtt cross-correlation attention 85.2 65.1

ChannelAtt our channel attention 83.8 63.5

SpatialAtt our spatial attention 85.4 65.3

Ours our full attention 86.7 66.3

Table 1. Comparison of different approaches to integrating tem-

plate and test image on the combined OTB2015 and UAV123

datasets. Our proposed template-guided attention module achieves

the best results.

achieves an average tracking speed of 70 FPS. The code

will be made publicly available.

4.1. Method analysis

Here, we describe extensive experiments to analyze the

impact of different components in the proposed tracker. Ex-

periments are conducted on the combined OTB2015 [43]

and UAV123 [30] datasets. There are a total of 223 chal-

lenging videos in this combined dataset, which enables a

thorough method analysis. We use the precision score (P-

S) and area-under-the-curve (AUC) score [43] as evaluation

metrics to compare different configurations of the proposed

tracker.

Exploitation of Relationship: Our goal is to exploit

the relationship between the template and the RoI to im-

prove detection accuracy. We achieve this by employing

our correlation-guided attention module as the integration

method. We compare the proposed attention module with

other integration methods to show its effectiveness. The re-

sults of different integration methods are shown in table 1.

Except for the integration method, other components are

kept the same.

First, we consider the case where integration of the tem-

plate is not performed at all; compared to our method, per-

formance drops by 4.9% in terms of PS and 4.3% in terms

of AUC. This indicates the importance of relationship ex-

ploitation. We also compare our method with concatenation

and cross-correlation, the integration methods respectively

used in [15] and [12]. In table 1, ConcatInte represents the

case in which we concatenate features from the template

and the constructed RoI in the channel dimension; the tem-

plate is cropped to a size similar to that of the RoI, and the

feature maps of both have the same resolution. SiamInte

represents the case in which we use a channel-wise cross-

correlation operation to integrate the template and the RoI.

In both of these methods, the features lack sufficient dis-

criminative power, and spatial information about corners

is not explicitly explored; consequently, both show inferi-

or performances compared to our method.
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Structure of attention module: The proposed attention

module involves both spatial and channel-wise attention,

learned from the pixel-correlation and channel-wise corre-

lation results, respectively. We now compare our method

with different structures to show the effectiveness of our

attention module. As concatenation and cross-correlation

by themselves do not achieve high performance, we com-

pare our method to two alternative methods that respective-

ly use concatenation and cross-correlation results to guide s-

patial and channel attention learning, as in our own method.

As shown in table 1, ConcatAtt improves the ConcatInte

by 0.9% in PS and 1.2% in AUC. However, ConcatAtt is

still inferior to our method by 2.7% and 2.6% in PS and

AUC, respectively. Similarly, SiamAtt achieves a slight per-

formance improvement over SiamInte, while being outper-

formed by our method: 1.5% lower in PS and 1.2% lower in

AUC. These results validate our choice of structure for the

correlation-guided attention module.

To analyze the combined contribution of our channel and

spatial modules, we show the results of using only channel-

wise attention (ChannelAtt) and only spatial attention (Spa-

tialAtt). The results in table 1 show that SpatialAtt achieves

better performance (85.4% and 65.3%) than ChannelAt-

t (83.8% and 63.5%), and that they both improve the per-

formance of W/o template. These results indicate that both

spatial and channel-wise attention play significant roles in

our method, but that spatial attention is the more important

of the two; this is reasonable since corner detection requires

rich spatial information. The combination of channel-wise

and spatial attention, however, leads to even better perfor-

mance (86.7% and 66.3%).

Siamese tracking module: The Siamese tracking module

can be solely trained without the corner detection module

to achieve a performance of 82.7% in PS and 61.5% in

AUC, which provides a good initial target state and achieves

the goal of effectively distinguishing the target from back-

ground distractors. However, our corner detection module

improves it by 4.0% in PS and 4.8% in AUC. The Siamese

tracking module can be replaced by a more efficient model

(SiamFC [1]). Without the regression branch, we use the

target size in the previous frame to construct the RoI dur-

ing tracking. The resulting tracker achieves 85.5% in PS

and 64.3% in AUC, a performance superior to that achieved

with the baseline SiamFC (80.9% and 55.9%), which shows

the effectiveness of our corner detection module.

Feature from different layers: We compare the perfor-

mance of trackers based on features from different layers

of the backbone network. Results in table 2 show that using

features from conv4 block achieves the best performance.

Impact of RoI augmentation: We propose that RoI aug-

mentation can further improve tracking accuracy. The re-

sults in table 2 show that our tracker using RoI augmenta-

tion achieves a gain of 0.5% in PS and 0.5% in AUC over

Conv3 Conv4 Conv5 RoI Aug. (Conv4)

PS (%) 83.5 86.7 83.8 87.2

AUC (%) 63.8 66.3 62.9 66.8

Table 2. Comparison of features from different layers on the com-

bined OTB2015 and UAV123 datasets. Using features from the

conv4 block, our method obtains the best result, which is further

improved by our RoI augmentation strategy.

SATIN UPDT DaSiamRPN MFT LADCF ATOM SiamRPN++ SiamMask DiMP-50 CGACD

[12] [3] [46] [21] [45] [6] [23] [40] [2]

EAO↑ 0.282 0.378 0.383 0.385 0.389 0.401 0.414 0.423 0.440 0.449

Accuracy↑ 0.490 0.536 0.586 0.505 0.503 0.590 0.600 0.615 0.597 0.615

Robustness↓ - 0.184 0.276 0.140 0.159 0.204 0.234 0.248 0.153 0.173

Table 3. Comparison with state-of-the-art trackers on VOT2018.

Our approach achieves the best EAO and accuracy.
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Figure 2. Comparison results of trackers on OTB2015.

the un-augmented case.

In summary, the above experiments verify the effective-

ness of our proposed architecture.

4.2. State­of­the­art comparison

We compare the proposed Correlation-Guided Atten-

tional Corner Detection-based tracker (CGACD) to state-

of-the-art trackers on five challenging tracking datasets.

VOT2018 dataset [21]: This dataset includes 60 videos

for evaluating short-term object trackers in terms of ac-

curacy (average overlap), robustness (average number of

tracking failures), and expected average overlap (EAO), a

combination of the other two metrics that is used to rank

the trackers. We show the comparison results in table 3.

Our CGACD achieves the best EAO (0.449) and accuracy

(0.615). Compared with the best tracker in the VOT2018

challenge (LADCF [45]), CGACD achieves a performance

gain of 6.0%. The superior accuracy of CGACD relative to

ATOM [6] and SiamRPN++ [23] (which estimate bounding

boxes but do not detect corners) shows the importance of

corner detection. SATIN [12] does detect the corners of the

target, but its performance is significantly lower than that

of our tracker. Finally, although CGACD does not perform

online updates, it can still achieve a robustness comparable

to that of methods relying on online adaptation (MFT [21],

LADCF [45], ATOM [6], and DiMP-50 [2]).

OTB2015 dataset [43]: This dataset consists of 100

videos; performance is evaluated using PS and AUC s-
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Figure 3. Comparison results of trackers on UAV123.
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Figure 4. Comparison results of trackers on LaSOT.

cores. Figure 2 displays the comparison results. Our

CGACD achieves the best performance in both metric-

s (92.2% and 71.3%). CGACD outperforms recent top-

performer SiamRPN++ [23] by 0.7% in PS and 1.7% in

AUC; ATOM [6] by 4.0% in PS and 4.2% in AUC, and

DiMP-50 [2] by 2.3% in PS and 2.7% in AUC.

UAV123 dataset [30]: This dataset consists of 123 videos

captured by unmanned aerial vehicles; the average sequence

length is 915 frames. As in OTB2015, PS and AUC scores

are employed to evaluate different trackers, but the videos

in UAV123 are longer. Figure 3 shows the comparison re-

sults. Our CGACD achieves a PS of 83.3% and an AUC

of 63.3%. Compared with the recent state-of-the-art tracker

SiamRPN++ [23], we achieve a performance gain of 3.0%

in PS and 2.3% in AUC. Although our tracker lacks on-

line adaptation, it still achieves a performance comparable

to that of ATOM [6] or DiMP-50 [2].

LaSOT dataset [10]: This is a recent large-scale and high-

quality dataset. The average sequence length of a video is

more than 2500 frames, which is very challenging for short-

term trackers. In figure 4, we show normalized precision

and success plots for 280 videos in the testing set. Our C-

GACD achieves 62.6% in normalized precision and 51.8%

in AUC score. Our tracker outperforms the best tracker re-

ported in the paper (MDNet [32]), by 16.6% and 12.1% in

terms of normalized precision and AUC, respectively. Com-

pared with SiamRPN++ [23], our tracker achieves a gain of

5.7% in normalized precision and 2.2% in AUC score. Al-

though ATOM [6] employs online adaptation, it achieves

a performance lower than that of our method by 5.0% in

normalized precision and 0.3% in AUC. These results show

that our method generalizes well to large-scale and chal-

lenging videos.

ECO SiamFC GFS-DCF DaSiamRPN C-RPN SPM-Tracker ATOM SiamRPN++ DiMP-50 CGACD

[5] [1] [44] [46] [11] [38] [6] [23] [2]

PS (%) 49.2 53.3 56.6 59.1 61.9 66.1 64.8 69.4 68.7 69.3

PSnorm (%) 61.8 66.6 71.8 73.3 74.6 77.8 77.1 80.0 80.1 80.0

AUC (%) 55.4 57.1 60.9 63.8 66.9 71.2 70.3 73.3 74.0 71.1

Table 4. Comparison with state-of-the-art trackers on the Track-

ingNet test set.

TrackingNet dataset [31]: This large-scale dataset consists

of real-world videos sampled from YouTube. We evaluate

our tracker on the test set of 511 videos. Table 4 shows the

results of our method compared with recent state-of-the-art

trackers. Precision, normalized precision, and AUC scores

are used to evaluate these trackers. Our CGACD obtains a

precision of 69.3%, a normalized precision of 80.0, and an

AUC score of 71.1%. The results achieved by our tracker

are comparable with those achieved by other state-of-the-art

trackers on all the metrics.

In summary, comparative testing on five datasets shows

that our corner detection-based tracker achieves state-of-

the-art performance.

5. Conclusion

We propose a novel corner detection-based tracking

method that learns correlation-guided attention in a two-

stage corner detection network. In the first stage, a light-

weight Siamese network is exploited to distinguish the tar-

get from the background; in the second stage, it is used to

construct an RoI for corner detection. The relationship be-

tween the template and the RoI is exploited to enhance fea-

tures for corner detection by a correlation-guided attention

module. The pixel-wise correlation result encoding the spa-

tial information about the corners is exploited to guide the

learning of spatial attention, while the channel-wise correla-

tion result encoding the channel importance information is

exploited to guide the learning of channel-wise attention.

Target-specific information and spatial information about

the corners are encoded in the enhanced features with the at-

tention module, enabling accurate corner detection. The w-

hole network is trained end-to-end on large-scale data sets,

using an RoI augmentation strategy. Comprehensive exper-

iments on five benchmark datasets show that the proposed

tracker performs competitively with state-of-the-art tracker-

s. In the future, we plan to explore efficient online adap-

tation method to improve the robustness of the proposed

tracker.
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Matej Kristan. Discriminative correlation filter with channel

and spatial reliability. In CVPR, 2017. 3

[29] Diogo C. Luvizon, Hedi Tabia, and David Picard. Human

pose regression by combining indirect part detection and

contextual information. Comput. Graph., 85:15–22, 2019.

3, 5

[30] Matthias Mueller, Neil Smith, and Bernard Ghanem. A

benchmark and simulator for UAV tracking. In ECCV, 2016.

2, 6, 8

[31] Matthias Müller, Adel Bibi, Silvio Giancola, Salman Al-

Subaihi, and Bernard Ghanem. TrackingNet: A large-scale

dataset and benchmark for object tracking in the wild. In

ECCV, 2018. 2, 6, 8

[32] Hyeonseob Nam and Bohyung Han. Learning multi-domain

convolutional neural networks for visual tracking. In CVPR,

2016. 1, 8

[33] Alejandro Newell, Kaiyu Yang, and Jia Deng. Stacked hour-

glass networks for human pose estimation. In ECCV, 2016.

5

[34] Esteban Real, Jonathon Shlens, Stefano Mazzocchi, Xin Pan,

and Vincent Vanhoucke. YouTube-BoundingBoxes: A large

high-precision human-annotated data set for object detection

in video. In CVPR, 2017. 6

[35] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, Michael S. Bernstein, Alexander C. Berg,

and Fei-Fei Li. Imagenet large scale visual recognition chal-

lenge. IJCV, 115(3):211–252, 2015. 6

6844



[36] Ming Tang, Bin Yu, Fan Zhang, and Jinqiao Wang. High-

speed tracking with multi-kernel correlation filters. In CVPR,

2018. 2

[37] Jack Valmadre, Luca Bertinetto, João F. Henriques, Andrea

Vedaldi, and Philip H. S. Torr. End-to-end representation

learning for correlation filter based tracking. In CVPR, 2017.

1, 2

[38] Guangting Wang, Chong Luo, Zhiwei Xiong, and Wenjun

Zeng. SPM-Tracker: series-parallel matching for real-time

visual object tracking. In CVPR, 2019. 2, 8

[39] Qiang Wang, Zhu Teng, Junliang Xing, Jin Gao, Weiming

Hu, and Stephen J. Maybank. Learning attentions: Residu-

al attentional siamese network for high performance online

visual tracking. In CVPR, 2018. 3

[40] Qiang Wang, Li Zhang, Luca Bertinetto, Weiming Hu, and

Philip H. S. Torr. Fast online object tracking and segmenta-

tion: A unifying approach. In CVPR, 2019. 7

[41] Ziqin Wang, Jun Xu, Li Liu, Fan Zhu, and Ling Shao. Ranet:

Ranking attention network for fast video object segmenta-

tion. In ICCV, 2019. 5

[42] Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In So

Kweon. CBAM: convolutional block attention module. In

ECCV Workshops, 2018. 3, 4

[43] Yi Wu, Jongwoo Lim, and Ming-Hsuan Yang. Object track-

ing benchmark. TPAMI, 37(9):1834–1848, 2015. 2, 6, 7

[44] Tianyang Xu, Zhen-Hua Feng, Xiao-Jun Wu, and Josef Kit-

tler. Joint group feature selection and discriminative filter

learning for robust visual object tracking. In ICCV, 2019. 8

[45] Tianyang Xu, Zhen-Hua Feng, Xiao-Jun Wu, and Josef Kit-

tler. Learning adaptive discriminative correlation filters via

temporal consistency preserving spatial feature selection for

robust visual object tracking. TIP, 2019. 7

[46] Zheng Zhu, Qiang Wang, Bo Li, Wei Wu, Junjie Yan, and

Weiming Hu. Distractor-aware siamese networks for visual

object tracking. In ECCV, 2018. 1, 2, 6, 7, 8

6845


