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Abstract

Unveiling face images of a subject given his/her high-

level representations extracted from a blackbox Face

Recognition engine is extremely challenging. It is because

the limitations of accessible information from that engine

including its structure and uninterpretable extracted fea-

tures. This paper presents a novel generative structure with

Bijective Metric Learning, namely Bijective Generative Ad-

versarial Networks in a Distillation framework (DiBiGAN),

for synthesizing faces of an identity given that person’s fea-

tures. In order to effectively address this problem, this

work firstly introduces a bijective metric so that the dis-

tance measurement and metric learning process can be di-

rectly adopted in image domain for an image reconstruc-

tion task. Secondly, a distillation process is introduced to

maximize the information exploited from the blackbox face

recognition engine. Then a Feature-Conditional Genera-

tor Structure with Exponential Weighting Strategy is pre-

sented for a more robust generator that can synthesize real-

istic faces with ID preservation. Results on several bench-

marking datasets including CelebA, LFW, AgeDB, CFP-FP

against matching engines have demonstrated the effective-

ness of DiBiGAN on both image realism and ID preserva-

tion properties.

1. Introduction

Face recognition has recently matured and achieved high

accuracy against millions of identities [47, 48]. A face

recognition system is often designed in two main stages,

i.e. feature extraction and feature comparison. The role

of feature extraction is more important since it directly de-

termines the robustness of the engine. This operator de-

fines an embedding process mapping input facial images

into a higher-level latent space where embedded features

extracted from photos of the same subject distribute within

a small margin [32]. Moreover, since most face recogni-

tion engines are set into a blackbox mode to protect the

Figure 1. Metric Learning for Image Reconstruction. By main-

taining the one-to-one mapping via a bijection, the distance be-

tween images can be directly and intuitively measured and en-

hances the metric learning process for image reconstruction task.

technologies [25], there is no apparent technique to inverse

that embedding process to reconstruct the faces of a subject

given his/her extracted features from those engines.

Some Blackbox Adversarial Attack approaches [20, 21,

44] have partially addressed this task by analyzing the gra-

dients of the classifier’s outputs to generate adversarial ex-

amples that mislead the behaviour of that classifier. How-

ever, they only focus on a closed-set problem where the

output classes are predefined. Moreover, their goal is to

generate imperceptible pertubations added to the given in-

put signal. Other methods [1, 4, 7, 43, 53] are also intro-

duced in literature but still require the access to the classi-

fier structure, i.e. whitebox setting. Meanwhile, our goal

focuses on a more challenging reconstruction task with a

blackbox face recognition. Firstly, this process reconstructs

faces from scratch without any hint from input images. Sec-

ondly, in a blackbox setting, there is no information about

the engine’s structure, and, therefore, it is unable to directly

exploit knowledge from the inverse mapping process (i.e.

back-propagation). Thirdly, the embedded features from a

face recognition engine are for open-set problem where no

label information is available. More importantly, the sub-

jects to be reconstructed may have never been seen during

training process of the face recognition engine. In the scope

of this work, we assume that the face recognition engines

are primarily developed by Convolutional Neural Networks
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Table 1. Comparisons of our DibiGAN and other unrestricted synthesis methods. Image Reconstruction (Img Recon), Feature Represen-

tation (Feat), Guided Image (ImgG), Feature Conditional (Feat Cond), Neighborly Deconvolution (NB Deconv), Optimization (Opt).

Ours NBNet [34] SynNormFace [4] IFaceRec [53] INVREP [33]

Input Feat Feat Feat Feat + ImgG Feat

Generator Structure Feat Cond NB Deconv MLP + CNN DeConvNet Opt

Blackbox Support ✓ ✓ ✗ ✗ ✗

Img Recon Metric Bijective ✗ ✗ ✗ ✗

Exploited Knowledge

from Classifier

Fully

(Distillation)
Partially

Fully

(Whitebox)

Fully

(Whitebox)

Fully

(Whitebox)

(CNN) that dominate recent state-of-the-art results in face

recognition [5, 10, 12, 28, 29, 40, 45, 46, 52]. We also as-

sume that there is no further post-processing after the step of

CNN feature extraction. We then develop a theory to guar-

antee the reconstruction robustness of the proposed method.

Contributions. This paper presents a novel generative

structure, namely Bijective Generative Adversarial Net-

works in a Distillation framework (DiBiGAN), with Bi-

jective Metric Learning for the image reconstruction task.

The contributions of this work are four-fold. (1) Although

many metric learning techniques have been introduced in

the literature, they are mainly adopted for classification

rather than reconstruction process. By addressing limita-

tions of classifier-based metrics for image reconstruction,

we propose a novel Bijective Metric Learning with bijec-

tion (one-to-one mapping) property so that the distances in

latent features are equivalent to those between images (see

Fig. 1). It, therefore, provides a more effective and nat-

ural metric learning approach to the image reconstruction

task. (2) We exploit different aspects of the distillation pro-

cess for the image reconstruction task in a blackbox mode.

They include distilled knowledge from the blackbox face

matcher and ID knowledge extracted from a real face struc-

ture. (3) We introduce a Feature-Conditional Generator

Structure with Exponential Weighting Strategy for Genera-

tive Adversarial Network (GAN)-based framework to learn

a more robust generator to synthesize realistic faces with ID

preservation. (4) Evaluations on benchmarks against vari-

ous face recognition engines have illustrated the improve-

ments of DiBiGAN in both image realism and ID preserva-

tion. To the best of our knowledge, this is one of the first

metric learning methods for image reconstruction (Table 1).

2. Related Work

Synthesizing images [4, 7, 8, 9, 34, 53] has brought sev-

eral interests from the community. We divided into two

groups, i.e. unrestricted and adversarial synthesis.

Unrestricted synthesis. The approaches focus on recon-

structing an image from scratch given its high-level repre-

sentation. Since the mapping is from a low-dimensional

latent space to a highly nonlinear image space, several

regularizations have to be applied, e.g. Gaussian Blur

[51] for high-frequency samples or Total Variation [11,

33] for maintaining piece-wise constant patches. These

optimization-based techniques are limited with high com-

putation or unrealistic reconstructions. Later, Dosovitskiy

et al. [7] proposed to reconstruct the image from its shallow

(i.e. HOG, SIFT) and deep features using a Neural Network

(NN). Zhmoginov et al. [53] presented an iterative method

to invert Facenet [40] feature with feed-forward NN. Cole

et al. [4] proposed an autoencoder structure to map the fea-

tures to frontal neutral face of the subject. Yang et al. [49]

adopted autoencoder for model inversion task. Generally, to

produce better synthesized quality, these approaches require

full access to the deep structure to exploit the gradient infor-

mation from the embedding process. Mai et al. [34] devel-

oped a neighborly deconvolutional network to support the

blackbox mode. However, with only pixel and perceptual

[23] losses, there are limitations of ID preservation when

synthesizing different features of the same subject. In this

work, we address this issue with Bijective Metric Learning

and Distillation Knowledge for reconstruction task.

Adversarial synthesis. Adversarial approaches aim at gen-

erating unnoticable perturbations from input images for ad-

versarial examples to mislead the behaviour of a deep struc-

ture. Either directly accessing or indirectly approximat-

ing gradients, adversarial examples are created by max-

imizing corresponding loss which can fool a classifier

[1, 2, 3, 20, 21, 30, 35, 42, 44]. Ilyas et. al. [21] pro-

posed bandit optimization to exploit prior information about

the gradient of deep learning models. Later, Ilyas et. al.

[20] introduced Natural Evolutionary Strategies to enable

query-efficient generation of black-box adversarial exam-

ples. Other knowledge from the blackbox classifier are also

exploited for this task [44, 1, 43]. Generally, although the

approaches in this direction tried to extract the gradient in-

formation from a blackbox classifier, their goal are mainly

to mislead the behaviours of the classifier with respect to

a pre-defined set of classes. Therefore, they are closed-set

approaches. Meanwhile, in our work, the proposed frame-

work can reconstruct faces of subjects that have not been

seen in the training process of the classifier.

3. Our Proposed Method

Let F : I 7→ F be a function that maps an input image I
from image domain I ∈ R

W×H×C to its high-level embed-

ding feature F (I) in latent domain F ∈ R
M . In addition,

a function C : F 7→ Y takes F(I) as its input and gives

the identity (ID) prediction of the subject in space Y ∈ R
N

where each dimension represents a predefined subject class.
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Figure 2. Proposed Framework. Given a high-level embedding representation, a Feature-Conditional Generator injects that representation

through-out its structure as the conditional information for all scales. The cost functions are designed with Bijective Metric to directly

exploit ID distributions in image domain, and Distillation Loss to maximize the knowledge could be extracted from the blackbox matcher.

Definition 1 (Model Inversion). Given blackbox functions

F and C; and a prediction score vector s = [F ◦ C](I) ex-

tracted from an unknown image I , the goal of model inver-

sion is to recover I from s such that Ĩ∗ = argminĨ L([F ◦

C](Ĩ), s) where L denotes some types of distance metrics.

The approaches solving this problem usually exploit the

relationship between an input image and its class label for

the reconstruction process. Moreover, since the output score

s is fixed according to predefined N classes, the reconstruc-

tion is limited on images of training subject IDs.

Definition 2 (Feature Reconstruction). Given a blackbox

functions F ; and its embedding feature f = F (I) of an un-

known image I , feature reconstruction is to recover I from

f by optimizing Ĩ∗ = argminĨ L(F (Ĩ), f).
Compared to the model inversion problem, Feature Recon-

struction is more challenging since the constraints on prede-

fined classes are removed. Therefore, the solution for this

problem turns into an open-set mode where it can recon-

struct faces other than the ones used for learning F , i.e. face

recognition engine. Moreover, since the parameters of F
are inaccessible due to its blackbox setting, directly recov-

ering I based on its gradient is impossible. Therefore, the

feature reconstruction task can be reformulated via a func-

tion (generator) G : F 7→ I as the reverse mapping of F .

Ĩ = G(f ; θg)

θg = argmin
θ

Ex∼pI [Lx
G ([G ◦ F ](x; θ),x)]

= argmin
θ

∫

Lx
G (x̃,x) pI(x)dx

(1)

where x̃ = [G ◦ F ](x; θ), θg denotes the parameters of

G, and pI(x) is the probability density function of x. In

other words, pI(x) indicates the distribution that image I
belonged to (i.e. the distribution of training data of F ). In-

tuitively, function G can be seen as a function that maps

images from embedding space F back to image space such

that all reconstructed images [G ◦ F ](x; θg) are maintained

to be close to its real x with respect to the distance metric

Lx
G. To produce “good quality” synthesis (i.e. realistic im-

ages with ID preservation), different choices for Lx
G have

been commonly exploited [22, 23, 34] such as pixel differ-

ence in image domain via L1/L2 distance; Probability Dis-

tribution Divergence (i.e. Adversarial loss defined via an

additional Discriminator) for realistic penalization; or Per-

ceptual distance that penalizes the image structure in high-

level latent space. Among these metrics, except the pixel

difference that is computed directly in image domain, the

others are indirect metrics where another mapping function

(i.e. classifier) from image space to latent space is required.

3.1. Limitations of Classifierbased Metrics

Although these indirect metrics have shown their advan-

tages in several tasks, there are limitations when only the

blackbox function F and its embedded features are given.

Limitation 1. As shown in several adversarial attack works

[15, 39], since the function F is not a one-to-one mapping

function from I to F , it is straightforward to find two im-

ages of similar latent representation that are drastically dif-

ferent in image content. Therefore, with no prior knowl-

edge about the subject ID of image I , starting to reconstruct

it from scratch may easily fall into the case where the re-

constructed image Ĩ is totally different to I but has similar

embedding features. The current Probability Distribution

Divergence with Adversarial Loss or Perceptual Distance is

limited in maintaining the constrain “the reconstructions of

features of the same subject ID should be similar”.

Limitation 2. Since the access to the structure and interme-

diate features of F is unavailable in the blackbox mode, the

function G is unable to directly exploit valuable information

from the gradient of F and the intermediate representation

during embedding. As a result, the distance metrics defined

via F , i.e. perceptual distance, is less effective as in white-

box setting. Next sections will introduce two loss functions

to tackle these problems to learn a robust function G.
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3.2. Bijective Metrics for Image Reconstruction

Many metric learning proposals for face recognition

[5, 28, 29, 45, 46, 52] have been used to improve both intra-

class compactness and inter-class separability with a large

margin. However, for feature reconstruction, directly adopt-

ing these metrics, e.g. angular distance for reconstructed

images to cluster images of the same ID is infeasible.

Therefore, we propose a bijection metric for feature re-

construction task such that the mapping function from im-

age to latent space is one-to-one. The distance between their

latent features is equivalent to the distance between images.

By this way, these metrics are more aligned to image do-

main and can be effectively adopted for reconstruction task.

Moreover, since two different images cannot be mapped to

the same latent features, the metric learning process is more

reliable. The optimization of G in Eqn. (1) is rewritten as:

θg ≈ argmin
θ

∫

Lx
G(x̃,x)px(x)dx (2)

where x̃ = [G◦F ](x; θ); and px(x) denotes a density func-

tion estimated from an alternative large-scale face dataset.

Notice that although the access to pI(x) is not available,

this approximation can be practically adopted due to a prior

knowledge about pI(x) that images drawn from pI(x) are

facial images. Let H : I 7→ Z define a bijection mapping

from x to a latent variable z = H(x). With the bijective

property, the optimization in Eqn. (2) is equivalent to.

argmin
θ

∫

Lz
G(H(x̃), H(x))px(x)dx

=argmin
θ

∫

Lz
G(H(x̃), H(x))pz(z)| det(J

⊤

x Jx)|
1/2dz

=argmin
θ

∫

Lz
G(z̃, z)pz(z)| det(J

⊤

x Jx)|
1/2dz

(3)

where z = H(x̃); px(x) = pz(z)| det(J
⊤
x
Jx)|

1/2 by the

change of variable formula; Jx is the Jacobian of H with

respect to x; and Lz
G is the distance metric in Z . Intuitively,

Eqn. (3) indicates that instead of computing the distance

Lx
G and estimating px(x) directly in image domain, the op-

timization process can be equivalently accomplished via the

distance Lz
G and density pz(z) in Z according to the bijec-

tive property of H .

The prior distributions pz . In general, there are various

choices for the prior distribution pz and the ideal one should

have two properties: (1) simplicity in density estimation,

and (2) easily sampling. Motivated from these properties,

we choose Gaussian distribution for pz . Notice that other

distribution types are still applicable in our framework.

The distance metric Lz
G. With the choice of pz as a Gaus-

sian, the distance between images in I is equivalent to the

deviation between Gaussians in latent space. Therefore, we

can effectively define Lz
G as the squared Wasserstein cou-

pling distance between two Gaussian distributions.

Lz
G(z̃, z) =d(z̃, z) = inf E(||z̃− z||22)

=||µ̃− µ||22 + Tr(Σ̃ + Σ− 2(Σ̃1/2ΣΣ̃1/2)1/2)
(4)

Figure 3. The distributions of synthesized MNIST samples on

testing set (a) without, and (b) with adopting Bijective Metric.

where {µ̃, Σ̃} and {µ,Σ} are the means and covariances of

z̃ and z, respectively. The metric Lz
G then can be extended

with image labels to reduce the distance between images of

the same ID and enhance the margin between different IDs.

L
zid
G (z̃1, z̃2) =

{

d(z̃1, z̃2) if lz̃1 = lz̃2

max(0,m− d(z̃1, z̃2)) if lz̃1 6= lz̃2
(5)

where m defines parameter controlling the margin between

classes; and {lz̃1
, lz̃2

} denote the subject ID of {z̃1, z̃2}.

Learning the Bijection H . In order to effectively learn the

bijection H , we adopt the structure of mapping function

from [6, 13, 14] as the backbone for the tractable log-det

computation with the log-likelihood loss for training pro-

cess. Moreover, to further improve the discriminative prop-

erty of H in latent space Z , we propose to exploit the ID

label in training process of H . Particularly, given K classes

(i.e. ID) of the training set, we choose K Gaussian distribu-

tions with different means {µ1, µ2, .., µK} and covariances

{Σ1,Σ2, ...,ΣK} and enforce samples of each class dis-

tributed on its own prior distribution, i.e. zk ∼ N (µk,Σk).
Formally, the log-likelihood loss function to learn H
is formulated as θ∗H = argmaxθH log px(x, k; θH) =
argmaxθH log pz(z, k; θH) + 1

2 log | det(J
⊤
x
Jx)|.

3.3. Reconstruction from Distillation Knowledge

In the simplest approach, the generator G can still learn

to reconstruct image by adopting the Perceptual Distance

as in previous works to compare F (Ĩ) and F (I). How-

ever, as mentioned in Sec. 3.1, due to limited information

that can be accessed from F , “key” information (i.e. the

gradients of F as well as its intermediate representations)

making the perceptual loss effective is lacking. Therefore,

we propose to first distill the knowledge from the blackbox

F to a “student” function FS and then take advantages of

these knowledge via FS for training the generator. On one

hand, via the distillation process, FS can mimic F by align-

ing its feature space to that of F and keeping the semantics

of the extracted features for reconstruction. On the other

hand, with FS , the knowledge about the embedding pro-

cess of F (i.e. gradient, and intermediate representation)

becomes more transparent; and, therefore, maximize the in-

formation which can be exploited from F . Particularly, let

FS : I 7→ F and FS = FS
1 ◦ FS

2 · · · ◦ FS
n be the compo-

sition of n-sub components. The knowledge from F can be
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distilled to FS by aligning their extracted features as.

θS =argmin
θS

LS = Ex∼pxddistill (F (x), FS(x; θS))

= argmin
θS

Ex∼px

∥

∥

∥

∥

1−
F (x)

‖ F (x) ‖
∗

FS(x; θS)

‖ FS(x; θS) ‖

∥

∥

∥

∥

2

2

(6)

Then G is enhanced via the distilled knowledge of both final

embedding features and intermediate representation by.

Ldistill
G (x̃,x) =

n
∑

j=1

λj

∥

∥

∥
FS
j (x̃; θS)− FS

j (x; θS)
∥

∥

∥

WjHjCj

+λa

∥

∥

∥

∥

1−
FS(x̃; θS)

‖ FS(x̃; θS) ‖
∗

FS(x; θS)

‖ FS(x; θS) ‖

∥

∥

∥

∥

2

2

(7)

where {λj}
n
1 and λa denote the hyper-parameters control-

ling the balance between terms. The first component of

Ldistill
G (x̃,x) aims to penalize the differences between the

intermediate structure of the desired and reconstructed fa-

cial images while the second component validates the simi-

larity of their final features.

3.4. Learning the Generator

Fig. 2 illustrates our proposed framework with Bijective

Metric and Distillation Process to learn the generator G.

Network Architecture. Given an input image x, the gen-

erator G takes F (x) as its input and aims to synthesize an

image x̃ that is as similar to x as possible in terms of iden-

tity and appearance. We adopt the GAN-based generator

structure for G and optimize using different criteria.

LG =λbL
biject + λdL

distill + λadvL
adv + λrL

recon

Lbiject =Ex∼px [Lx
G ([G ◦ F ](x; θ),x)]

+Ex1,x2∼px

[

L
xid

G ([G ◦ F ](x1; θ), [G ◦ F ](x2; θ)
]

=Ez∼pz [Lz
G (z̃, z)] + Ez1,z2∼pz

[

L
zid
G (z̃1, z̃2)

]

Ldistill =Ex∼px

[

Ldistill
G ([G ◦ F ](x; θ),x)

]

Ladv =Ex∼px

[

D
(

[G ◦ F ](x; θ)
)]

Lrecon =Ex∼px

[
∥

∥[G ◦ F ](x)− x
∥

∥

1

]

(8)

where {Lbiject,Ldistill,Ladv,Lrecon} denote the bijective,

distillation, adversarial, and reconstruction losses, respec-

tively. {λb, λd, λadv, λr} are their parameters controlling

their relative importance. D is a discriminator distinguish-

ing the real images from a synthesized one. There are three

main critical components in our framework including the

Bijective H , the student matcher FS for ID preservation;

and the discriminator D for realistic penalization. The Dis-

criminator D is updated with the objective function as.

LD =Ex∼px

[

D
(

[G ◦ F ](x; θ)
)]

− Ex∼px

[

D
(

x)
)]

+λEx̂∼px̂

[

(‖∇x̂D(x̂)‖2 − 1)2
] (9)

where px̂ is the random interpolation distribution between

real and generated images [16]. Then, the whole framework

is trained following GAN-based minimax strategy.

Learning Strategies. Besides the losses, we introduce

a Feature-Conditional Structure for G and a exponential

Weighting Strategy to adaptively scheduling the importance

factors between loss terms during training process.

Feature-conditional Structure. A natural design for the

structure of G is to directly use F (x) as the input for G.

However, this structure limits the learning capability of

G. Particularly, besides ID information, F (x) may include

other “background” conditions such as poses, illuminations,

expressions. Therefore, setting F (x) as the only input im-

plicitly enforces G to “strictly” model these factors as well.

This makes the training process of G less effective. To relax

this constraint, we introduce a Feature-Conditional struc-

ture (i.e. the generator structure in Fig. 2) where a random

variable v is adopted as an additional input so that these

background factors can be modeled through v. Moreover,

we propose to use v as the direct input to G and inject the

information from F (x) through out the structure. By this

way, F (x) can act as the conditional ID-related information

for all reconstruction scales and gives the better synthesis.

Exponential Weighting Strategy. As the progressive grow-

ing training strategy [24] initializes its learning process on

synthesizing low-resolution images and then gradually in-

creasing their levels of details, it is quite effective for en-

hancing the details of generated images in general. How-

ever, this strategy has limited capability in preserving the

subject ID. In particular, in the early stages at low scales

with blurry synthesis, it is difficult to control the subject ID

of faces to be synthesized while in the later stages at higher

scales when the generator becomes more mature and learns

to add more details, the IDs of those faces have already been

constructed and become hard to be changed. Therefore, we

propose to adopt a exponential weighting scheme for (1)

emphasizing on ID preservation in early stages; and (2) en-

hancing the realism in later stages. Particularly, the param-

eter set {λb, λd, λadv, λr} is set to λb = αeRM−R(i), λd =
eRM−R(i), λadv = βeR(i), λr = eRM−R(i) where R(i) de-

notes the current scales of stage i and RM is the maximum

scales to be learned by G.

4. Experimental Results

We qualitatively and quantitatively validate our proposed

method in both reconstructed quality and ID preservation in

several in-the-wild modes such as poses, expressions, and

occlusions. Both image-quality and face-matching datasets

are used for evaluations. Different face recognition engines

are adopted to demonstrate the robustness of our model.

Data Setting. Our training data includes the publicly avail-

able Casia-WebFace [50] with 490K labeled facial images

of over 10K subjects. The duplicated subjects between

training and testing sets are removed to ensure no overlap-

ping between them. For validation, as commonly used for

attribute learning and image quality evaluation, we adopt

the testing split of 10K images from CelebA [31] to validate

the reconstruction quality. For ID preservation, we explore
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Figure 4. Feature Reconstruction against in-the-wild facial variations. For each subject, given an input feature (1st row), while VGG-

NBNet [34] and MPIE-NBNet [34] (2nd and 3rd rows) reconstruct faces with limited quality, DibiGAN in whitebox (4th row) and blackbox

(5th row) modes are able to produce realistic faces with better ID preservation comparable to real faces (6th row).

LFW [18], AgeDB [36], and CFP-FP [41] which provide

face verification protocols against different in-the-wild face

variations. Since each face matcher engine requires differ-

ent preprocessing process, the training and testing data are

aligned to the required template accordingly.

Network Architectures. We exploited the Generator struc-

ture of PO-GAN [24] with 5 convolutional blocks for G
while the Feature Conditional branch consists of 8 fully

connected layers. The discriminator D includes five con-

secutive blocks of two convolution and one downsampling

operators. In the last block of D, the minibatch-stddev op-

erator followed by convolution and fully connected are also

adopted. AdaIN operator [19] is applied for feature injec-

tion node. For the bijection H , we set a configuration of

5 sub-mapping functions where each of them is presented

with two 32-feature-map residual blocks. This structure is

trained using the log-likelihood objective function on Casia-

WebFace. Resnet-50 [17] is adopted for FS .

Model Configurations. Our framework is implemented in

TensorFlow and all the models are trained on a machine

with four NVIDIA P6000 GPUs. The batch size is set based

on the resolution of output images, for the very first res-

olution of output images (4 × 4), the batch size is set to

128, the batch size will be divided by two when the reso-

lution of images is doubled. We use Adam Optimizer with

the started learning rate of 0.0015. We experimentally set

{α = 0.001, β = 1.0, λj = 1, λa = 10.0} to maintain the

balanced values between loss terms.

Ablation Study. To study the effectiveness of the proposed

bijective metric for image reconstruction task, we employ

an ablation study on MNIST [26] with LeNet [27] as the

function F . We also set to whitebox mode where F is di-

rectly used in Ldistill to remove the effects of other factors.

Then 50K training images from MNIST and their 1× 1024

feature vectors are used to train G. Notice that since the

image size is 32 × 32, G and D structures are configured

with three convolutional blocks. The resulting distributions

of synthesized testing images of all classes without and with

Lbiject are plotted in Fig. 3. Compared to G learned with

only classifier-based metrics (Fig. 3(a)), the one with bi-

jective metric learning (Fig. 3(b)) is supervised with more

direct metric learning mechanism in image domain, and,

therefore, shows the advantages with enhanced intra- and

inter-class distributions.

4.1. Face Reconstruction Results

This section demonstrates the capability of our proposed

methods in terms of effectively synthesizing faces from sub-

ject’s features. To train DibiGAN, we adopt the ArcFace-

Resnet100 [5] trained on 5.8M images of 85K subjects for

function F and extract the 1 × 512 feature vectors for all

training images. These features together with the training

images are then used to train the whole framework. We

divided the experiments in two settings, i.e. whitebox and

blackbox, where the main difference is the visibility of the

matcher structure during training process. In the whitebox

mode F is directly used in Eqn. (7) to evaluate Ldistill
G

while in the blackbox mode, FS is learned from F through

a distillation process as in Eqn. (6) and used for Ldistill
G .

The first row of Table 2 shows the matching accuracy of F
and FS using real faces on benchmarking datasets.

Face Reconstruction from features of frontal faces. Af-

ter training, given only the deep features extracted from F
on testing images, the generator G is applied to synthesize

the subjects’ faces. Qualitative examples of our synthesized

faces in comparison with other methods are illustrated in

Fig. 4. As can be seen, our generator G is able to recon-

struct realistic faces even when their embedding features

are extracted from faces with a wide range of in-the-wild
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Figure 5. Feature Reconstruction against expressions (a) and occlusions (b). For each subject, the 1st row shows the input feature. The

next five rows are VGG-NBNet [34], MPIE-NBNet [34], Our DibiGAN in whitebox and blackbox settings, and Real Faces, respectively.

Figure 6. Feature Reconstruction against features of the same

subject. For each subject, the first and second columns show

different real faces and their features of a subject. Compared to

VGG-NBNet [34] (third column), our DibiGAN in whitebox and

blackbox modes can effectively preserve the ID of the subjects.

variations. More importantly, in both whitebox and black-

box settings, our proposed method successfully preserves

the ID features of these subjects. In whitebox setting, since

the structure of F is accessible, the learning process can

effectively exploit different aspects of embedding process

from F and produce a generator G that depicts better facial

features of the real faces. For example, together with ID

information, poses, glasses, or hair style from the real faces

can also be recovered. On the other hand, although the ac-

cessible information is very limited in blackbox setting, the

learned G can still be enjoyed from the distilled knowledge

of FS and effectively fill the knowledge gap with whitebox

setting. In comparison to different configurations of NBNet

[34], better faces in terms of image quality and ID preser-

vation can be obtained by our proposed model.

Figure 7. From the input features, our model can synthesize vari-

ous conditions of a face by varying the “background” variable v.

Effect of expressions and occluded regions. Fig. 5 il-

lustrates our synthesis from features of faces that contain

both expressions and occlusions. Similar to previous exper-

iment, our model robustly depicts realistic faces with sim-

ilar ID features as in the real faces. Those reconstructed

faces’ quality again outperforms NBNet in both realistic

and ID terms. Notice that the success of robustly handling

with those challenging factors comes from two properties:

(1) The matcher F was trained to ignore those facial varia-

tions in its embedding features; and (2) both bijective metric

learning and distillation process can effectively exploit nec-

essary knowledge from F as well as real face distributions

in image domain for synthesis process.

Effect of different features from the same subject. Fig.

6 illustrates the advantages of our method in synthesizing

faces given different feature representations of the same

subject. These results further show the advantages of the

proposed bijective metric in enhancing the boundary be-

tween classes and constrain the similarity between recon-

structed faces of the same subject in image domain. As a

result, reconstructed faces from features of the same subject

ID not only keep the features of that subject (i.e. similar to

6138



Table 2. Realism Quality and Matching Accuracy. Comparison results in Multi-Scale Structural Similarity (MS-SSIM) (the smaller

value is better); Inception score and Matching Accuracy (the higher value is better). For each configuration in (A)-(C) and (D)-(F), each

loss function is cumulative enable on the top of the previous configuration. − denotes “not applicable”.

White-box Reconstruction Black-box Reconstruction

CelebA
LFW AgeDB CFP-FP

CelebA
LFW AgeDB CFP-FP

MS-SSIM IS MS-SSIM IS

Real Faces 1 0.305 3.008 99.78% 98.40% 97.10% 0.305 3.008 99.70% 96.80% 93.10%

VGG-NBNet [34] − − − − − 0.661 1.387 91.42% 80.42% 74.63%

MPIE-NBNet [34] − − − − − 0.592 1.484 93.17% 79.45% 78.51%

(A) PO GAN [24] 0.331 2.226 68.20% 63.42% 68.89% 0.315 2.227 66.63% 62.37% 65.59%

(B) + Ldistill 0.343 2.073 96.03% 83.33% 79.07% 0.337 2.238 94.95% 81.56% 78.80%

(C) + Lbiject 0.358 2.052 98.1% 88.16% 88.01% 0.360 2.176 97.30% 85.71% 82.51%

(D) Ours 0.316 2.343 79.82% 77.20% 81.71% 0.305 2.463 77.57% 76.83% 80.66%

(E) + Ldistill 0.306 2.349 97.76% 92.33% 89.20% 0.305 2.423 97.06% 91.70% 84.83%

(F) + Lbiject 0.310 2.531 99.18% 94.18% 92.67% 0.303 2.422 99.13% 93.53% 89.03%

real faces) but also share similar features among each other.

Effect of random variable v. As mentioned in Sec. 3.4,

the variable v is incorporated to model background factors

so that G can be more focused on modeling ID features.

Therefore, by fixing the input feature and varying this vari-

able values, different conditions of that face can be synthe-

sized as shown in Fig. 7. These results further illustrate the

advantages of our model structure in its capability of cap-

turing various factors for the reconstruction process.

4.2. Face Quality and Verification Accuracy

In order to quantitatively validate the realism of our re-

constructed images and how well they can preserve the ID

of the subjects, three metrics are adopted: (1) Multi-scale

Structural similarity (MS-SSIM) [37]; (2) Inception Score

(IS) [38]; and (3) face verification accuracy.

Image quality. To quantify the realism of the reconstructed

faces, we synthesize testing images of CelebA in several

training configurations as shown in Table 2, where each loss

function in cumulatively enables on the top of the previous

configuration. Then MS-SSIM and IS metrics are applied to

measure their image quality. We also compare our model in

both whitebox and blackbox settings with other baselines

including PO GAN structure [24] and NBNet [34]. No-

tice that we only adopt the adversarial and reconstruction

losses for configs (A) and (D). For all configs (A), (B), and

(C), PO GAN baseline takes only the embedding features

as its input. These results show that in all configurations,

our method maintains comparative reconstruction quality as

PO GAN and very close to that of real faces. Moreover, our

synthesis consistently outperforms NBNet in both metrics.

ID Preservation. Our model is experimented against LFW,

AgeDB, and CFP-FP where an image in each positive pair

is substituted by the reconstructed one while the remaining

image of that pair is kept as the reference real face. The

matching accuracy is reported in Table 2. These results fur-

ther demonstrate the advantages and contributions of each

1We report the accuracy of original matcher F for whitebox setting and

FS for blackbox setting.

Table 3. Accuracy against different blackbox face matchers.

Matcher LFW AgeDB CFP-FP

ArcFace[5]-Real 99.78% 98.40% 97.1%

ArcFace-Recon 99.13% 93.53% 89.03%

FaceNet[40]-Real 99.55% 90.16% 94.05%

FaceNet-Recon 98.05% 89.80% 87.19%

SphereFacePlus[28]-Real 98.92% 91.92% 91.16%

SphereFacePlus-Recon 97.21% 88.98% 86.86%

component in our framework. Compared to PO GAN struc-

ture, our Feature-Conditional Structure gives more flexibil-

ity in modeling ID features, and achieves better matching

accuracy. In combination with distilled knowledge from

FS , the Generator produces a big jump in accuracy and

close the gap to real faces to only 2.02% and 2.72% on LFW

in whitebox and blackbox settings, respectively. By further

incorporating the bijective metric, these gaps are further re-

duced to only 0.6% and 0.65% for the two settings.

Reconstructions against different Face Recognition En-

gines. To illustrate the accuracy of our propose structure,

we validate the its performance against different face recog-

nition engines as shown in Table 3. All Generators are set to

blackbox mode and only the final extracted features are ac-

cessible. Our reconstructed faces are able to maintain the

ID information and achieve competitive accuracy as real

faces. These performance again emphasizes the accuracy

of our model in capturing behaviours of the feature extrac-

tion functions F and provides high quality reconstructions.

5. Conclusions.

This work has presented a novel generative structure

with Bijective Metric Learning for feature reconstruction

problem to unveil the subjects’ faces given their deep black-

boxed features. Thanks to the introduced Bijective Metric

and Distillation Knowledge, our DibiGAN effectively max-

imizes the information to be exploited from a given black-

box face matcher. Experiments on a wide range of in-the-

wild face variations against different face matching engines

demonstrated the advantages of our method on synthesizing

realistic faces with subject’s visual identity.
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