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Abstract

In this paper, we introduce an open vocabulary model for

image hashtag prediction – the task of mapping an image

to its accompanying hashtags. Recent work shows that to

build an accurate hashtag prediction model, it is necessary

to model the user because of the self-expression problem,

in which similar image content may be labeled with differ-

ent tags. To take into account the user behaviour, we pro-

pose a new model that extracts a representation of a user

based on his/her image history. Our model allows to im-

prove a user representation with new images or add a new

user without retraining the model. Because new hashtags

appear all the time on social networks, we design an open

vocabulary model which can deal with new hashtags with-

out retraining the model. Our model learns a cross-modal

embedding between user conditional visual representations

and hashtag word representations. Experiments on a subset

of the YFCC100M dataset demonstrate the efficacy of our

user representation in user conditional hashtag prediction

and user retrieval. We further validate the open vocabulary

prediction ability of our model.

1. Introduction

Understanding the content of an image is a fundamen-

tal and challenging computer vision task because an image

can contain a large variety of semantic concepts and a se-

mantic concept can have diverse visual appearances. The

vocabulary to describe visual concepts in an image is very

large and it is necessary to go beyond the semantic cate-

gories used in standard classification datasets (e.g. COCO

[31], ImageNet [36]) which focus on a small subset of cate-

gories that have precise physical description. Moreover, the

annotations of these datasets are independent of the users

who take the picture and ignore sentiment/subjective con-

cepts like fun or happy.

The hashtag problem serves as a lens into the general

problem of image understanding because the user’s intent

is not separable from the image content. Images anno-

tated with hashtags are available in great abundance be-

Figure 1. Overview of the proposed user conditional joint em-

bedding model for hashtag prediction. First, a user representation

(yellow) is extracted from the user history. Then, the model com-

putes a user conditional image representation (green) which is pro-

jected into a joint embedding space with the hashtag representation

of #street (red).

cause of social networks, but hashtags are inherently sub-

jective because they are provided by users as a form of self-

expression [43]. As a consequence, hashtags may have syn-

onyms (different hashtags referring to the same visual con-

tent) and may be ambiguous (the same hashtag referring to

different visual content). This self-expression leads to user-

specific variation in hashtag supervision that is independent

of the image content, and therefore limits the effectiveness

of standard image classification methods. To overcome this

problem, [43] introduced a user-specific model that models

the joint distribution of images, hashtags and users instead

of the image-hashtag pairs as in standard image classifica-

tion models. But this approach has two main limitations: it

cannot deal with new users or new hashtags without retrain-

ing the model.

To deal with new users, we propose a new model that

extracts a representation of a user from his/her image his-

tory (top-left of Figure 1). Given a user, our model only

uses the images and their corresponding hashtags from the

user’s history to compute a user representation – our model

works like a standard image classification model if a user

does not have an image history. Our approach is inductive

and can extract a representation of a new user without re-

training the model. Another advantage of our model is that
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it constructs a dynamic (time-varying) user representation

so it can easily improve the representation of a user if new

images from this user are available. Then, the user represen-

tation (yellow) is fused with the image representation (blue)

to compute a user conditional image representation (green).

Unlike existing hashtag prediction models for images

[12, 43] or text [47, 13], we propose an open vocabu-

lary hashtag prediction: our model can generalize and map

across new concepts that have not been seen at training time.

Open vocabulary models are important because social net-

works are constantly evolving: user interests can change

quickly and new hashtags appear frequently. Our model

uses pretrained word embeddings to represent each hashtag

in a continuous and semantic space (red in Figure 1), and

then the hashtag representations are projected into a joint

embedding space with the user conditional visual represen-

tation. A continuous semantic embedding space is more

appropriate than using separate classifiers because it can

share knowledge between synonymous hashtags. Similarly,

it can deal with the long tail distribution problem (infre-

quent hashtags) and unseen hashtags because it can share

information between hashtags. We show that our model is

scalable and can deal with a vocabulary of 550k hashtags.

Finally, our approach is symmetric and can be used for both

image-to-hashtag and hashtag-to-image retrieval.

To summarize, our contribution is threefold. (1) We

propose a new model to extract a user representation from

his/her image history. This approach allows to deal with

new users or to improve a user representation with new im-

ages without retraining the model. (2) We introduce an open

vocabulary model based on pre-trained word embeddings

that can deal with infrequent hashtags and hashtags unseen

during training. (3) Our experiments show that the image

history can be used to extract effective user representations.

We investigate the efficacy of our user representation for

both user-specific image tagging and user retrieval. We also

evaluate the ability of our model to generalise to predict

hashtags unseen during training.

2. Related Work

Image tagging with user representation. Recent works

[12, 43] show that modelling the user is important to an-

alyze images annotated with hashtags because of the self-

expression problem. Denton et al. [12] introduced a user

representation that exploits user metadata (age, gender, GPS

coordinates and country). Even if this user representation

can deal with geographical domain shift [38] (the same se-

mantic category of objects can look quite different in im-

ages taken in different geographical locations), it cannot

fully represent a user because these user metadata are not

informative enough to fully capture user behaviour. An-

other limitation is that it is not always possible to have ac-

cess to user metadata. To overcome this problem, Veit et

al. [43] proposed to learn an embedding for each user based

on the images and the corresponding hashtags. However,

learning an embedding per user is limited to a transductive

setting; it is not applicable to new users. In this paper, we

propose a model that can capture user behaviour and deal

with new users without retraining the model. Our model

extracts a representation of a user by only exploiting the im-

ages with their corresponding hashtags from his/her image

history. Our model can also improve a user representation

with new images without retraining the model. Note that

[47, 23] also address the problem of hashtag prediction but

do not model the user.

Conditional models for visual recognition. Our work is

related to conditional models for visual recognition. The

most popular example is probably the Visual Question An-

swering (VQA) task [19, 25, 49, 14] where the input im-

age is conditioned by a question. Recently, [39] proposed a

model for the personality-captions task by conditioning the

input image on the given style and personality traits. While

[39] uses an addition to fuse the visual and the personal-

ity representation, we use a bilinear product as in most of

the VQA models to fuse the visual and the user representa-

tion. Our model is also related to the Conditional Similarity

Networks [42] that learn embeddings differentiated into se-

mantically distinct subspaces to capture different notions of

similarities. However this model can only deal with a fixed

number of similarities.

Open vocabulary. Standard image classification models

[28, 22] are not suitable for open vocabulary prediction be-

cause the classes are usually fixed before training and the

models are designed to predict among those classes for a

given image. [18] introduced a vocabulary-free image tag-

ging model, that uses an image search engine to collect

images for each tag in the vocabulary, but it cannot deal

with new hashtags after training. A strategy to deal with

new categories is to use a Zero-Shot Learning (ZSL) model

[29, 30]. ZSL models are learned on some categories and

tested on other categories based on the knowledge extracted

during training [35]. A more realistic scenario is the Gen-

eralized Zero-Shot Learning (GZSL) [9, 48] where both

seen and unseen classes are present at test time. A lot of

ZSL/GZSL models [30, 17, 2, 3, 50, 1, 7, 48, 45] learn an

embedding between a visual space and a semantic space (at-

tributes, text description). Our model is similar to [17], but

the main difference is that [17] is designed for single-label

object classification whereas our model works for multi-

label classification with a large and diverse hashtags set,

which can represent abstract concepts like fun. Another im-

portant difference is that [17] preprocesses the labels based

on the WordNet hierarchy to clean the vocabulary and avoid

synonyms whereas our model works for hashtags in the wild

without this preprocessing.
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Multi-modal embeddings. Over the past few years, a lot

of models using visual-text embeddings [27, 20, 46, 37, 16,

15, 8, 39, 44] have been proposed for several applications.

Today, most of the methods that build cross-modal embed-

dings between text and images use a triplet loss [27]. While

the original triplet loss averages over all triplets in the mini-

batch, [16] introduced a hard negative sampling because the

average strategy can lead to vanishing gradients since, as the

optimization progresses, most of the triplets tend to con-

tribute less to the error. [16, 21, 15] observe a significant

improvement by using hard negatives in the loss. However,

the hard negative triplet loss is sensitive to noise/outliers

and needs a few epochs to “warm up” at the beginning of the

learning process because a very limited amount of triplets

are contributing to the gradient, when many are violating

the constraints. Recently, [8] introduced an adaptive strat-

egy that automatically adapts the number of triplets used in

the loss. These triplet losses work well for tasks like caption

retrieval [16] because the number of triplets is the size of the

mini-batch, but they are not scalable for our task because the

hashtag vocabulary is too large (> 400k). The complexity

is exacerbated for the multi-label setting because each ex-

ample can be a positive example for several hashtags. [21]

show that randomly sampling some triplets is not helpful

because most of the triplets incur no loss and therefore do

not improve the model. Moreover it is difficult to define

negative examples because hashtags have synonyms.

3. Model

Our goal is to learn a user-specific hashtag prediction

model. Our model uses the user image history to compute

the user representation and hence it can deal with new users.

We first present our model to extract a user representation

from an image history and then our user conditional joint

embedding model for open vocabulary hashtag prediction.

Notations. We denote by U = {u1, . . . , uU} a set

of U users and a vocabulary of K hashtags by H =
{h1, . . . , hK}. In the open vocabulary setting the vocab-

ulary of hashtags for training is a subset of the vocabu-

lary of hashtags for testing, i.e. Htrain ⊂ Htest = H,

whereas in the fixed vocabulary setting (standard setting

for image classification) the vocabulary of hashtags is the

same for training and testing, i.e. Htrain = Htest = H.

For each user u, we have access to an ordered list by

time1 of Nu images with their associated hashtags: Ī(u) =

[(I
(u)
1 ,H

(u)
1 ), . . . , (I

(u)
Nu
,H

(u)
Nu

)], where I
(u)
j is the image

and H
(u)
j ⊂ H is the nonempty hashtag set of the j-th im-

age. Each image is associated with a unique user and we

use disjoint sets of users for training and testing.

1This constraint can be satisfied by using the uploaded time on social

networks.

Model overview. We define our problem as an automatic

image labelling based on inferring hashtags, conditioned on

an image I, and a user u. During training, we aim at learn-

ing a model f that outputs the probability distribution over

a tag yi conditional on the image I and the user u:

p(yi = 1|I, u; Θ) = f(I, u, yi; Θ) (1)

where Θ are the whole set of parameters of the model. The

general architecture of our approach is shown in Figure 1.

Our model first extracts a representation of the user from his

image history (yellow vector) and a visual representation

of the image (blue vector). Then, these representations are

fused to compute a user conditional image representation

(green vector). Finally, the model learns a joint embedding

between the user conditional image representations and the

hashtag representations (red vector).

3.1. User representation

A key component of our model is the user representation

because hashtags are inherently subjective and depend on

the user. To extract a representation of a user, we propose

to exploit his/her image history. Our approach allows to ex-

tract a user representation of a new user by exploiting only

the image history and without retraining the model. Ex-

tracting a good user representation is a challenging problem

because the user representation should encode some infor-

mation about the user, for instance the hashtags used (each

user only uses a small subset of hashtags based on topics of

interest), language (English, Spanish, French, etc.), but also

the correlations between images and the hashtags.

We now explain our method to extract a user represen-

tation which is shown in Figure 2. Given a user u, we as-

sume that we know his/her image history (or a subset) Ī(u).

Thereafter, we ignore the u notation for the sake of clarity

because we only consider one user. To predict the hash-

tags of the T -th image, we use the T − 1 past images and

their corresponding hashtags to extract the user representa-

tion u1:T−1 ∈ R
du . The model first extracts a representa-

tion for each image-hashtags pair in the user history. Then,

it aggregates these representations with a Gated Recurrent

Unit (GRU [10]) to compute the user representation.

Image-hashtags representation. The goal is to compute

a vectorial representation of each image-hashtags pair. We

first extract a visual representation for each image in the

user history with a ConvNet f im:

xim
t = f im(It) ∈ R

di ∀t < T (2)

Similarly, we compute a representation of the hashtags

associated with each image. We first extract a word rep-

resentation for each hashtag (Section 3.2.2), then we sum
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Figure 2. Our open vocabulary model for hashtag prediction where the user representation is extracted based on the user history.

each hashtag representation to have a fixed size representa-

tion yt, and finally we learn a non-linear mapping f tag:

x
tag
t = f tag(yt) ∈ R

dt , yt =
∑

y∈Ht

ψ(y) ∀t < T (3)

where ψ(y) ∈ R
dw is a pretrained word embedding of hash-

tag y. If a hashtag is composed of several words, we sum

the representation of each word e.g. ψ(black+white) =
ψ(black) + ψ(white). If a hashtag does not have a

word representation, it is possible to approximate it by us-

ing some algebraic properties. Pretrained word embeddings

are used as auxiliary information to share information be-

tween hashtags so that the knowledge learned from seen

hashtags can be transferred to unseen hashtags. It also al-

lows to deal with the long-tail distribution problem because

it can transfer knowledge from the data-rich head to the

data-poor tail hashtags. In our experiments we use GloVe

[34], but our model works with any word embeddings (e.g.

[33, 47, 6]). Note that these word embeddings do not re-

quire additional supervision because they are learned in an

unsupervised way from large text corpora.

Finally, we aggregate the image and hashtag represen-

tations to compute a representation of each image-hashtags

pair:

xt = fusion(xim
t ,xtag

t ) ∀t < T (4)

We use an element-wise product to fuse the two modalities.

In Section 4.2, we analyze several fusion operators and we

observe that the choice of the fusion is important.

User representation. The goal is to compute a fixed

size user representation u1:T−1 given the set of features

{xt}t=1,...,T−1 representing each image-hashtags pair of

the user history. To take into account the temporal infor-

mation of the images, we use a Gated Recurrent Unit [10]:

ht = fGRU (xt,ht−1) ∀t < T (5)

where ht is the hidden state of the GRU at step t and

h0 = 0. GRUs turn variable length sequences into mean-

ingful, fixed-sized representations. The last hidden state

hT−1 is used as user representation u1:T−1. To aggregate

the image-hashtags representations, it is possible to use any

pooling function (e.g. max, average), but our experiments

show that taking into account the temporal information im-

proves performance. Thereafter, we use all the previous im-

ages as the user history and we denote the user representa-

tion by u for the sake of clarity. Note that it is possible to

replace the GRU by other temporal models like TCN [4].

3.2. User conditional joint embedding model

We now introduce the user conditional joint embedding

model. Given an image and user representations, our model

first computes the user conditional image representation and

then it learns a joint embedding between the user condi-

tional image and hashtag representations.

3.2.1 User conditional image representation

The image I and user u are firstly embedded into vectors

v and u respectively. We use a ConvNet to extract a fixed-

size vectorial representation v ∈ R
dv of the visual content

of an image. We use a different ConvNet from the Con-

vNet used in the user model because these two networks

have different goals (representing an image vs represent-

ing a user). Experimentally, we observe that using sepa-

rate networks improves performance. The image and user

representations v and u are then fused using a bilinear op-

erator to produce a user conditional image representation
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z ∈ R
dc . Bilinear models are powerful solutions used in

particular in computer vision to capture multi-modal inter-

actions [12, 19, 25, 43]. The bilinear model is more ex-

pressive than straightforward concatenation, element-wise

product, or element-wise sum and is defined as follows:

zj = vTWju+ bj j ∈ {1, . . . , dc} (6)

where Wj ∈ R
dv×du is a weight matrix and bj ∈ R is a

bias of the j-th dimension. z = [zj ]j=1,...,dc
is the output of

the bilinear model and represents the image-user pair. We

need to learn the tensor W = [Wj ]j=1,...,dc
∈ R

dv×du×dc

and the bias b = [bj ]j=1,...,dc
∈ R

dc .

3.2.2 Joint embedding

In this section, we introduce our joint embedding model

that can deal with hashtags unseen during training (Fig-

ure 2). Our aim is to learn functions that take the repre-

sentation of an arbitrary hashtag and a user conditional im-

age representation as inputs and embed them into a joint

embedding. To learn the joint embedding space, we de-

fine a similarity function between the two modalities. We

first project each modality in a joint embedding space by

learning a mapping function φiu : R
dc → R

d (resp.

φtag : Rdw → R
d) from the user conditional image (resp.

hashtag) space to the joint embedding space. Then, we de-

fine the similarity function in the joint embedding space to

be the usual inner product. Given a user conditional image

representation g(v,u) (= z), we compute the compatibility

score of any given hashtag y as follows:

f(v,u, y; Θ) = φiu(g(v,u))Tφtag(ψ(y)) (7)

The intuition is to maximize the similarity between the user

conditional image representation and its associated hash-

tags in the joint embedding space. Unlike standard visual-

semantic embeddings, our joint embedding also depends on

the user, so an image can be mapped to different points in

the joint embedding space with respect to the user profile.

Note that unlike existing image hashtag prediction models

[12, 43], our model is scalable because the number of learn-

able parameters of our model is independent of the hashtag

vocabulary size.

3.3. Learning

Our training objective is to increase the similarity to

the present hashtags, while decreasing the similarity to the

other hashtags. Because the triplet loss commonly used to

learn joint embedding is not scalable, we employ a classifi-

cation loss for this task. Recent works [24, 40, 43, 32] sug-

gest that softmax classification can be very effective even

in multi-label settings with large numbers of classes such as

ours. Given a user u and an image In, the posterior hashtag

probability is:

p(ŷ|I, u; Θ) =
exp(f(I, u, ŷ; Θ))∑

y∈Htrain exp(f(I, u, y; Θ))
(8)

The probability distribution is computed only on the hash-

tags known during training (Htrain). Following [24, 43],

we select a single hashtag ŷ
(u)
n uniformly at random from

hashtag set H
(u)
n as target class for each image. All the

weights except the ones for the ResNets (due to the limi-

tation of GPU memory) are optimized jointly in an end-to-

end manner by minimizing the negative log-likelihood of

the probability distribution:

L(Θ) = −
1

U

∑

u∈U

1

Nu

Nu∑

n=1

log p(ŷ(u)n |I, u; Θ) (9)

Due to technical constraints, it is not possible to have sev-

eral users in memory at the same time. A mini-batch con-

tains the consecutive images of a single user.

4. Experiments

Implementation details. We use PyTorch in our experi-

ments and each experiment runs on 1 GPU. We train our

model using ADAM [26] during 20 epochs with a start

learning rate 5e-5. We use ResNet-50 [22] as the Con-

vNet and GloVe embeddings [34] as pre-trained word em-

beddings. GloVe was trained on Common Crawl dataset

with a vocabulary of 1.9M words2. Despite their appeal-

ing modelling power, bilinear models are intractable for our

task, because the size of the full tensor is prohibitive. In

our experiments, we use the MUTAN model [5] to approx-

imate the bilinear product (Equation 6) but other models

[19, 25, 49, 14] can be used.

Datasets. We perform experiments on a subset of the

YFCC100M dataset [41]. YFCC100M consists of about 99

million images from the Flickr image sharing site. We col-

lect the images from all the users having between 100 and

200 images with at least one hashtag. We use all the hash-

tags for which we can compute a GloVe representation. The

training set has a vocabulary of 442k hashtags and the test

set has a vocabulary of 568k hashtags (about 125k hashtags

are unseen during training). We ignore all the images that

do not have at least one valid hashtag. Finally, we keep

all the users that have at least 50 images. We split the sets

by user ID in order to ensure that images from the same

user do not occur in both sets. We assign 70% (resp. 10%

and 20%) of the images to the training (resp. validation and

test) set. Thereafter, this dataset is named open vocabulary

2https://nlp.stanford.edu/projects/glove/
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MODEL USER REP. USER FUSION A@1 A@10 P@10 R@1 R@10

F
IX

E
D

V
O

C
A

B

(∼
1
8
.
5

k
h

as
h

ta
g

s) [A] frequency - 0.01 0.13 0.03 0.00 0.07

[B] user agnostic - 14.57 37.60 7.52 4.79 15.86

[C] used hashtags ✓ max 61.62 80.43 37.37 26.02 55.88

[D] hashtag occurences ✓ sum 62.09 80.56 37.58 26.26 56.13

[43] Tensor (MCLL) ✓ - 14.75 37.66 7.53 4.86 15.94

Ours (hashtag) ✓ GRU 71.90 85.21 47.60 31.51 62.83

Ours (image+hashtag) ✓ GRU 74.13 87.49 50.88 33.36 66.49

O
P

E
N

V
O

C
A

B

(∼
4
4
0

k
h

as
h

ta
g

s) [A] frequency - 0.00 0.01 0.01 0.00 0.00

[B] user agnostic - 13.47 34.71 6.64 4.26 13.49

[E] hashtag sum ✓ sum 59.93 79.75 36.24 23.42 54.20

[43] Tensor (MCLL) ✓ - 13.49 34.73 6.65 4.26 13.50

Ours (hashtag) ✓ GRU 65.06 83.31 44.84 26.87 60.69

Ours w/o Glove (image+hashtag) ✓ GRU 46.24 64.17 20.36 17.08 31.49

Ours (image+hashtag) ✓ GRU 67.46 86.32 46.68 27.90 62.99

Table 1. Hashtag prediction results on both datasets (higher is better). We compare several strategies to extract a user representation based

on user image history. The performance on the open vocabulary dataset is evaluated only with the hashtags seen during training. The

performance with the unseen hashtags is shown in Table 2. Ours w/o Glove means that the pretrained GloVe embeddings are not used.

dataset. We also proposed a fixed vocabulary version of

the open vocabulary dataset. We use a similar hashtag pre-

processing as [43] except the dataset splits are by user ID.

On this dataset, we propose a variant of our model with-

out pretrained word embeddings to have a fair comparison

with [43] (see subsection A.3 of supplementary). More in-

formation and analysis about these datasets can be found in

subsection A.1 of supplementary.

Metrics. To evaluate the hashtag prediction performance

of the models, we use three standard metrics [12, 43]: Accu-

racy@k (A@k), Precision@k (P@k) and Recall@k (R@k).

More information about these metrics is available in subsec-

tion A.2 of supplementary. We use k = 1 and k = 10: for

instance, A@1 measures how often the top-ranked hashtag

is in the ground-truth hashtag set and A@10 how often at

least one of the the ground-truth hashtags appears in the 10

highest-ranked predictions.

4.1. Hashtag prediction

In this section, we evaluate our model for the hashtag

prediction task which attempts to rank an image’s ground-

truth hashtags higher than hashtags it does not contain. In

these experiments, we use all the previous images in the

user history to extract the user representation. Image re-

trieval results are shown in subsection A.5 of supplemen-

tary.

Baseline models. We compare our model with the follow-

ing models:

[A] FREQUENCY: this simple baseline ignores input image

and user representation, always ranking hashtags by their

frequency in the training data.

[B] USER AGNOSTIC: this model is equivalent to a stan-

dard image classification: there is no user representation.

[C] USED HASHTAGS: this user representation is a binary

vector of the hashtags used in previous images by the user:

u = [u1, . . . , uK ] where ui ∈ {0, 1} (10)

where ui = 1 (resp. ui = 0) means that the i-th hashtag has

been used (resp. has never been used) by the user.

[D] HASHTAG OCCURRENCES: this user representation is

similar to [C] except that it indicates the number of oc-

curences of each hashtag:

u = [u1, . . . , uK ] where ui ∈ N (11)

where ui indicates the number of times that the i-th tag has

been used by the user.

[E] HASHTAG SUM: this user representation is the sum of

each hashtag word embedding used in previous images by

the user.

The models [C] and [D] are not used on the open vocabu-

lary dataset because they require a fixed hashtag vocabulary.

Note that it is not possible to compare with the user rep-

resentation proposed in [12] because it uses user metadata

that are not available in the dataset. We also report the re-

sults of our model with only the hashtag branch in the user

representation model (i.e. x = xtag) and without the pre-

trained GloVe embeddings (they are randomly initialised).

To compare our model with [43], we reimplement the user-

specific Tensor (MCLL) model. Because this model was

proposed for a transductive setting, we use a vector filled

with the value 1/du to represent a user that is not present in

the training set.
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MODEL
UNSEEN HASHTAGS (∼ 120k hashtags) ALL HASHTAGS (∼ 560k hashtags)

A@1 A@10 P@10 R@1 R@10 A@1 A@10 P@10 R@1 R@10

[B] user agnostic 0.06 0.40 0.08 0.03 0.25 12.89 33.21 6.07 3.78 12.05

[E] sum hashtags 36.41 55.40 32.51 26.60 48.12 58.91 79.47 34.08 21.35 51.42

Ours (hashtag) 44.07 60.15 39.35 33.97 53.05 65.75 83.90 43.99 26.09 59.14

Ours (image+hashtag) 45.98 62.62 41.31 35.53 55.30 68.06 86.91 45.80 27.03 61.39

Table 2. Hashtag prediction results on hashtags unseen during training and all the hashtags on the open vocabulary dataset.

Results. The performance of all the models are summa-

rized in Table 1 and we make seven observations. First, the

user agnostic models ([A, B]) perform poorly for all metrics

with respect to the user-specific models as already shown in

[12, 43]. It also demonstrates that the user history can be

used to extract good user representations. Second, the Ten-

sor (MCLL) model [43] has similar performance than the

user agnostic model because it cannot deal with user un-

seen during training. It is necessary to retrain [43] to deal

with new user. We also compare our model with [43] in

a transductive setting in a next paragraph. Third, we ob-

serve that the hashtag occurrences user representation [D]

is slightly better than the used hashtags user representation

[C]. The reason is that the [D] is richer than [C] because it

encodes user hashtag frequency. Fourth, modelling the tem-

poral information of the hashtags with a recurrent network

(our model with only hashtags) significantly improves per-

formance with respect to hashtag pooling strategy ([C, D]).

Fifth, using visual information improves the results because

it can exploit the correlations between the hashtags and the

visual content of the images. Sixth, we observe that the pre-

trained word embeddings are very important on imbalanced

data because it allows to transfer knowledge between hash-

tags. Finally, we observe the same behaviour on the closed

set and open set datasets, so our user representation model

can be used in both settings. Visual results are shown in

subsection A.4 of supplementary.

Results on unseen hashtags. We also evaluate the ability

of our model to generalize to predict unseen hashtags. In

the first experiment, named UNSEEN HASHTAGS, we only

evaluate the results of unseen hashtags (equivalent to ZSL

setting). In the second experiment, named ALL HASHTAGS,

we evaluate the performance for all the hashtags (similar to

GZSL setting). While the first experiment directly evaluates

the performance on unseen hashtags, the second experiment

is more realistic because the model has to predict hashtags

among both seen and unseen hashtags. The results of these

experiments are shown in Table 2 on the open vocabulary

dataset. We observe that our model is able to predict unseen

hashtags so our model is able to deal with new hashtags

without retraining the model. We draw the same conclu-

sions about the user representation that for seen hashtags

in Table 1: modeling the user is important for unseen tags,

MODEL A@1 A@10 P@10 R@1 R@10

[43] 35.92 63.07 11.51 15.91 37.79

Ours-FH 48.20 69.59 33.03 20.50 46.41

Ours 73.19 87.28 50.44 32.19 65.86

Table 3. Comparison with [43] on a fixed set of users. Ours-FH

means that our user representation is computed with on a fixed

history (training images).

and our user representation model has the best results be-

cause it models the temporal information and exploits the

visual content.

Comparison with state-of-the-art model [43] in a trans-

ductive setting. We compare our model with [43] on the

fixed vocabulary dataset with a transductive setting i.e. the

same set of users during both training and testing. The re-

sults are summarized in Table 3. We report the results of

our model with the user representation computed only on

the training images (fixed user history) and our model with

the user representation computed on all the previous im-

ages. We observe that our model is better than [43] because

[43] needs a lot of images to have good performance, and

cannot exploit the temporal information because each image

is processed independently during training. Another advan-

tage of our dynamic approach is that it can improve the user

representation by exploiting new images without retraining

the model.

4.2. Model analysis

In this section, we analyse important parameters of our

model: the dimension of the user representation and im-

portance of the image-hashtags fusion. The impact of the

image history size to extract the user representation is ana-

lyzed in the supplementary (subsection A.6).

User representation dimension. We first analyze the im-

portance of the user representation dimension, which is the

hidden state dimension of the GRU in our model. We show

in Figure 3 the R@10 and the computation time for a large

range of user dimension (32 to 8192). We observe that using

a large user representation is better than small user represen-

tation for all metrics. However, using a large user represen-
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Figure 3. Analysis of the user representation dimension with re-

spect to R@10. The width of the circle is proportional to the com-

putation time of the user representation. (x-axis log scale)

FUSION A@1 A@10 R@1 R@10

only hashtags 65.16 83.26 26.12 60.89

sum 65.29 83.21 26.19 60.75

concatenation 65.36 83.24 26.21 60.71

bilinear [5] 65.95 85.63 26.69 59.94

GLU [11] 66.02 85.77 26.73 60.28

TIRG [44] 63.97 81.94 25.10 59.35

eltwise product 67.28 86.27 27.18 62.88

Table 4. Analysis of the image-hashtags fusion operator.

tation is more time consuming and requires more memory

to store (the GRU becomes the bottleneck of the model).

We observe that 1024 is a good trade-off between accuracy

and computation time and we use this dimension for ours

experiments.

Image-hashtags fusion. Our second analysis is about the

combination of the image and hashtags branches in the user

representation model (Equation 4). In Table 4, we show the

results for several standard multi-modal fusion operators,

and our model with only the hashtags branch. We com-

pare standard fusion operators (element-wise sum, concate-

nation, element-wise product) and more complex operators

like bilinear (MUTAN) [5], GLU [11], and TIRG [44]. We

use ReLU for each model except for the element-wise prod-

uct model where we use SELU to avoid having a vector with

too many zeros (using a ReLU with the element-wise prod-

uct significantly drops the performances). We note that only

the element-wise product fusion improves significantly the

performance. We believe this is because the element-wise

product fusion forces the model to exploit both image and

hashtags representations. We observe that both bilinear and

GLU operators improve the performance but are not able

to efficiently exploit the visual representation. This experi-

ment also shows that the hashtags branch is more informa-

tive than the image branch. We note that our conclusions are

different from [44] which shows the best fusion depends on

USER REP. A@1 A@10 MR DIM

F
IX

E
D

[C] used 33.48 46.95 16 18,583

[D] occurence 33.64 46.94 17 18,583

Ours (tag) 42.95 58.47 3 1024

Ours (im+tag) 45.64 61.45 2 1024

O
P

E
N [E] sum tags 35.19 44.81 29 300

Ours (tag) 45.15 59.27 3 1024

Ours (im+tag) 47.90 61.56 2 1024

Table 5. User retrieval results. MR is the median rank (lower is

better) and dim is the user representation dimensionality.

the task. Finally, we want to point out that it is probably

possible to use/design better fusion strategies between the

user embedding and image embedding but it is out of the

scope of this work.

4.3. User retrieval

In this section, we analyze the discriminative power of

our user representation model. To achieve it, we consider

the user retrieval task: given a user representation, the goal

is to find a user representation of the same user computed

with non-overlapping image histories i.e. each image is used

only in one image history. We use users from the test set and

an image history size of 20. For instance, given a user, we

first use the first 20 images to compute a user representa-

tion, then we use the next 20 images to compute another

user representation of the same user. For this experiment,

we compute 33,648 user representations from 6,139 users.

The user representations are ℓ2 normalized and we use the

cosine similarity to rank the users. To evaluate the perfor-

mance, we use the Accuracy@k metric and the median rank

metric. The results in Table 5 show that our model is able to

extract accurate user representations from different image

history sizes. Note that our user representation model is not

trained for this task. About the user representation model,

we observe the same conclusions as for hashtag prediction.

Despite our user representation being 18 times smaller than

[C] and [D] (which are sparse vectors), we note that our

model improves the A@1 performance by 12 pt. On the

contrary [E] has a smaller dimension than our model, but

the representations are not discriminative enough.

5. Conclusion and Future Work

We introduced a new model for hashtag prediction that

can deal with new users and new hashtags without retraining

the model. This paper shows that the images and their corre-

sponding hashtags in the user history can be efficiently used

to extract a user representation. Our user representation can

be successfully used for user specific hashtag prediction and

user retrieval. Our user representation model could be ex-

tended to exploit user relationships or user metadata.
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