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Abstract

We present an approach for estimating the period with

which an action is repeated in a video. The crux of the ap-

proach lies in constraining the period prediction module to

use temporal self-similarity as an intermediate representa-

tion bottleneck that allows generalization to unseen repe-

titions in videos in the wild. We train this model, called

RepNet, with a synthetic dataset that is generated from a

large unlabeled video collection by sampling short clips of

varying lengths and repeating them with different periods

and counts. This combination of synthetic data and a pow-

erful yet constrained model, allows us to predict periods

in a class-agnostic fashion. Our model substantially ex-

ceeds the state of the art performance on existing period-

icity (PERTUBE) and repetition counting (QUVA) bench-

marks. We also collect a new challenging dataset called

Countix (∼90 times larger than existing datasets) which

captures the challenges of repetition counting in real-world

videos. Project webpage: https://sites.google.

com/view/repnet.

1. Introduction

Picture the most mundane of scenes – a person eating by

themselves in a cafe. They might be stirring sugar in their

coffee while chewing their food, and tapping their feet to

the background music. This person is doing at least three

periodic activities in parallel. Repeating actions and pro-

cesses are ubiquitous in our daily lives. These range from

organic cycles, such as heart beats and breathing, through

programming and manufacturing, to planetary cycles like

the day-night cycle and seasons. Thus the need for recog-

nizing repetitions in videos is pervasive, and a system that

is able to identify and count repetitions in video will benefit

any perceptual system that aims to observe and understand

our world for an extended period of time.

Repetitions are also interesting for the following reasons:

(1) there is usually an intent or a driving cause behind some-

thing happening multiple times; (2) the same event can be
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Figure 1: We present RepNet, which leverages a temporal self-

similarity matrix as an intermediate layer to predict the period

length and periodicity of each frame in the video.

observed again but with slight variations; (3) there may be

gradual changes in the scene as a result of these repetitions;

(4) they provide us with unambiguous action units, a sub-

sequence in the action that can be segmented in time (for

example if you are chopping an onion, the action unit is

the manipulation action that is repeated to produce addi-

tional slices). Due to the above reasons, any agent interact-

ing with the world would benefit greatly from such a sys-

tem. Furthermore, repetition counting is pertinent for many

computer vision applications; such as counting the number

of times an exercise was done, measurement of biological

events (like heartbeats), etc.

Yet research in periodic video understanding has been

limited, potentially due to the lack of a large scale labeled

video repetition dataset. In contrast, for action recognition

there are large scale datasets, like Kinetics [21], but their

collection at large scale is enabled by the availability of

keywords/text associated with the videos. Unfortunately it

is rare for videos to be labeled with annotations related to
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repeated activity as the text is more likely to describe the

semantic content. For this reason, we use a dataset with

semantic action labels typically used for action recogni-

tion (Kinetics) and manually choose videos of those classes

with periodic motion (bouncing, clapping etc.). We proceed

to label the selected videos with the number of repetitions

present in each clip.

Manual labelling limits the number of videos that can be

annotated – labelling is tedious and expensive due to the

temporally fine-grained nature of the task. In order to in-

crease the amount of training data, we propose a method

to create synthetic repetition videos by repeating clips from

existing videos with different periods. Since we are synthe-

sizing these videos, we also have precise annotations for the

period and count of repetitions in the videos, which can be

used for training models using supervised learning. How-

ever, as we find in our work, such synthetic videos fail to

capture all the nuances of real repeated videos and are prone

to over-fitting by high-capacity deep learning models. To

address this issue, we propose a data augmentation strategy

for synthetic videos so that models trained on them transfer

to real videos with repetitions. We use a combination of real

and synthetic data to develop our model.

In this paper, our objective is a single model that works

for many classes of periodic videos, and indeed, also for

classes of videos unseen during training. We achieve this by

using an intermediate representation that encourages gener-

alization to unseen classes. This representation – a tempo-

ral self-similarity matrix – is used to predict the period with

which an action is repeating in the video. This common

representation is used across different kinds of repeating

videos enabling the desired generalization. For example,

whether a person is doing push ups, or a kid is swinging in

a playground, the self-similarity matrix is the shared param-

eterization from which the number of repetitions is inferred.

This extreme bottleneck (the number of channels in the fea-

ture map reduces from 512 to 1) also aids generalization

from synthetic data to real data. The other advantage of this

representation is that model interpretability is baked into the

network architecture as we force the network to predict the

period from the self-similarity matrix only, as opposed to

inferring the period from latent high-dimensional features.

We focus on two tasks: (i) Repetition counting, identi-

fying the number of repeats in the video. We rephrase this

problem as first estimating per frame period lengths, and

then converting them to a repetition count; (ii) Periodicity

detection, identifying if the current frame is a part of a re-

peating temporal pattern or not. We approach this as a per-

frame binary classification problem. A visual explanation

of these tasks and the overview of our solution is shown in

Figure 1.

Our main contributions in this paper are: (i) RepNet,

a neural network architecture designed for counting rep-

etitions in videos in the wild. (ii) A method to gener-

ate and augment synthetic repetition videos from unlabeled

videos. (iii) By training RepNet on the synthetic dataset

we outperform the state-of-the-art methods on both repeti-

tion counting and periodicity detection tasks over existing

benchmarks by a substantial margin. (iv) A new video rep-

etition counting dataset, Countix, which is ∼ 90 times larger

than the previous largest dataset.

2. Related Work

Periodicity Estimation. Extracting periodicity (detec-

tion of periodic motion) and the period by leveraging

the auto-correlation in time series is a well-studied prob-

lem [40, 45]. Period estimation in videos has been done us-

ing periodograms on top of auto-correlation [9] or Wavelet

transforms on hand-designed features derived from optical

flow [35]. The extracted periodic motion has supported

multiple tasks including 3D reconstruction [4, 27] and bird

species classification [26]. Periodicity has been used for

various applications [9, 30, 32, 36] including temporal pat-

tern classification [33].

Temporal Self-similarity Matrix (TSM). TSMs are useful

representations for human action recognition [20, 22, 41]

and gait analysis [5, 6] due to their robustness against large

viewpoint changes when paired with appropriate feature

representations. A TSM based on Improved Dense Trajec-

tories [46] is used in [31] for unsupervised identification

of periodic segments in videos using special filters. Unlike

these approaches, we use TSM as an intermediate layer in

an end-to-end neural network architecture, which acts as an

information bottleneck.

Synthetic Training Data. The use of synthetic training

data in computer vision is becoming more common place.

Pasting object patches on real images has been shown to be

effective as training data for object detection [12, 15, 42]

and human pose estimation [43]. Blending multiple videos

or multiple images together has been useful for produc-

ing synthetic training data for specific tasks [2] as well as

regularizing deep learning models [50, 51]. Synthetic data

for training repetition counting was first proposed by [25].

They introduce a dataset of synthetic repeating patterns and

use this to train a deep learning based counting model.

However, the data they use for training consists of hand-

designed random patterns that do not appear realistic. As

shown in [35], these patterns are not diverse enough to cap-

ture all the nuances of repetitions in real videos. Instead,

we propose to create synthetic training dataset of realistic

video repetitions from existing video datasets.

Counting in Computer Vision. Counting objects and peo-

ple in images [3, 7, 24, 28, 49] is an active area in computer

vision. On the other hand, video repetition counting [25, 35]

has attracted less attention from the community in the deep

learning era. We build on the idea of [25] of predicting the

period (cycle length), though [25] did not use a TSM.

Temporally Fine-grained Tasks. Repetition counting and

periodicity detection are temporally fine-grained tasks like

temporal action localization [8, 38], per-frame phase clas-
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Figure 2: RepNet architecture. The features produced by a single video frame is highlighted with the green color throughout the network.

sification [11] and future anticipation [10]. We leverage

the interfaces previously used to collect action localization

datasets such as [16, 23, 39] to create our repetition dataset

Countix. Instead of annotating semantic segments, we la-

bel the extent of the periodic segments in videos and the

number of repetitions in each segment.

3. RepNet Model

In this section we introduce our RepNet architecture,

which is composed of two learned components, the encoder

and the period predictor, with a temporal self-similarity

layer in between them.

Assume we are given a video V = [v1, v2, ..., vN ] as a

sequence of N frames. First we feed the video V to an im-

age encoder φ as X = φ(V ) to produce per-frame embed-

dings X = [x1, x2, ..., xN ]
|

. Then, using the embeddings

X we obtain the self-similarity matrix S by computing pair-

wise similarities Sij between all pairs of embeddings. Fi-

nally, S is fed to the period predictor module which out-

puts two elements for each frame: period length estimate

l = ψ(S) and periodicity score p = τ(S). The period

length is the rate at which a repetition is occurring while the

periodicity score indicates if the frame is within a periodic

portion of the video or not. The overall architecture can be

viewed in the Figure 1 and a more detailed version can be

seen in Figure 2.

3.1. Encoder

Our encoder φ is composed of three main components:

Convolutional feature extractor: We use ResNet-50[18]

architecture as our base convolutional neural network

(CNN) to extract 2D convolutional features from individual

frames vi of the input video. These frames are 112×112×3
in size. We use the output of conv4_block3 layer to have

a larger spatial 2D feature map. The resulting per-frame fea-

tures are of size 7× 7× 1024.

Temporal Context: We pass these convolutional features

through a layer of 3D convolutions to add local temporal

information to the per-frame features. We use 512 filters of

size 3 × 3 × 3 with ReLU activation. The temporal con-

text helps modeling short-term motion [13, 48] and enables

the model to distinguish between similar looking frames but

with different motion (e.g. hands moving up or down while

exercising).

(a) Jumping Jacks (b) Hammer Throw (c) Bouncing Ball (d) Mixing Concrete

Figure 3: Diversity of temporal self-similarity matrices found in

real-world repetition videos (yellow means high similarity, blue

means low similarity). (a) Uniformly repeated periodic motion

(jumping jacks) (b) Repetitions with acceleration (athlete per-

forming hammer throw) (c) Repetitions with decreasing period (a

bouncing ball losing speed due to repeated bounces) (d) Repeated

motion preceded and succeeded by no motion (waiting to mix

concrete, mixing concrete, stopped mixing). A complex model

is needed to predict the period and periodicity from such diverse

self-similarity matrices.

Dimensionality reduction: We reduce the dimensionality

of extracted spatio-temporal features by using Global 2D

Max-pooling over the spatial dimensions and to produce

embedding vectors xi corresponding to each frame vi in the

video. By collapsing the spatial dimensions we remove the

need for tracking the region of interest as done explicitly in

prior methods [6, 9, 33].

3.2. Temporal Self-similarity Matrix (TSM)

After obtaining latent embeddings xi for each frame vi,

we construct the self-similarity matrix S by computing all

pairwise similarities Sij = f(xi, xj) between pairs of em-

beddings xi and xj , where f(.) is the similarity function.

We use the negative of the squared euclidean distance as

the similarity function, f(a, b) = −||a − b||2, followed by

row-wise softmax operation.

As the TSM has only one channel, it acts as an informa-

tion bottleneck in the middle of our network and provides

regularization. TSMs also make the model temporally in-

terpretable which brings further insights to the predictions

made by the model. Some examples can be viewed in Fig-

ure 3.

3.3. Period Predictor

The final module of RepNet is the period predic-

tor. This module accepts the self-similarity matrix S =

10389



[s1, s2, ..., sN ]
|

where each row si is the per frame self-

similarity representation, and generates two outputs: per

frame period length estimation l = ψ(S), and per-frame

binary periodicity classification p = τ(S). Note that both

l and p are vectors and their elements are per frame predic-

tions (i.e. li is the predicted period length for the ith frame).

The architecture of the period predictor module can be

viewed in Figure 2. Note that predictors ψ and τ share a

common architecture and weights until the last classifica-

tion phase. The shared processing pipeline starts with 32
2D convolutional filters of size 3 × 3, followed by a trans-

former [44] layer which uses a multi-headed attention with

trainable positional embeddings in the form of a 64 length

variable that is learned by training. We use 4 heads with 512

dimensions in the transformer with each head being 128 di-

mensions in size. After the shared pipeline, we have two

classifiers, period length classifier ψ and periodicity classi-

fier τ . Each of them consists of two fully connected layers

of size 512.

3.4. Losses

Our periodicity classifier τ outputs per frame period-

icity classification pi and uses a binary classification loss

(binary cross-entropy) for optimization. Our period length

estimator ψ outputs per frame period length estimation

li ∈ L where the classes are discrete period lengths L =
{2, 3, ..., N

2
} where N is the number of input frames. We

use a multi-class classification objective (softmax cross-

entropy) for optimizing our model. For all our experiments

we use N = 64. We sample the input video with differ-

ent frame rates as described below to predict larger period

lengths.

3.5. Inference

Inferring the count of repetitions robustly for a given

video requires two main operations:

Count from period length predictions: We sample con-

secutive non-overlapping windows of N frames and provide

it as input to RepNet which outputs per-frame periodicity pi
and period lengths li. We define per-frame count as pi

li
. The

overall repetition count is computed as the sum of all per-

frame counts:
PN

i=1

pi

li
. The evaluation datasets for repeti-

tion counting have only periodic segments. Hence, we set

pi to 1 as default for counting experiments.

Multi-speed evaluation: As our model can predict period

lengths up to 32, for covering much longer period lengths

we sample input video with different frame rates. (i.e. we

play the video at 1×, 2×, 3×, and 4× speeds). We choose

the frame rate which has the highest score for the predicted

period. This is similar to what [25] do at test time.

4. Training with Synthetic Repetitions

A potential supervised approach to period estimation

would be collecting a large training set of periodic videos

Original
Video

random subsequence x 3keep preceding frames  keep succeeding frames  

No reversal

Repetition Videos

With
reversal

Figure 4: Our synthetic data generation pipeline that produces

videos with repetitions from any video. We randomly sample a

portion of a video that we repeat N times to produce synthetic

repeating videos. More details in Section 4

and annotating the beginning and the end of every period in

all repeating actions. However, collecting such a dataset is

expensive due to the fine-grained nature of the task.

As a cheaper and more scalable alternative, we propose

a training strategy that makes use of synthetically gener-

ated repetitions using unlabeled videos in the wild (e.g.

YouTube). We generate synthetic periodic videos using

randomly selected videos, and predict per frame periodic-

ity and period lengths. Next, we’ll explain how we gener-

ate synthetic repetitions, and introduce camera motion aug-

mentations which are crucial for training effective counting

models from synthetic videos.

4.1. Synthetic Repetition Videos

Given a large set of unlabeled videos, we propose a sim-

ple yet effective approach for creating synthetic repetition

videos (shown in Figure 4) from them. The advantage of

using real videos to create synthetic data is that the training

data is much closer to real repeated videos when compared

to using synthetic patterns. Another advantage of using real

videos is that using a big dataset like Kinetics ensures that

the diversity of data seen by the model is huge. This al-

lows us to train big complex models that can work on real

repetition videos.

Our pipeline starts with sampling a random video V from

a dataset of videos. We use the training set of Kinetics

[21] without any labels. Then, we sample a clip C of

random length P frames from V. This clip C is repeated K

times (where K > 1) to simulate videos with repetitions.

We randomly concatenate the reversed clip before repeat-

ing to simulate actions where the motion is done in reverse

in the period (like jumping jacks). Then, we pre-pend and

append the repeating frames with other non-repeating seg-

ments from V , which are just before and after C, respec-

tively. The lengths of these aperiodic segments are chosen

randomly and can potentially be zero too. This operation

makes sure that there are both periodic and non-periodic

segments in the generated video. Finally, each frame in the

repeating part of the generated video is assigned a period

length label P. A periodicity label is also generated indi-

cating whether the frame is inside or outside the repeating

portion of the generated video.
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Figure 5: Camera motion augmentation. We vary the augmen-

tation parameters for each type of camera motion smoothly over

time as opposed to randomly sampling them independently for

each frame. This ensures that the augmented sequence still retains

the temporal coherence naturally present in videos.

4.2. Camera Motion Augmentation

A crucial step in the synthetic video generation is cam-

era motion augmentation (shown in Figure 5). Although

it is not feasible to predict views of an arbitrarily moving

camera without knowing the 3D structure, occluded parts

and lighting sources in the scene, we can approximate it

using affine image transformations. Here we consider the

affine motion of a viewing frame over the video, which in-

cludes temporally smooth changes in rotation, translation,

and scale. As we will show in section 6, when we train with-

out these augmentations, the training loss quickly decreases

but the model does not transfer to real repetition videos. We

empirically find camera motion augmentation is a vital part

of training effective models with synthetic videos.

To achieve camera motion augmentations, we temporally

vary the parameters for various motion types in a continu-

ous manner as the video proceeds. For example, we change

the angle of rotation smoothly over time. This ensures that

the video is temporally coherent even after the augmenta-

tion. Figure 5 illustrates how temporal augmentation pa-

rameter drives viewing frame (shown in blue rectangle) for

each motion type. This results in videos with fewer near

duplicates across the repeating segments.

5. Countix Dataset

Existing datasets for video repetition counting [25, 35]

are mostly utilized for testing purposes, mainly due to their

limited size. The most recent and challenging benchmark

on this task is the QUVA repetition dataset [35] which in-

cludes realistic repetition videos with occlusion, camera

movement, and changes in speed of the repeated actions.

It is composed of 100 class-agnostic test videos, annotated

with the count of repeated actions. Despite being challeng-

ing, its limited size makes it hard to cover diverse seman-

tic categories of repetitions. Also training supervised deep

models with this scale of data is not feasible.

To increase the semantic diversity and scale up the size of

counting datasets, we introduce the Countix dataset: a real

world dataset of repetition videos collected in the wild (i.e.

YouTube) covering a wide range of semantic settings with

significant challenges such as camera and object motion, di-

verse set of periods and counts, and changes in the speed of

repeated actions. Countix include repeated videos of work-

out activities (squats, pull ups, battle rope training, exercis-

ing arm), dance moves (pirouetting, pumping fist), playing

instruments (playing ukulele), using tools repeatedly (ham-

mer hitting objects, chainsaw cutting wood, slicing onion),

artistic performances (hula hooping, juggling soccer ball),

sports (playing ping pong and tennis) and many others. Fig-

ure 6 illustrates some examples from the dataset as well as

the distribution of repetition counts and period lengths.

Dataset Collection: The Countix dataset is a subset of

the Kinetics [21] dataset annotated with segments of re-

peated actions and corresponding counts. During collection

we first manually choose a subset of classes from Kinet-

ics which have a higher chance of repetitions happening in

them for e.g. jumping jacks, slicing onion etc., rather than

classes like head stand or alligator wrestling. We crowd-

source the labels for repetition segments and counts for the

selected classes. The interface used is similar to what is typ-

ically used to mark out temporal segments for fine-grained

action recognition[16, 34]. The annotators are asked to first

segment the part of the video that contains valid repetitions

with unambiguous counts. The annotators then proceed to

count the number of repetitions in each segment. This count

serves as the label for the entire clip. We reject segments

with insignificant overlap in the temporal extents marked

out by 3 different annotators. For the remaining segments,

we use the median of the count annotations and segment ex-

tents as the ground truth. The Countix dataset is about 90

times bigger than the previous largest repetition counting

dataset (QUVA Repetition Dataset). The detailed statistics

can be viewed in Table 1. The dataset is available on the

project webpage.

Note that we retain the train/val/test splits from the Ki-

netics dataset. Hence, models pre-trained with Kinetics

may be used for training counting models without data leak-

age.

QUVA Countix

No. of Videos in Train set 0 4588

No. of Videos in Val. set 0 1450

No. of Videos in Test set 100 2719

Duration Avg. ± Std (s) 17.6 ± 13.3 6.13 ± 3.08

Duration Min./Max. (s) 2.5 / 64.2 0.2 / 10.0

Count Avg ± Std 12.5 ± 10.4 6.84 ± 6.76

Count Min./Max. 4 / 63 2 / 73

Table 1: Statistics of Countix and QUVA Repetition datasets.
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Figure 6: Countix dataset. In the left two columns, we present examples of repeating videos from the Countix dataset. The last column

shows the distribution of the number of the videos in the dataset with respect to the count and the period length labels.

6. Experiments

We start by explaining the existing benchmarks and the

evaluation metrics used in repetition counting. We next

present a series of ablation studies that demonstrate which

components and design choices are crucial. Then we com-

pare our performance on the existing benchmarks and show

that RepNet clearly outperforms the state-of-the-art meth-

ods on repetition counting and periodicity detection. Fi-

nally, through qualitative analysis, we bring more insight

into our model.

6.1. Benchmarks and Evaluation Metrics

Here we discuss two established benchmark datasets for

periodicity detection and repetition counting together with

the commonly used evaluation metrics.

Periodicity detection: The benchmark dataset for this task

is the PERTUBE dataset [31], which has per frame labels

identifying periodicity, if the frame is a part of a repeating

action or not. [31] casts the problem as a binary per frame

classification task and reports precision, recall, F1 score and

overlap. We follow the same metrics for evaluation.

Repetition counting: As discussed in Section 5, the QUVA

dataset [35] is the largest available dataset for repetition

counting. The existing literature uses two main metrics for

evaluating repetition counting in videos:

Off-By-One (OBO) count error. If the predicted count is

within one count of the ground truth value, then the video is

considered to be classified correctly, otherwise it is a mis-

classification. The OBO error is the mis-classification rate

over the entire dataset.

Mean Absolute Error (MAE) of count. This metric mea-

sures the absolute difference between the ground truth count

and the predicted count, and then normalizes it by dividing

with the ground truth count. The reported MAE error is the

mean of the normalized absolute differences over the entire

dataset.

Both in our ablation experiments and state-of-the-art

comparisons we follow [25, 35] and report OBO and MAE

errors over the QUVA and Countix validation set. We also

provide a final score on the Countix test set in Table 7.

6.2. Implementation Details

We implement our method in Tensorflow [1]. We initial-

ize the encoder with weights from an ImageNet pre-trained

ResNet-50 checkpoint. We train the model for 400K steps

with a learning rate of 6× 10−6 with the ADAM optimizer

and batch size of 5 videos (each with 64 frames). For all

ablation studies we train the model on the synthetic repe-

tition data unless otherwise stated. Additional details are

provided on the project webpage.

6.3. Ablations

We perform a number of ablations to justify the decisions

made while designing RepNet.

Temporal Self-similarity Matrix (TSM): In Table 2 we

compare the impact of adding the TSM to the model. Mod-

els without the TSM apply the transformer directly on the

per-frame embeddings produced by the encoder. The tem-

poral self-similarity matrix substantially improves perfor-

mance on all metrics and validation datasets whether we

train the model using synthetic repetition videos, real Coun-

tix videos or a mix of both. Moreover, the TSM layer

helps in generalizing to real repetition videos even when

the model has only seen synthetic repetition videos (rows 1

and 2 in Table 2).

Training Data Source: We vary the training data sources

in Table 2 while comparing our synthetic repetition videos

with real ones from the Countix dataset. We find that Rep-

Net achieves similar performance on the Countix dataset

when trained with synthetic videos or with the real repeti-

tion videos of the Countix dataset. But the model trained on

Countix dataset is worse on the QUVA dataset compared to

training on synthetic repeating videos. This shows using a

synthetic repeating dataset results in a model that performs

competitively on unseen classes as well. The best perfor-

mance in terms of OBO error is achieved when the model is

trained with both the datasets.

Alternative Period Prediction Architectures: In Table 3,
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we compare the transformer architecture with other contem-

porary sequence models like LSTM and Temporal CNNs.

We also compare it with a model that uses a 2D CNN on

the self-similarity matrix itself. We find that the transformer

architecture performs better than these alternatives.

Camera Motion Augmentation: In Table 4 we show the

value of camera motion augmentation when using the syn-

thetic repeating dataset. We observe that performance on

both datasets improves when the fraction of samples in the

batch with camera motion augmentation is increased.

QUVA Countix (Val)

TSM Training Data Source MAE OBO MAE OBO

Synthetic 1.2853 0.64 1.1671 0.5510

X Synthetic 0.1035 0.17 0.3100 0.2903

Countix 0.7584 0.72 0.6483 0.5448

X Countix 0.3225 0.34 0.3468 0.2949

Synthetic + Countix 0.6388 0.57 0.8889 0.4848

X Synthetic + Countix 0.1315 0.15 0.3280 0.2752

Table 2: Ablation of architecture with or without the temporal

self-similarity matrix (TSM) with different training data sources.

QUVA Countix (Val)

Architecture MAE OBO MAE OBO

Transformer 0.1035 0.17 0.3100 0.2903

LSTM [19] 0.1395 0.18 0.6895 0.3579

2D CNN 0.1186 0.17 0.4440 0.3310

1D Temporal CNN 0.3229 0.23 0.7077 0.3641

Table 3: Performance of different period prediction architectures

when trained with synthetic data.

QUVA Countix (Val)

Augmentation Fraction MAE OBO MAE OBO

0.00 0.7178 0.32 1.2629 0.4683

0.25 0.1414 0.17 0.4430 0.3303

0.50 0.1202 0.15 0.3729 0.2993

0.75 0.1035 0.17 0.3100 0.2903

1.00 0.1710 0.17 0.3346 0.2848

Table 4: Impact of camera motion augmentation when trained

with synthetic data.

6.4. Evaluation on Benchmarks

We compare our system with the current state-of-the-art

methods on periodicity detection and repetition counting on

the established benchmarks described in Section 6.1.

Periodicity Detection. We report the performance for mea-

suring periodicity classification by choosing the threshold

that maximizes the F1 score. As done in [31] we calculate

the metrics on a per video basis and average the scores. We

also report Area Under the Curve (AUC) of the precision-

recall curve which is independent of the threshold chosen.

Our model produces an AUC of 0.969. We outperform

the previous work without using any hand-designed filter-

ing methods mentioned in [31] (see Table 5). Our model

trained entirely on synthetic data works out of the box for

the task of periodicity detection in real videos.

Figure 7: 1D PCA projections of the encoder features over

time. Note that even 1D projections of the learned features are

encoding the periodicity fairly well. Frames with similar embed-

dings across different periods show similar states in the video (an-

gle of rotation of biker, position of legs of person and position of

knife). Best viewed with zoom. Video version on webpage.

Repetition Counting. In Table 6 we compare our RepNet

model with previous models and show it outperforms ex-

isting methods by a significant margin and therefore estab-

lishing a new state-of-the-art for this dataset. Experimental

results on the test set of Countix dataset indicate that Rep-

Net is an effective baseline for the video repetition counting

task (see Table 7).

Model Recall Precision F1 Overlap

Power spectrum baseline [31] 0.793 0.611 0.668 0.573

P-MUCOS [31] 0.841 0.757 0.77 0.677

RepNet (Ours) 0.859 0.821 0.820 0.731

Table 5: Periodicity detection results on the PERTUBE Dataset

Model MAE OBO

Visual quasi-periodicity [33] 0.385 0.51

Live Repetition Counting [25] 0.482 0.55

Div-Grad-Curl [35] 0.232 0.38

RepNet (Ours) 0.104 0.17

Table 6: Counting Results on the QUVA dataset.

Model MAE OBO

RepNet 0.3641 0.3034

Table 7: Counting Results on the Countix test set.

6.5. Qualitative analysis

Temporal Self-similarity Matrix. TSM provides us with

meaningful interpretations about the model’s predictions. It

also contains additional information regarding acceleration

and deceleration of the action. We show some examples of

self-similarity matrices in Figure 3.

1D PCA Embeddings. We also investigate the learned em-

beddings which are used to produce the TSM. In Figure 7,

we project the 512 dimensional vector to 1 dimension using
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Red: Ground Truth Periodicity
Blue: Model’s Predictions

Repetition Counting Speed Change Detection Cross-Period RetrievalChange Inspection

Inspecting ends of each 
period reveals changes due 

to the repeating action.

RepNet assigns the above frames as ends of the 
periods.  Number of cut pieces increases after 

each period (shown in red).

1D PCA of embeddings over time 
shows acceleration of an action.

Difference of consecutive 
period predictions encodes 

change in speed.

Learned embeddings encode fine-grained differences while 
still identifying similarities across different periods.

Use period predictions to 
count the number of 

repetitions.

Slow Fast

Periodicity Detection

The periodicity detector 
predicts if the frame is 

repeating or not.

Pe
ri

od
ic

it
y 

Sc
or

e

Frame Index

For each row the first column shows query frames, followed by top-1 
nearest-neighbor from other periods (in latent space). In row 1, all the 

retrieved frames show kid close to camera in spite of appearance changes.

For each frame, our model outputs 
the count and repetition rate of the 

bird’s flapping.

Count: 14, Rate: 2 reps/s

Figure 8: One model, many domains and applications. A single model is capable of performing these tasks over videos from many

diverse domains (animal movement, physics experiments, humans manipulating objects, people exercising, child swinging) in a class-

agnostic manner. Please see the project webpage for videos showcasing these tasks.

the first principal component of the per-frame embeddings

for each video. This reveals interesting quasi-sinusoidal

patterns traced out by the embeddings in time. We plot the

frames when the embeddings are changing directions and

observe that the retrieved frames show the person or object

in a similar state but in different periods.

Double Counting Errors. We observe that a common fail-

ure mode of our model is that for some actions (e.g. jug-

gling soccer ball), it predicts half the count reported by an-

notators. This happens when the model considers left and

right legs’ motion for counting while people tend to con-

sider the ball’s up/down motion resulting in people double

counting the repetitions. We believe such errors are difficult

to isolate in a class-agnostic manner. But they can be fixed

easily with either labeled data or post-processing methods

if the application is known.

7. Applications

Predict speed changes of repetitions. Our method takes in

a video clip and predicts the period of any repeated action.

The consecutive difference of predicted rates encodes the

rate of speed change of the repetitions. Monitoring speed

changes is useful for exercise tracking applications where it

might be important to know if someone is speeding up or

slowing down (Column 4 in Figure 8).

Estimating frequency of processes from videos. Our

model can be used to predict the count and frequency of

repeating phenomena from videos for e.g. biological pro-

cesses (heartbeats). [47] presented a method to reveal sub-

tle changes by magnifying the difference in frames. We find

that the output from the above system can be fed directly

into our model to predict the frequency of these changes. A

class-agnostic period estimator removes the need to explic-

itly train on these videos. On our project webpage, we show

examples of repetition counting on echo-cardiogram videos

which look very different from Kinetics videos .

Fine-grained cross-period retrieval. The learned embed-

dings are useful for performing cross-period retrieval. In

other words, the features capture similarities present across

different periods while still encoding subtle differences be-

tween similar looking frames. Examples of these retrievals

are shown in Figure 7 and the last column in Figure 8.

Repetitions with longer temporal extent. Many repeating

phenomena occur over a longer temporal scale (in the order

of days or years). Even though our model has been trained

on short videos (∼10s), it can still work on videos with

slow periodic events by automatically choosing a higher in-

put frame stride. On the project webpage, we show videos

where RepNet predicts the period length of a day from

videos of the earth captured by satellites.

Aid self-supervised video representation learning. Self-

supervised learning methods for video embeddings, e.g.

Shuffle and Learn [29], Odd-One-Out networks [14],

DPC [17], TCC [11] and TCN [37] are not designed to

handle repetitions in sequences. RepNet can identify the

repeating sections and may help in training on videos with

repetitions without modifying the proposed objectives.

8. Conclusion

We have shown a simple combination of synthetic train-

ing data, together with an architecture using temporal self-

similarity, results in a powerful class-agnostic repetition

counting model. This model successfully detects periodic-

ity and predicts counts over a diverse set of actors (objects,

humans, animals, the earth) and sensors (standard camera,

ultrasound, laser microscope) and has been evaluated on a

vast collection of videos. With this we have addressed the

case of simple repetitions, and the next step is to consider

more complex cases such as multiple simultaneous repeat-

ing signals and temporal arrangements of repeating sections

such as in dance steps and music.
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