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University of California, Merced.

mcarreira-perpinan@ucmerced.edu

Abstract

Despite the success of deep neural networks (DNNs),

state-of-the-art models are too large to deploy on low-

resource devices or common server configurations in which

multiple models are held in memory. Model compression

methods address this limitation by reducing the memory

footprint, latency, or energy consumption of a model with

minimal impact on accuracy. We focus on the task of reduc-

ing the number of learnable variables in the model.

In this work we combine ideas from weight hashing and

dimensionality reductions resulting in a simple and power-

ful structured multi-hashing method based on matrix prod-

ucts that allows direct control of model size of any deep

network and is trained end-to-end.

We demonstrate the strength of our approach by com-

pressing models from the ResNet, EfficientNet, and Mo-

bileNet architecture families. Our method allows us to dras-

tically decrease the number of variables while maintaining

high accuracy. For instance, by applying our approach to

EfficentNet-B4 (16M parameters) we reduce it to the size

of B0 (5M parameters), while gaining over 3% in accuracy

over B0 baseline.

On the commonly used benchmark CIFAR10 we reduce

the ResNet32 model by 75% with no loss in quality, and are

able to do a 10x compression while still achieving above

90% accuracy.
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1. Introduction

The main factor driving the success of machine learn-

ing in recent years is the ability to build and train increas-

ingly larger Deep Neural Networks (DNNs). This has been

enabled by a combination of algorithmic advances such as

ReLU activations [15, 34], Batch Normalization [23], and

residual connections [17]; large training datasets [8]; and

faster, specialized, hardware [25].

Overwhelmingly, when given enough data, larger mod-

els show improvements in accuracy. However, this march

upwards comes with a cost in terms of latency, energy, and

memory consumption. For example, the popular Resnet-

101 model [17] has 44 Million parameters and requires

150MB of storage; AmoebaNet-A [39] requires 469M pa-

rameters and 1800MB. The size of DNNs limits their de-

ployment in devices with low resources such as mobile

phones and wearables. On server side, multi-tenancy – the

practice of serving multiple models from the same hardware

accelerator – is also affected by the model size. Further-

more, during inference, layers deeper in the network can be

heavily affected by the cost of loading the weights.

From a scientific perspective, these models have many

more parameters than the number of data points in the

datasets they are trained on. This seems counter-intuitive as

it seems to contradict learning-theory (e.g. VC dimension

properties [45]), but has been widely recognized as critical

property of DNNs [2, 10, 1]. One wonders: Do the pa-

rameters of a network live in a lower dimensional space?

Can we restrict the model class in a way that models in it

can be represented efficiently (e.g. have low Kolmogorov

Complexity) without sacrificing accuracy? Can we find an

intrinsic connection between the number of parameters of a

model to its performance [29]?

Note that low dimensionality assumptions are core in

many CNN components. For example, convolutions are low

dimensional linear maps and separable convolutions (i.e.

depthwise followed by 1×1 convolutions) are based on de-
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composition restrictions. However, making strong assump-

tions about individual elements in the model can be overly

restrictive.

There is considerable interest in the machine learning

community in making models cheaper: Reducing their size,

either in number of parameters or as bytes on disk; lower-

ing their latency; or reducing their memory and energy con-

sumption during inference. Here we refer to these methods

as model compression.

We can partition the model compression field into sev-

eral types of techniques: architectural modifications, such

as width multiplier, a move to separable convolutions, or

filter number optimization [28, 14]; Neuron pruning, either

during or after training; disk size compression [36]; weight

quantization [11]; and hashing [47, 42]. These approaches

are in many ways complementary and have been used to-

gether [16]. In practice, hashing methods induce identity

constraints between model weight that are mapped to the

same variables. In addition, they lack memory locality

which makes them slow and increases their RAM footprint.

This has limited their adoption.

We present a new hashing approach for reducing the

number of trainable variables in a model. We consider all

weights in the DNN as if they are tiled into a single, large,

matrix and represent it as a sum of products of multiple

hashes, computed as matrix product. This defines a multi-

hash from model weights into sets of trainable variables in

which full collisions are exponentially rare, and are replaced

by higher order correlations between weights. Using this

representation, we then train the reduced model end to end.

We call this Structured Multi-Hashing (SMH). SMH has

a specific locality pattern which reduces cache misses and

increases the efficiency of the compressed model. This rep-

resentation is unique: it is not a linear subspace nor does

it assume that any specific operation in the network is low

rank. Furthermore, by re-parameterizing hashing as a ma-

trix product, the implementation becomes both simple and

fast. It has little overhead in training or inference and re-

sults in much faster models compared to hashed models. We

demonstrate the efficacy of SMH by applying it to state-of-

the-art image classification models and drastically reducing

their number of variables.

2. Related Work

Numerous efforts have been made on model compres-

sion, here we give a brief overview of different approaches.

Hashing The seminal work of Weinberger et al. [47, 42]

showed how useful hashing is in the context of linear clas-

sifiers. The work builds upon the kernel-trick and is de-

signed to allow more efficient training and inference when

the number of features and labels is huge.

Chen et al. [5] extended this idea to the context of deep

networks introducing HashNets. Each layer in the network

is independently hashed into a smaller set of variables.

Reagen et al. [38] use Bloomier filters [4] in order to in-

dex the weights. This work takes a post-training/pruning

approach, the filters are not trained from scratch, and fine-

tuning is needed to achieve good performance. Similarly,

Locality Sensitive Hashing has been used in [43] to main-

tain smaller weight pool.

Pruning is the process of removing unnecessary

weights [28, 32] or entire neurons/filters [31, 50, 14]

of the trained neural networks with the goal of main-

taining as close as possible performance to the unpruned

version. This can be achieved by penalizing the model

with sparsifying norms [14, 31, 3] or by ranking the

weights/neurons [28], in one or multiple iterations.

Weight Quantization Model quantization works by ad-

justing parameter values to lower precision [11, 33, 48, 24]

or even binary weights [7, 51]. This has the desired effect

of drastically reducing the size, and can be efficiently com-

bined with pruning [16, 6] to get even higher compression

ratios.

Decomposition We can largely identify pure low-rank

methods [9, 10, 49] that apply matrix decomposition to fully

connected and suitably reshaped convolutional weight ma-

trices, and its generalization — tensor decomposition of

layers [35, 27, 12, 46]. The ranks of the decompositions

can be learned too [30, 49, 22].

Architecture Design A separate line of research is build-

ing compact models and training them from scratch [21, 20,

44], rather than compressing overparametrized ones. This

is intrinsically manual process, and reinforcement learning

methods are used to automate this task [18].

3. Method

Our method is based on a hashing scheme applied to the

original variables of the model. It is inspired by Chen et

al. [5] but rather than having a many-to-one mapping be-

tween weights and trainable variables, we use a many-to-

many mapping. This exponentially reduces the probabil-

ity of a full collision in the hash. Further, our approach

maintains memory locality and so can be implemented effi-

ciently, without latency overhead during inference.

Note that normally there is a 1-to-1 correspondence be-

tween the set of weight tensors of a model, and its set of

trainable variables. In fact the names weights and variables

are often used interchangeably. However, when considering

model compression, specifically a hashing based approach,

one needs to be clear about this distinction. Here we refer

to weights as the tensor values in convolution kernels, fully

connected layers, biases and so on. We call variables the

set of trainable elements into which weights get hashed.
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We denote by wl the weight tensor of layer l, and the

elements of wl as [i1, . . . , ik] for a rank k tensor (e.g. k = 4
for 2D convolutions, k = 2 for fully connected layers).

For simplicity of notations, we will use wl[i] to cover

both kernel-weights and biases. We define W = {wl}L
l=1

the set of all weights of a network, and |W | is the total num-

ber of weights of the model. These weights are essentially

the set of all tensors which we set out to compress: convo-

lution kernels, fully connected weight matrices, and biases,

with the exception of the scale and bias parameters of batch-

normalization[23], as these parameters can be absorbed into

the next operation during inference.

Here we should note that while it is common to hash or

quantize weights after training, we consider the use case of

hashing weights into variables while the model is training.

This allows the values of the hashing variables to be learned

using back propagation.

Simple-hashing A simple hashing scheme is based on an

underlying set of S variables, which we call a variable pool

and denote by V .

The hashing is defined by a function h:

h : [l, il] → S

where l takes values from 1 to L - the number of layers in

the network, and il are indices into wl.

The hash h induces a mapping between model weights

and variable: wl[i] = V[h(l, i)].
The simple-hashing is similar to the one proposed in [5],

with the difference that it does not have random signs, and

it operates on all the variables in the network (compared to

their per layer approach). This simple-hashing scheme is

shown in Figure 1a and can be thought of training a net-

work with a variable sharing pattern induced by the colli-

sions of h. The number of collisions is equal to the number

of weights reduced by the hashing scheme and when com-

pression is not trivial, there is a large number of constraints.

This could pose a problem if, for instance, a certain layer

needs its weights to be of large magnitude, while another

layer requires small values. When optimizing the model, an

unfortunate compromise would arise.

To overcome these hard collisions, we propose a multi-

hashing scheme shown in Figure 1b that induces a different

set of constraints on the network in which the collisions in-

duce softer, smoother, non-linear constraints.

Multi-hashing An M -hashing 1 is defined with a set of

M hash functions {hm}M1 and M variable pools {Vm}M1 ,

and a reducer function φ : R
M → R.

1To clarify, we use the term multi-hash differently than commonly used

in computer science theory - We employ our multi-hashes in parallel to

each weight index il to produce a set of variables, and then combine them

using the reducer function and produce a value to be placed in w
l[i].

These define the following mapping between model

weights and variables:

wl[i] = φ(V1[h1(l, i)], . . . ,VM [hM (l, i)])

The choice of the reduction function is an important

component in the multi-hashing scheme. The sum function

is an example of a simple reducing function:

φ(x1, ...xM ) =

M
∑

m=1

xm (1)

other functions such as the product can also be considered.

3.1. Structured Multi­Hashing

Instead, we use multi-hashing to partition the variables

into groups which share some dependency structure. Com-

mon hash functions would create random partitioning, but

this loses a property which could be important for our use

case: memory locality. Neighboring weights in the network

can be mapped to arbitrary variables in the pool and so a

layer l potentially needs to access all the variable pools to

compute its output.

Specifically, when we consider an implementation where

we do not unpack the hashing offline, but compute the val-

ues of the weight tensors on the fly, then the cost of fetching

all the variable pools could be significant. We propose the

notion of structured hashing which will increase the mem-

ory locality.

We define 2M sum-product reducer as:

φ∑∏(x1, ...x2M ) =

M
∑

m=1

x2m−1x2m (2)

Combined with a carefully chosen hashing scheme, this re-

ducer will maintain memory locality and is efficient during

inference.

First we re-parameterize the way we refer to the weights.

Let N = |W | be the number of total weights in the network.

Rather than wl[i] we think of all the weights of a model

as if coming from a single square matrix of dimension n,

where n = ⌈
√
N⌉. The mapping between the weights and

the elements of the matrix is trivially achieved by tiling the

weights in the order of their creation:

wl[i] = M̂ [ri, ci] (3)

where ri and ci are row and column indices determined by

i. This mapping is illustrated in Figure 2.

The core idea of our structured hashing approach is to

encode the locality of weights using matrix operations. A

multi-hashing scheme determines how we represent MW .

We define a 2M Matrix-Product Multi-Hashing:

M̂ = [V1;V2; . . .VM ]t[VM+1;VM+2; . . .V2M ] (4)
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(a)

 

(b)

Figure 1: (a) Model compression using hashing. Each value in the set of weight tensors in the model (blue cubes) is mapped

into a single variable in the set of trainable variables. When strong compression is desired, many weight values are mapped

into the same variable, creating equality constraints in the network. (b) Model compression using multi-hashing. Each value

in the set of weight tensors in the model (blue cubes) is mapped into a number of trainable variables, each mapping using a

different hash function. The probability of two weights being mapped to the same set diminishes exponentially.

Figure 2: We conceptually represent the full set of weights

of a deep model as a single, square, matrix. In this matrix

wl[i] is mapped to some coordinates MW [r, k]. We then

apply structured multi-hash to represent this matrix using a

sum-product of smaller matrices.

Where Vi are column vectors of size n. Note that the re-

parameterization defined in Eq. (3) combined with the de-

composition into hash functions in Eq. (4) implements a

2M multi-hash with a sum-product reducer in a way that

is memory efficient.

Note that our approach computes a low rank approxima-

tion of the weight matrix of the entire model. However, this

does not assume that any specific layer is low rank nor does

it enforce it.

3.2. Selecting the Number of Hashes

The size of the Matrix-Product Multi-Hash, i.e. the num-

ber of trainable variables it creates is 2Mn. This is deter-

mined by the size of the hash vectors V and the number of

hashes. These define the size of the matrices in Eq. (4) —

n × M and M × n. We can hash the model into any tar-

get size T (up to rounding errors in the order of
√
N ) by

setting M = ⌈T/2n⌉.

3.3. Scaling and Initialization

Correctly initializing the weights of a deep network is

often important for it to train well. As such this is an ac-

tive area of research and there is a plethora of initialization

methods available to practitioners, and each model archi-

tecture is paired with an initialization scheme that fits it.

For our multi-hash compression method, to match the per-

formance of the uncompressed model, we would want the

weights to be initialized using a matching distribution. Note

however that a single weight value in our method is the sum-

of-products of 2M variables. For a target distribution D one

can define 2M distributions dm such that the distribution of

their sum-product is equals D. Specifically, for the com-

monly used Gaussian distribution the sum part is trivial as

the Gaussian family is closed to additions. However, al-

though well defined, a distribution where its product is a

Gaussian is hard to sample from [37]. Instead, we focus on

matching two properties of D: its range, and scale. Note

that the common practice in deep models is to use the same

family of distributions in all layers, but with an appropri-

ately selected per-layer-scale. We follow that practice here.

Range Initialization schemes can be categorized into two

types: unbounded distributions (e.g. Normal), and bounded

ones (e.g. uniform, truncated normal). When initializing

variables in the pool we match the range property.

Scale The challenge with the scale is that different layers

can be initialized to different scales. This happens for in-

stance with Glorot [13] initialization where the standard de-

viation is a function of the fan-in and fan-out of the layer. In

this setting, it is impossible to initialize the hash variables
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such that all layers simultaneously have the desired scale.

We solve this by first initializing variables so std(wl) = 1,

and then we re-scale each layer to match the target scale sl.
For the sum-product reducer we standardize the resulting

weights by setting the standard deviation σ or the underly-

ing variables according to:

std(wl) = std

(

M
∑

m=1

x2m−1x2m

)

=

√

√

√

√

M
∑

m=1

var(x2m−1)var(x2m)

=
√
Mσ4

Setting σ = M−
1

4 creates weights with unit standard devia-

tion. Then, multiplying by sl allows us to effectively control

the scale of each layer.

3.4. Per­Layer Learnable Scale

While our multi-hash technique removes equality con-

straints, there are still dependencies between weights as

they share some of the variables used in their sum-products.

Consider two layers l and l′, it could be hard for the network

to learn different scales for wl and wl
′

due to sharing of

the underlying variables. The per-layer scaling mentioned

above addresses this problem at initialization, but layers ini-

tialized with the same scale are bound to keep similar scales

while training. We allow the per-layer scale to be a learn-

able variable, which provides the network with another de-

gree of freedom to address this issue. Our experiments in

Sec 4.6 show that this small set of extra variables (one per

layer) are always helpful, and result in 0.5%−1% improve-

ment in accuracy.

4. Results

In this section, we evaluate our method on three model

families: ResNets, EfficientNets, and MobileNets. We

show that SMH compression can drastically reduce model

size with minimal loss in quality. In fact, when compressing

large models, we often outperform comparably sized mod-

els from the same family.

4.1. ResNet Models

ResNet architectures [17] are versatile and so are used

in many applications. They are also popular as bench-

mark models. There are two main procedures used to make

ResNet models cheaper: Changing the number of layers

(e.g. ResNet101, ResNet50, ResNet18) and changing the

number of filters, usually done with uniform scaling and is

commonly known as width multiplier.

Figure 3 shows our structured multi-hashing compres-

sion on ResNet50 and ResNet101. Each point on the curve
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ResNet101: Structured Multi Hashing

ResNet101: Width Multiplier

ResNet50: Structured Multi Hashing

ResNet50: Width Multiplier

Figure 3: Accuracy vs Model Size with ResNet based mod-

els on Imagenet. We compare SMH to shrinking using

Width Multiplier on ResNet50 and ResNet101. For both

model types, SMH finds better tradeoffs between size and

accuracy.

is one model trained to convergence to a specific target size.

We compare with shrinking each one of the models using

width multiplier. Note that SMH compresses the model

more efficiently. For example, for an accuracy of 70% SMH

models are half the size of the width multiplier models.

4.2. EfficientNet Models

The family of EfficientNet models [44] provides a natu-

ral and strong baseline for comparison. Using a large scale

study of model hyper-parameters that affect size and la-

tency, they propose a model scaling formula. By applying

this formula, the authors propose 8 different models span-

ning from very large (B7) to very small (B0).

To evaluate the merit of our compression technique, we

apply it to a subset of the EfficientNet family (namely B0 to

B6). For each model, we use the size of smaller variants as

target sizes. For example, we compress the B3 architecture

to 5.3M, 7.8M, and 9.2M parameters corresponding to the

sizes of B0, B1 and B2 variants. Figure 4 shows the results

of applying this procedure. The bars are grouped by the

target size to which they are compressed. Each bar indicates

a starting model architecture.

Note that we can significantly improve accuracy for any

desirable model size compared with the original model. For

example, the original B0 model has an accuracy of 76.3%,

but a B6 architecture compressed to the size of B0 has

80.3%. Even more drastic is comparing between groups

— a B4 model compressed to the size of B1 outperforms

the original B3 model even though it is 35% smaller.

4.3. MobileNets

MobileNets [20, 41, 19] are a family of models specifi-

cally targeted to mobile devices. These models have been

11907



B0 (5.3M) B1 (7.8M) B2 (9.2M) B3 (12M)
Target Model Size

76

77

78

79

80

A
cc

u
ra

cy

Compressed Architecture

Baseline (no compression)

B6

B5

B4

B3

B2

B1

Figure 4: Accuracy vs Target Model Size on EfficientNet.

Bars represent original architecture used. They are grouped

by the size of the model after compression. For example,

compressing a B6 architecture to the size of B0 has an ac-

curacy of 80.1% compared with the original B0 at 76.4%.

Note that the B5 and B6 architectures are slow to train and

are harder to find stable hyper-parameters.

primarily optimized for FLOPs. However they are also sig-

nificantly smaller than other models considered above.

In this section, we measure the efficacy of apply-

ing structured multi-hashing to MobileNetV2 and Mo-

bileNetV3. The comparison is presented on Figure 5. In ad-

dition to the width-multiplier as we did for ResNet, we also

impose an additional, stronger baseline based on a combi-

nation of width-multiplier and resolution multiplier.

Width-multiplication reduces both FLOPs and model

size, while structured-hashing only reduces the model size.

To make a stronger baseline that produces comparable

FLOPs, when we apply width multiplier α to reduce the

model size, we increase resolution by ≈ α that brings FLOP

count back to the original cost.

Note, in contrast with [44], and following [40], we don’t

actually use higher resolution image. Instead, we simply

up-sample the input. This guarantees that all models are

trained on exactly the same data. It is interesting that for

MobileNetV2, the multi-hash approach beats both base-

lines. On the other hand, for MobileNetV3, the stronger

baseline produces slightly better trade-off curve around the

full model. However, we note that the strong baseline is

both slower and requires more memory to train (due to high

spatial resolution of early tensors). In fact, we were un-

able to train the strong baseline example with multiplier

less than 0.4, which required using input upsampled to

450x450 . Another potential issue that limits the usefulness

of the strong baseline is that it requires fractional upsam-

pling which introduces image artifacts.

Compression Target Model Accuracy Samples

Method Size Per Second

SMH 5.3M 0.774 6060

1X Hash 5.3M 0.762 4000

2X Hash 5.3M 0.765 2800

10X Hash 5.3M 0.770 790

SMH 7.9M 0.782 6040

1X Hash 7.9M 0.773 3900

2X Hash 7.9M 0.775 2500

10X Hash 7.9M 0.779 760

Table 1: Hashing methods comparison on EfficientNet B2

model. We compare SMH to non-structured hashing with

1,2 and 10 hash functions. Note that not only is SMH more

accurate but also much faster. We measure training samples

per second on TPU V3 with a 4x4 topology.

4.4. Compared to Non Structured Hashing

Here we compare the results of SMH to a single and

multi-hashing baselines. We implement model hashing over

the full set of network weights. For standard hashing we

hash each weight into K ∈ {1, 2, 10} sets of trainable vari-

ables and use the sum reducer defined in Eq. (1). We com-

pare the methods on an EfficientNet B2 model compressed

to 5M and 7.9M trainable variables (the size of B0, and

B1 respectively). Table 1 shows the results. SMH is both

more accurate and much faster then standard hashing. The

memory locality of SMH and its implementation as a matrix

product result in this low overhead. Note that SMH in these

experiments is using ∼ 800 hash functions.

4.5. Extreme Compression

As noted above, deep networks are known to be over-

parameterized. Here, we examine this notion further. We

ask the question: Can deep models be accurate when us-

ing an extremely small number of trainable variables? Can

this be done for an architecture that was not specifically de-

signed for this purpose? To answer this question we per-

form two sets of experiments, on CIFAR10 [26] using a

ResNet32 model, and on ImageNet using EfficentNet mod-

els.

In Figure 6 different compression method applied to a

ResNet32 model trained on the CIFAR10 dataset are shown.

First note that using our multi-hash approach we can effec-

tively discard 75% of the variables in the model, without

loss in performance. Furthermore, we can create a model

with only 10% of the original size (only 50K variables) and

still maintain an accuracy above 90%.

Secondly, we take EfficentNet B4 and B5 architectures

and compress them using SMH by 10x to 2M and 3M

parameters respectively. In Table 2 we compare them to

vanilla EfficentNet models with similar accuracy and see
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Figure 5: Applying SMH to MobilenetV2 (a) and MobilenetV3 (b) on ImageNet. We compare to two baselines. Width-

multiplier: all layers are shrunk by a constant factor. Width-multiplier + resolution is a stronger baseline where we addition-

ally up-sample the input image to maintain the same number of FLOPS. Label for strong baseline such as (0.4, 450) represent

multiplier and up-sampled resolution respectively. Label for SMH is the target compression rate.
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Figure 6: Accuracy vs Model Size on CIFAR10. We com-

pare a number of compression methods on the ResNet32

model. We focus on the extreme compression regime. The

rightmost points represent models that are 25% of the orig-

inal ResNet32. Here TRP is low-rank ResNet32 from [49],

Tucker, Tensor-Train and Tensor-Ring-Net (TRN) results

obtained from [46], WM is width multiplier.

accuracy gains in both cases.

4.6. Per­Layer Learnable Scale

To examine the benefits of adding a per-layer scale vari-

able, as described in Sec 3.4, we train 16 EfficientNet based

models on ImageNet. We train five different base models

B0 to B4, and for each base model set a number of target

sizes to compress to. We then train the models until conver-

Model Accuracy Model Size

B0 76.3% 5M

SMH2M B4 76.6% 2M

SMH3M B5 78.3% 3M

B1 78.8% 7.9M

Table 2: SMH B4 model is 60% smaller than B0 with the

same accuracy. SMH B5 model is 40% smaller and 2%

better than B0 and 63% smaller than B1 with slightly lower

accuracy.

gence with and without the per-layer scale variable using

the same hyper-parameters.

Table 3 shows the accuracy difference in accuracy when

adding per-layer scale variables. We usually see improve-

ments of about 0.5% to 1%. Also note that this procedure

never hurts performance.

4.7. Targeted Weight Compression

When compressing a neural network, one can choose to

target all weights, or a smaller subset of them. For example,

in all our experiments we do not to hash any of the Batch

Normalization variables, as those can be absorbed in the

following convolution during inference.

One natural distinction between model weights is to sep-

arate those coming from convolutional layers which are

usually in the early stages of a model, and those coming

from fully connected layers which are commonly at the later

part of the network. Figure 7 shows five base architectures

from the EfficientNet family (B1, ..., B5) all compressed to

the size of B0 (5M variables). For each base model we once
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Base Target Fixed Learnable Accuracy

Model Size Scale Scale Difference

B0 2.0M 71.9% 73.1% 1.2%

3.0M 73.7% 74.0% 0.3%

B1 2.0M 73.4% 74.2% 0.8%

3.0M 75.2% 76.5% 1.3%

5.0M 76.4% 76.8% 0.4%

B2 2.0M 73.9% 74.9% 1.0%

3.0M 75.7% 77.1% 1.4%

5.0M 77.0% 77.8% 0.8%

B3 2.0M 75.1% 75.5% 0.4%

5.0M 78.0% 78.6% 0.6%

7.9M 78.4% 79.1% 0.7%

9.3M 78.2% 79.1% 0.9%

B4 5.0M 78.8% 79.2% 0.4%

7.9M 79.2% 79.7% 0.5%

9.3M 79.3% 79.5% 0.2%

Table 3: Accuracy improvement when adding a per-layer

learnable scale. Average accuracy gain is 0.7%, note that

the per-layer scale is always beneficial.

compress it by hashing all the weights, and once by only

hashing weights coming from the convolutions.

The differences are not big, indicating that the multi

hashing constraint has enough flexibility to make useful

trade-offs. Note also that when starting with smaller ar-

chitectures (B1, B2) it is better to limit the hashing to the

convolutions. The fully connected layers in those models

are smaller and have less representation power to spare.

When starting with bigger models however (B4, B5) the

trends reverses and higher accuracy is achieved when let-

ting the multi-hash compress all layers. For these models,

the fully connected layers have many parameters and with-

out access to those layers the hash must compress the rest of

the network more drastically. For example, the B5 architec-

ture has 2M weights in its dense layer, out of 30M. When

compressing it to the size of B0 without hashing the dense

layer we now need to hash 28M weights into 3M variables,

a 89% compression of those layers.

5. Discussion

In this paper we have presented an efficient model com-

pression method that builds on the idea of weight hashing,

while addressing its key limitations: We eliminate hash col-

lisions by introducing a multi-hash and reduce framework

which maps each weight in a model into a set of trainable

variables, and computes its value using a reduce operation

on the set. Memory locality is preserved by eschewing ran-

dom hashing, and defining a structured mapping instead.

The SMH approach can be represented as a matrix product

and does not add material overhead to model latency.
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Base Model

0.74
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A
cc

u
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All
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Figure 7: Compressing EfficientNet architectures to the size

of B0 (5M). Bars are grouped by the architecture being

compressed. We compare compressing all layers (blue),

with hashing only convolutional layers (orange). There is

a small difference - the method isn’t sensitive to this design

choice. Note that smaller models benefit from maintaining

the fully connected layers untouched, while the larger base

models gain from the flexibility to compress all layers.

We show that a well optimized hashed model can be

strongly compressed with minimal loss in accuracy. We

demonstrated our results on the widely used ResNet family

of models, and on the newer and more powerful Efficient-

Net and MobileNet model family.

From a scientific perspective, model hashing is distinctly

different from quantization or pruning. Model quantiza-

tion changes the precision in which the underlying func-

tion is approximated, but does not change dimensionality

of the approximator. Pruning induces some weight values to

zero but this on its own has no effect on the overall dimen-

sion. If the pruning is strong enough to set complete rows

of weight matrices to zero, or if it has a structured form,

e.g. [14] it changes both the dimensionality of the approx-

imator (number of variables) and its expressivity (number

of layers, amount of non-linearity, etc). In contrast model

hashing does not change precision, but affects only the di-

mension (i.e. number of variables).

Model hashing then provides a useful tool for explor-

ing the role of the number of variables within an architec-

ture family. Our results on the ResNet family of models

shows that number of variables tracks closely with accu-

racy. ResNet101 and ResNet50 based models, compressed

to the same number of parameters perform almost indistin-

guishably from each other. This is true both for our hashing

technique, and for the width multiplier baseline.

In contrast this does not hold for the EfficientNet or Mo-

bilenet family, in which different architectures (e.g. B6 vs

B4, or V2 vs V3) compressed to the same size, differ sig-

nificantly in their accuracy. Clearly more work is needed

before we can fully understand the role of parameter counts.
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rank compression of neural nets: Learning the rank of each

layer. In Proc. of the 2020 IEEE Computer Society Conf.

Computer Vision and Pattern Recognition (CVPR’20), 2020.

2

[23] Sergey Ioffe and Christian Szegedy. Batch normalization:

Accelerating deep network training by reducing internal co-

variate shift. arXiv preprint arXiv:1502.03167, 2015. 1, 3

[24] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu,

Matthew Tang, Andrew G. Howard, Hartwig Adam, and

Dmitry Kalenichenko. Quantization and training of neu-

ral networks for efficient integer-arithmetic-only inference.

IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 2704–2713, 2018. 2

[25] Norman P Jouppi, Cliff Young, Nishant Patil, David Patter-

son, Gaurav Agrawal, Raminder Bajwa, Sarah Bates, Suresh

Bhatia, Nan Boden, Al Borchers, et al. In-datacenter per-

formance analysis of a tensor processing unit. In 2017

ACM/IEEE 44th Annual International Symposium on Com-

puter Architecture (ISCA), pages 1–12. IEEE, 2017. 1

[26] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple

layers of features from tiny images. Technical report, Cite-

seer, 2009. 6

11911



[27] Vadim Lebedev, Yaroslav Ganin, Maksim Rakhuba, Ivan

Oseledets, and Victor Lempitsky. Speeding-up convolu-

tional neural networks using fine-tuned CP-decomposition.

In Proc. of the 4th Int. Conf. Learning Representations (ICLR

2016), 2016. 2

[28] Yann LeCun, John S Denker, and Sara A Solla. Optimal

brain damage. In Advances in neural information processing

systems, pages 598–605, 1990. 2

[29] Chunyuan Li, Heerad Farkhoor, Rosanne Liu, and Jason

Yosinski. Measuring the intrinsic dimension of objective

landscapes. arXiv preprint arXiv:1804.08838, 2018. 1

[30] Chong Li and C. J. Richard Shi. Constrained optimiza-

tion based low-rank approximation of deep neural networks.

In Proc. 15th European Conf. Computer Vision (ECCV’18),

pages 746–761. 2

[31] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and

Hans Peter Graf. Pruning filters for efficient convnets. In

Proceedings of International Conference on Learning Rep-

resentations 2017, 2017. 2

[32] Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and

Trevor Darrell. Rethinking the value of network pruning.

arXiv preprint arXiv:1810.05270, 2018. 2

[33] Markus Nagel, Mart van Baalen, Tijmen Blankevoort, and

M. Welling. Data-free quantization through weight equaliza-

tion and bias correction. In ICCV, volume abs/1906.04721,

2019. 2

[34] Vinod Nair and Geoffrey E Hinton. Rectified linear units im-

prove restricted boltzmann machines. In Proceedings of the

27th international conference on machine learning (ICML-

10), pages 807–814, 2010. 1

[35] Alexander Novikov, Dmitrii Podoprikhin, Anton Osokin,

and Dmitry P. Vetrov. Tensorizing neural networks. In Ad-

vances in Neural Information Processing Systems (NIPS),

pages 442–450, 2015. 2

[36] Deniz Oktay, Johannes Ballé, Saurabh Singh, and Abhinav
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