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Abstract

In this work, we propose “tangent images,” a spherical

image representation that facilitates transferable and scal-

able 360◦ computer vision. Inspired by techniques in car-

tography and computer graphics, we render a spherical im-

age to a set of distortion-mitigated, locally-planar image

grids tangent to a subdivided icosahedron. By varying the

resolution of these grids independently of the subdivision

level, we can effectively represent high resolution spher-

ical images while still benefiting from the low-distortion

icosahedral spherical approximation. We show that train-

ing standard convolutional neural networks on tangent im-

ages compares favorably to the many specialized spherical

convolutional kernels that have been developed, while also

scaling efficiently to handle significantly higher spherical

resolutions. Furthermore, because our approach does not

require specialized kernels, we show that we can transfer

networks trained on perspective images to spherical data

without fine-tuning and with limited performance drop-off.

Finally, we demonstrate that tangent images can be used to

improve the quality of sparse feature detection on spherical

images, illustrating its usefulness for traditional computer

vision tasks like structure-from-motion and SLAM.

1. Introduction

A number of methods have been proposed to address

convolutions on spherical images. These techniques vary

in design, encompassing learnable transformations [25, 26],

generalizations and modifications of the convolution opera-

tion [8, 9, 11, 27], and specialized kernels for spherical rep-

resentations [7, 16, 29]. In general, these spherical convo-

lutions fall into two classes: those that operate on equirect-

angular projections and those that operate on a subdivided

icosahedral representation of the sphere. The latter has been

shown to significantly mitigate spherical distortion, which

leads to significant improvements for dense prediction tasks

[10, 11, 18]. It also has the useful property that icosahe-

dron’s faces and vertices scale roughly by a factor of 4 at

Level 1 Icosahedron Tangent Images

Interior View

Figure 1: Using tangent images to represent a 4k Earth image

[13]. TL: A base level 1 icosahedron. TR: Selection of tangent

images rendered from the Earth image. B: Interior view of the

tangent image spherical approximation.

each subdivision, permitting a simple analogy to 2× up-

sampling and downsampling operations in standard convo-

lutional neural networks (CNNs). Because of the perfor-

mance improvements provided by the subdivided icosahe-

dron representation, we focus expressly on it in this paper.

Despite a growing body of work on these icosahedral

convolutions, there are two significant impediments to fur-

ther development: (1) the transferability of standard CNNs

to spherical data on the icosahedron, and (2) the difficulty

in scaling the proposed spherical convolution operations to

high resolution spherical images. Prior work has implied

[7, 11] or demonstrated [9, 27, 29] the transferability of net-

works trained on perspective images to different spherical
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representations. However, those who report results see a

noticeable decrease in accuracy compared to CNN perfor-

mance on perspective images and specialized networks that

are trained natively on spherical data, leaving this impor-

tant and desired behavior an unresolved question. Addition-

ally, the proposed specialized convolutional kernels either

require subsequent network tuning [7, 29] or are incompat-

ible with the standard convolution [16].

Nearly all prior work on icosahedral convolutions has

been built on the analogy between pixels and faces [7, 18]

or pixels and vertices [11, 16, 29]. While elegant on the sur-

face, this parallel has led to difficulties in scaling to higher

resolution spherical images. Figure 2 depicts spherical im-

age resolutions evaluated in the prior work. Notice that the

highest resolution obtained so far is a level 8 subdivision,

which is comparable to a 512 × 1024 equirectangular im-

age. Superficially, this pixel resolution seems reasonably

high, but the angular resolution per pixel is still quite low. A

512×1024 equirectangular image has an angular resolution

of 0.352◦. For comparison, a VGA resolution (480 × 640)

perspective image with 45◦ × 60◦ field of view (FOV) has

an angular resolution of 0.094◦. This is most similar to a

2048 × 4096 equirectangular image, which has an angular

resolution of 0.088◦ and corresponds to a level 10 subdi-

vided icosahedron. As this is a significantly higher resolu-

tion than prior work has been capable of demonstrating, this

is the resolution on which we test our proposed approach.

In this work, we aim to address both transferability and

scalability while leveraging efficient implementations of ex-

isting network architectures and operations. To this end, we

propose a solution that decouples resolution from subdivi-

sion level using oriented, distortion-mitigated images that

can be filtered with the standard grid convolution operation.

Using these tangent images, standard CNN performance is

competitive with specialized networks, yet they efficiently

scale to high resolution spherical data and open the door

to performance-preserving network transfer between per-

spective and spherical data. Furthermore, use of the stan-

dard convolution operation allows us to leverage highly-

optimized convolution implementations, such as those from

the cuDNN library [5], to train our networks. Addition-

ally, the benefits of tangent images are not restricted to deep

learning, as they address distortion through the data repre-

sentation rather than the data processing tools. This means

that our approach can be used for traditional vision applica-

tions like structure-from-motion and SLAM as well.

We summarize our contributions as follows:

� We propose the tangent image spherical representa-

tion: a set of oriented, low-distortion images rendered

tangent to faces of the icosahedron.

� We show that standard CNNs trained on tangent im-

ages perform competitively with specialized spherical

convolutional kernels while also scaling effectively to

high resolution spherical images.

� We demonstrate that tangent images facilitate network

transfer between perspective and spherical images with

no fine tuning and minimal performance drop-off.

� We illustrate the utility of tangent images for tradi-

tional computer vision tasks by using them to improve

sparse keypoint matching on spherical images.

2. Related Work

Recently, there have been a number of efforts to close

the gap between CNN performance on perspective images

and spherical images. These efforts can be naturally divided

based on the spherical image representation used.

2.1. Equirectangular images

Equirectangular images are a popular spherical image

representation thanks to their simple relation between rect-

angular and spherical coordinates. However, they demon-

strate severe image distortion as a result. A number of

methods have been proposed to address this issue. Su and

Grauman [25] develop a learnable, adaptive kernel to train

a CNN to transfer models trained on perspective images to

the equirectangular domain. Su et al. [26] extend this idea

by developing a kernel that learns to transform a feature

map according to local distortion properties. Cohen et al.

[8, 6] develop spherical convolutions, which provides the

rotational equivariance necessary for convolutions on the

sphere. This method requires a specialized kernel, however,

making it difficult to transfer the insights developed from

years of research into traditional CNNs. Works from Coors

et al. [9] and Tateno et al. [27] address equirectangular im-

age distortion by warping the planar convolution kernel in

a location-dependent manner. Because the equirectangu-

lar representation is so highly distorted, most recent work

on this topic, has looked to leverage the distorted-reducing

properties of the icosahedral spherical approximation.

2.2. Icosahedral representations

Representing the spherical image as a subdivided icosa-

hedron mitigates spherical distortion, thus improving CNN

accuracy compared to techniques that operate on equirect-

angular images. Eder and Frahm [10] motivate this repre-

sentation using analysis from the field of cartography. Fur-

ther research on this representation has primarily focused

on the development of novel kernel designs to handle dis-

cretization and orientation challenges on the icosahedral

manifold. Lee et al. [18] convolve on this representation

by defining new, orientation-dependent, kernels to sample

from triangular faces of the icosahedron. Jiang et al. [16]

reparameterize the convolutional kernel as a linear combi-

nation of differential operators on the surface of an icosahe-

dral mesh. Zhang et al. [29] present a method that applies
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Level 0

[12 vertices,

20 faces]

90
◦ / pixel

[2× 4 pixels]

Level 1

[42 vertices,

80 faces]

45
◦ / pixel

[4× 8 pixels]

Level 5

[10,242 vertices,

20,480 faces]

2.812
◦ / pixel

[64× 128 pixels]

[7, 16]

Level 7

[163,842 vertices,

327,680 faces]

0.703
◦ / pixel

[256× 512 pixels]

[10, 11, 18]

Level 8

[655,362 vertices,

1,310,720 faces]

0.352
◦ / pixel

[512× 1024 pixels]

[29]

Level 10

[10,485,762 vertices,

20,971,510 faces]

0.088
◦ / pixel

[2048× 4096 pixels]

[Ours]

Figure 2: Demonstrating the number of elements, corresponding equirectangular image dimensions, and angular pixel resolution at various

icosahedral subdivision levels. The citations beneath each denote the maximum resolution examined in those respective papers. Except for

ours, they have all been limited by the pixel-to-face or pixel-to-vertex analogy.
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Figure 3: MNIST classification accuracy decreases as pincushion

distortion is added to test images by varying the K1 parameter of

the Brown-Conrady radial distortion model [2]. An example digit

is shown at different distortion levels.

a special hexagonal convolution on the icosahedral net. Co-

hen et al. [7] precompute an atlas of charts at different orien-

tations that cover the icosahedral grid and use masked ker-

nels along with an feature-orienting transform to convolve

on these planar representations. Eder et al. [11] define the

“mapped convolution” that allows the custom specification

of convolution sampling patterns through a type of graph

convolution. In this way, they specify the filters’ orienta-

tion and sample from the icosahedral surface. Our tangent

image representation addresses data orientation by ensuring

all tangent images are consistently oriented when render-

ing and circumvents the discretization issue by rendering to

image pixel grids.

3. Mitigating Spherical Distortion

Image distortion is the reason that we cannot simply ap-

ply many state-of-the-art CNNs to spherical data. Distor-

tion changes the representation of the image, resulting in

local content deformation that violates translational equiv-

ariance, the key property of a signal required for convolu-

tion functionality. The graph in Figure 3 shows just how

little distortion is required to produce a significant drop-off

in CNN performance. Distortion in the most popular spheri-

cal image representations, equirectangular images and cube

maps, is quite significant [10], and hence results in even

worse performance. Although we can typically remove

most lens distortion in perspective images using tools like

the Brown-Conrady distortion model [2], spherical distor-

tion is inescapable. This follows from Gauss’s Theorema

Egregium, a consequence of which is that a spherical sur-

face is not isometric to a plane. As such, any effort to rep-

resent a spherical image as a planar one will result in some

degree of distortion. Thus, our objective, and one shared by

cartographers for thousands of years, is limited to finding

an optimal planar representation of the sphere for our use

case.

3.1. The icosahedral sphere

Consider the classical method of exhaustion of approxi-

mating a circle with inscribed regular polygons. It follows

that, in three dimensions, we can approximate a sphere in

the same way. Thus, the choice of planar spherical ap-

proximation ought to be the convex Platonic solid with the

most faces: the icosahedron. The icosahedron has been

used by cartographers to represent Earth at least as early

as Buckminster Fuller’s Dymaxion map [3], which projects

the globe onto the icosahedral net. Recent work in computer

vision [7, 10, 11, 18, 16, 29] has demonstrated the shape’s

utility for resolving the distortion problem for CNNs on

spherical images as well.

While an improvement over single-plane image projec-

tions and its Platonic solid cousin, the cube, the 20-face

icosahedron on its own is still limited in its distortion-

mitigating properties. It can be improved by repeatedly

applying Loop subdivision [21] to subdivide the faces and

interpolate the vertices, producing increasingly close spher-

ical approximations with decreasing amounts of local dis-

tortion on each face. Figure 4 demonstrates how distortion
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Figure 4: Ratio of the surface area of the subdivided icosahedron

to the surface area of a sphere of the same radius at each sub-

division level. This global metric demonstrates how closely the

subdivision surface approximates a sphere and is drawn from es-

tablished cartographic metrics [17]. Note the leveling off after the

third subdivision level.

decreases at each subdivision level. Not all prior work takes

advantage of this extra distortion reduction, though. There

has largely been a trade-off between efficiency and repre-

sentation. The charts used by Cohen et al. [7] and the net

used by Zhang et al. [29] are efficient thanks to their planar

image representations, but they are limited to the distortion

properties of a level 0 icosahedron. On the other hand, the

mapped convolution proposed by Eder et al. [11] operates

on the mesh itself and thus can benefit from higher level

subdivision, but it does not scale well to higher level meshes

due to cache coherence problems when computing interme-

diate features on the mesh. Jiang et al. [16] provide effi-

cient performance on the mesh, but do so by approximating

convolution with a differential operator, which means exist-

ing networks can not be transferred. It is also interesting to

note that the current top-performing method for many deep

learning tasks, [29], uses the net of the level 0 icosahedron.

This suggests that extensive subdivisions may not be neces-

sary for all use cases.

Practical methods for processing spherical images must

address the efficient scalability problem, but also should

permit the transfer of well-researched, high-performance

methods designed for perspective images. They should also

provide the opportunity to modulate the level of acceptable

distortion depending on the application. To address these

constraints, we propose to break the coupling of subdivi-

sion level and spherical image resolution by representing a

spherical image as a collection of images with tunable res-

olution and distortion characteristics.

3.2. Tangent images

Subdividing the icosahedron provides diminishing re-

turns rather quickly from a distortion-reduction perspective,

as indicated by the red vertical line in Figure 4. Nonethe-

less, existing methods must continue to subdivide in order

to match the spherical image resolution to the number of

mesh elements. We untether these considerations by fixing

a base level of subdivision, b, to define an acceptable de-

Base Level +2 Base Level +3

Base Level +4 Base Level +5

Figure 5: Illustrating how the tangent image resolution increases

without changing the underlying subdivision level. The field-of-

view of the tangent pixel grid remains unchanged, but its resolu-

tion increases by a factor of 2 in each dimension, demonstrated by

the blue dots representing pixel samples on the sphere. This scal-

ing maintains the angular pixel resolution of higher level icosahe-

drons without the need for additional subdivisions.

gree of distortion, and then rendering the spherical image

to square, oriented, planar pixel grids tangent to each face

at that base level. The resolution of these tangent images

is subsequently determined by the resolution of the spher-

ical input. Given a subdivision level, s, corresponding to

the spherical input resolution, the dimension of the tangent

image, d, is given by the relation:

d = 2s−b (1)

This design preserves the same resolution scaling that

would occur through further subdivisions by instead in-

creasing the resolution of the tangent image. This relation-

ship is illustrated in Figure 5.

Our tangent images are motivated by existing techniques

in related fields. The approximation of sections of the

sphere by low-distortion planar regions is similar to the

Universal Transverse Mercator (UTM) geodetic coordinate

system, which divides the Earth into a number of nearly-

Euclidean zones. Additionally, as tangent images can be

thought of as rendering a spherical mesh to a set of quad

textures, the high resolution benefits are similar to Ptex [4],

a computer graphics technique that enables efficient high-

resolution texturing by providing every quad of a 3D mesh

with its own texture map. A visualization of the tangent

image concept is provided in Figure 1.

Computing tangent images Tangent images are the

gnomonic projection of the spherical data onto oriented,

square planes centered at each face of a level b subdi-

vided icosahedron. The number of tangent images, N ,

is determined by the faces of the base level icosahedron:

N = 20(4b), while their spatial extent is a function of the
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vertex resolution, Rv(b − 1), of the level b − 1 icosahe-

dron and the resolution of the image grid, given by Equa-

tion (1). Let (φf , λf ) be the barycenter of a triangular face

of the icosahedron in spherical coordinates. We then com-

pute the bounds of the plane in spherical coordinates as the

inverse gnomonic projection at central latitude and longi-

tude (φf , λf ) of the points:
{

φf ±
d− 1

2d
Rv(b− 1)

}

×

{

λf ±
d− 1

2d
Rv(b− 1)

}

(2)

The vertex resolution, Rv , of a level b icosahedron, S(b),
is computed as the mean angle between all vertices, v, and

their neighbors, adj(v):

Rv(b) =
1

|S(b)|

∑

v∈S(b)

∑

w∈adj(v)

∠(v, w)

|adj(v)|
(3)

Using Rv(b−1) ensures that the tangent images completely

cover their associated triangular faces. Because vertex reso-

lution roughly halves at each subsequent subdivision level,

we define Rv(−1) = 2Rv(0).
Using tangent images Tangent images require render-

ing from and to the sphere only once each. First, we create

the tangent image set by rendering to the planes defined by

Equation (2). Then, we apply the desired perspective im-

age algorithm (e.g. a CNN or keypoint detector). Finally,

we compute the regions on each plane visible to a spheri-

cal camera at the center of the icosahedron and render the

algorithm output back to the sphere.

We have released our tangent image rendering code and

associated experiments as a PyTorch extension1.

4. Experiments

Prior research has established a common suite of ex-

periments that have become the test bed for new re-

search on spherical convolutions. This set typically in-

cludes some combination of spherical MNIST classification

[8, 7, 16, 18, 29], shape classification [8, 12, 16], climate

pattern segmentation [7, 16, 29], and semantic segmenta-

tion [7, 16, 18, 27, 29]. In order to benchmark against these

prior works, we evaluate our method on the shape classifi-

cation and semantic segmentation tasks. Additionally, we

demonstrate our method’s fairly seamless transfer of CNNs

trained on perspective images to spherical data. Finally,

to show the versatility of the tangent image representation,

we introduce a new benchmark, sparse keypoint detection

on spherical images, and compare our representation to an

equirectangular image baseline.

4.1. Classification

We first evaluate our proposed method on the shape clas-

sification task. As with prior work, we use the ModelNet40

1https://github.com/meder411/Tangent-Images

Method Filter Acc.

Cohen et al. [8] Spherical Correlation 85.0%

Esteves et al. [12] Spectral Parameterization 88.9%

Jiang et al. [16] MeshConv 90.5%

Ours 2D Convolution 89.1%

Table 1: Classification results on the ModelNet40 dataset [28].

Without any specialized convolution operations, our approach is

competitive with the state of the art spherical convolution methods.

dataset [28] rendered using the method described by Cohen

et al. [8]. Because the data densely encompasses the entire

sphere, unlike spherical MNIST, which is sparse and pro-

jected only on one hemisphere, we believe this task is more

indicative of general classification performance.

Experimental setup We use the network architecture

from Jiang et al. [16], but we replace the specialized kernels

with simple 3×3 2D convolutions. A forward pass involves

running the convolutional blocks on each patch separately

and subsequently aggregating the patch features with aver-

age pooling. We train and test on level 5 resolution data as

with the prior work.

Results and analysis Results of our experiments are

shown in Table 1. Without any specialized convolutional

kernels, we outperform most of the prior work on this task.

The best performing method from Jiang et al. [16] lever-

ages a specialized convolution approximation on the mesh,

which inhibits the ability to fine-tune existing CNN mod-

els for the task. Our method can be thought of as using a

traditional CNN in a multi-view approach to spherical im-

ages. This means that, for global inference tasks like clas-

sification, we could select our favorite pre-trained network

and transfer it to spherical data. In this case, it is likely

that some fine-tuning may be necessary to address the final

patch aggregation step in our network design.

4.2. Semantic segmentation

We next consider the task of semantic segmentation in

order to demonstrate dense prediction capabilities. To com-

pare to prior work, we perform a baseline evaluation of our

method at low icosahedron resolutions (5 and 7), but we

also evaluate the performance of our method at a level 10

input resolution in order to demonstrate the usefulness of

the tangent image representation for processing high reso-

lution spherical data. No prior work has operated at this res-

olution. We hope that our work can serve as a benchmark

for further research on high resolution spherical images.

Experimental setup We train and test our method on

the Stanford 2D3DS dataset [1], as with prior work [8, 7,

16, 29]. We evaluate RGB-D inputs at levels 5, 7, and 10,

the maximum resolution provided by the dataset. At level

10 we also evaluate using only RGB inputs to demonstrate

the benefit of high resolution capabilities. For the level 5

and 7 experiments, we use the residual UNet-style archi-

tecture as in [16, 29], but we again replace the specialized
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Stanford2D3DS Dataset

s Method Input b mAcc mIOU

5

Cohen et al. [7] RGB-D 0 55.9 39.4

Jiang et al. [16] RGB-D 5 54.7 38.3

Zhang et al. [29] RGB-D 0 58.6 43.3

Ours RGB-D 0 50.2 37.5

7

Tateno et al. [27] RGB ERP - 34.6

Lee et al. [18] RGB 7 26.4 -

Ours RGB-D 0 54.9 41.8

10

Ours RGB 0 61.0 44.3

Ours RGB 1 65.2 45.6

Ours RGB 2 61.5 42.7

Ours RGB-D 1 69.1 51.9

Table 2: Semantic segmentation results. s is the input resolu-

tion in terms of equivalent icosahedron level, b is the base sub-

divison level (ERP denotes equirectangular inputs), mIoU is the

mean intersection-over-union metric, and mAcc is the weighted

per-class mean prediction accuracy.

kernels with 3×3 convolutions. The higher resolution of the

level 10 inputs requires the larger receptive field of a deeper

network, so we use a FCN-ResNet 101 [14, 20] model pre-

trained on COCO [19] for those experiments. For level 5

data, we train on the entire set of tangent images, while for

the higher resolution experiments, we randomly sample a

subset of tangent images from each spherical input to expe-

dite training. We found this sampling method to be useful

without loss of accuracy. We liken it to training on multiple

perspective views of a scene.

Results and analysis We report the results of our exper-

iments in Table 2. Results on the Stanford2D3DS dataset

are averaged over the 3 folds. Individual class results can

be found in the supplementary material. As expected, our

method does not perform as well as prior work at the level 5

resolution. Recall that a level 5 resolution spherical image

is equivalent to a 16× 16 perspective image with 45◦ FOV.

Our method takes that already low angular resolution image

and separates it into a set of low pixel resolution images.

Although it had limited impact on classification, these dual

low resolutions are problematic for dense prediction tasks.

We expound on the low-resolution limitation further in the

supplementary material.

Where our tangent image representation excels is when

scaling to high resolution images. What we sacrifice in low-

resolution performance, we make up for by efficiently scal-

ing to high resolution inputs. By scaling to the full reso-

lution of the dataset, we are able to report the highest per-

forming results ever on this spherical dataset by a wide mar-

gin using only RGB inputs. Adding the extra depth chan-

nel, we are able to increase the performance further (+4.8
mAcc, +7.0 mIOU). At input level 10, we find that base

level 1 delivers the best trade-off between the lower FOV

at higher base levels and the increased distortion present in

lower ones. We elaborate on this trade-off in the supple-

mentary material.

4.3. Network transfer

Our contribution aims to address equivalent network per-

formance regardless of the input data format. That is, for a

given network, we strive to achieve equal performance on

both perspective and spherical data. This objective is mo-

tivated by the limited number of spherical image datasets

and the difficulty of collecting large scale spherical training

data. If we can achieve high transferability of perspective

image networks, we reduce the need for large amounts of

spherical training data. Because generating tangent images

inherently converts a spherical image into a collection of

perspective ones, this representation facilitates the desired

network transferability without requiring fine-tuning on the

spherical data and with limited performance drop-off.

Experimental setup We evaluate the transferability of

the tangent image representation in three experiments.

In the first experiment, we evaluate semantic segmen-

tation performance on a spherical image test set using a

network trained on the corresponding perspective image

training set. We fine-tune the pre-trained, FCN-ResNet101

model [14, 20] provided by the PyTorch model zoo on the

Stanford2D3DS dataset’s [1] perspective image training set.

We then evaluate semantic segmentation performance on

the spherical image test set at a level 8 resolution. This

experiment uses RGB inputs only. During the dataset fine-

tuning, we make sure to consider the desired angular resolu-

tion of the spherical test images. A network trained on per-

spective images with an angular resolution of 1◦ has learned

filters accordingly. Should we apply those filters to an im-

age captured at the identical position, at the same image res-

olution, but with a narrower FOV, the difference in angular

resolution is effectively scale distortion. To match the an-

gular resolution of our spherical evaluation set, we normal-

ize the camera matrices for all perspective images during

training such they have the same angular resolution as the

test images. Because this is effectively a center-crop of the

data, we also randomly shift our new camera center in order

capture all parts of the image. Details of this pre-processing

are given in the supplementary material. Note that we do

not fine-tune on the spherical data.

The second experiment compares the transferability pro-

vided by tangent images to prior work that addresses this

topic [29]. Using the network architecture from Zhang et al.

[29], we train a model on the perspective images from the

SYNTHIA dataset [24] that correspond to the OmniSYN-

THIA dataset’s [29] training set. We again utilize the cam-

era normalization procedure mentioned above. We evaluate

performance on the OmniSYNTHIA test set at base level 1.

Finally, the third experiment studies the impact of match-

ing angular resolution between training and testing. For

this, we apply the ResNet 101 semantic segmentation model

from the first experiment to the spherical test set at various

resolutions.
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Format Input Res. AngRes/Pix mAcc mIOU

Persp. 128× 128 0.352
◦ 55.7 38.9

Spher. Level 8 0.352
◦ 51.6 36.2

Table 3: Transfer learning using RGB-D data from the Stan-

ford2D3DS dataset. Without fine-tuning, we preserve 93% of the

perspective network accuracy when transferring to spherical data

represented by tangent images.

s Method mAcc mIOU

6

Zhang et al. [29] (transfer) 44.8 36.7

Ours (transfer) 52.8 41.3

Zhang et al. [29] (native) 52.2 43.6

7

Zhang et al. [29] (transfer) 47.2 38.0

Ours (transfer) 55.3 35.8

Zhang et al. [29] (native) 57.1 48.3

8

Zhang et al. [29] (transfer) 52.8 45.3

Ours (transfer) 65.4 49.7

Zhang et al. [29] (native) 55.1 47.1

Table 4: Comparing our transfer learning results to the prior work

from Zhang et al. [29] on the OmniSYNTHIA dataset at different

input resolutions, s. Note that their reported results are after 10

epochs of fine-tuning, while ours uses none.

Results and analysis Results for the first two experi-

ments are given in Tables 3 and 4, respectively.

In the first experiment, note that both results are attained

using a network trained only on perspective data. With tan-

gent images, we are able to preserve 92.6% of the accuracy

and 93.1% of the IOU of the perspective evaluation without

any subsequent network tuning. This is because the tangent

image representation has similar distortion characteristics to

perspective images, and we have matched the angular reso-

lution between the two domains.

The results of the second experiment demonstrate that

the tangent image approach significantly outperforms the

prior state-of-the-art without any specialized kernels or sub-

sequent fine-tuning. Note that Zhang et al. [29] report re-

sults after 10 epochs of fine-tuning on spherical images,

while our approach does not fine-tune on spherical images

at all. It is also worth observing that, at higher resolutions,

our transfer results are actually competitive with the exist-

ing method trained natively on spherical data. Our exper-

iments have been limited by the maximum resolution of

available spherical image datasets, but this outcome sug-

gests that network transfer with tangent images may permit

even higher resolution spherical image inference.

Finally, the results of the third experiment are plotted in

Figure 6. Recall that this model was trained on perspective

images normalized to have a per-pixel angular resolution

equivalent to that of a level 8 icosahedron. This chart high-

lights the importance of camera normalization when train-

ing on perspective images with the purpose of transferring

the network. Observe how performance deteriorates as the

angular resolution of the spherical input moves further from

the angular resolution of the training data.
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Figure 6: Results are shown for spherical semantic segmentation

using a network trained on perspective images that are normalized

to have a angular resolution equivalent to a level 8 spherical input.

Performance drops off considerably as the angular resolution of

the spherical inputs becomes more dissimilar to the training data.

Level 8 results are darkened.

4.4. Sparse keypoint correspondences

Recent research on spherical images has focused on deep

learning tasks, primarily because many of those works have

focused on the convolution operation. As our contribution

relates to the representation of spherical data, not specifi-

cally convolution, we aim to show that our approach has

applications beyond deep learning. To this end, we evaluate

the use of tangent images for sparse keypoint detection, a

critical step of structure-from-motion, SLAM, and a variety

of other traditional computer vision applications.

Data As there is no existing benchmark for this task,

we create a dataset using a subset of the spherical images

provided by the Stanford2D3DS dataset [1]. To create this

dataset, we first cluster the dataset’s Area 1 images accord-

ing to the provided room information. Then, for each loca-

tion, we compute SIFT features [22] in the equirectangular

images and identify which image pairs have FOV overlap

using the spherical structure-from-motion pipeline provided

by the OpenMVG library [23]. Next, we compute the av-

erage volumetric FOV overlap for each overlapping image

pair. Because we are dealing with 360◦ images, there are

no image bounds to constrain “visible” regions. Instead,

we use the ground truth depth maps and pose information

to back-project each image pair into a canonical pose. We

then compute the percentage of right image points visible to

the left camera using the the left image depth map to remove

occluded points, and vice versa. We average the two values

to provide an FOV overlap score for the image pair. This

overlap is visualized in Figure 7. We define our keypoints

dataset as the top 60 image pairs according to this overlap

metric. Finally, we split the resulting dataset into an “Easy”
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Left Image Right Image

Figure 7: FOV overlap visualized between an image pair from our

keypoints benchmark derived from the Stanford 2D3DS dataset

[1]. The red regions in the left image represent areas visible to the

right camera, and the green regions in the right image represent

areas visible to the left camera.

set and “Hard” set, again based on FOV overlap. The re-

sulting dataset statistics are shown in Table 5. All images

are evaluated at their full, level 10 resolution. We provide

the dataset details in the supplementary material to enable

further research.

Experimental setup To evaluate our proposed represen-

tation, we detect and describe keypoints on the tangent im-

age grids and then render those keypoints back to the spher-

ical image. This rendering step ensures only keypoints vis-

ible to a spherical camera at the center of the icosahedron

are rendered, as the tangent images have overlapping con-

tent. We then use OpenMVG [23] to compute putative cor-

respondences and geometrically-consistent inlier matches.

Results and analysis We evaluate the quality of cor-

respondence matching at 3 different base levels using the

equirectangular image format as a baseline. We compute

the putative matching ratio (PMR), matching score (MS),

and precision (P) metrics defined by Heinly et al. [15]. For

an image set S of image pairs, (L,R), with p putative cor-

respondences, f inlier matches, and n{L,R} detected key-

points visible to both images, the metrics over the image

pairs as defined as follows:

PMR =
1

2|S|

∑

(L,R)∈S

(

p

nL

+
p

nR

)

MS =
1

2|S|

∑

(L,R)∈S

(

f

nL

+
f

nR

)

P =
1

|S|

∑

(L,R)∈S

f

p

(4)

In the same way that we compute the FOV overlap, we use

the ground truth pose and depth information provided by

the dataset to determine which keypoints in the left image

should be visible to the right image (nL) and vice versa

(nR), accounting for occlusion.

Results are given in Table 6. Our use of tangent im-

ages has a strong impact on the resulting correspondences,

particularly on the hard split. Recall that this split has a

lower FOV overlap and fewer inlier matches at the base-

line equirectangular representation. Improved performance

in this case is thus especially useful. We observe a signifi-

Split # Pairs Mean FOV Overlap # Corr.

Hard 30 83.35% 298

Easy 30 89.35% 515

Table 5: Statistics of our keypoints benchmark. # Corr. is the

number of inlier matches detected on the equirectangular images

in that split. Statistics are averaged over the splits.

Hard

Metric Equirect. L0 L1 L2

PMR 22.2% 28.4% 30.1% 27.4%

MS 8.2% 11.1% 11.7% 10.9%

P 36.9% 39.5% 39.6% 40.2%

Easy

Metric Equirect. L0 L1 L2

PMR 26.3% 32.4% 34.6% 31.9%

MS 13.6% 16.6% 17.7% 16.1%

P 46.0% 46.4% 47.5% 46.5%

Table 6: Keypoint evaluation metrics. We report the each metric’s

average over all image pairs per split. L{0,1,2} are the subdivision

levels at which we compute the keypoints.

cant improvement in PMR in both splits. We attribute this

improvement to the computation of the SIFT feature vector

on our less distorted representation. Like the convolution

operation, SIFT descriptors also require translational equiv-

ariance in the detection domain. Tangent images restore this

property with their low-distortion representation, which en-

ables repeatable descriptors. The better localization of the

keypoints affects the inlier matches as well, resulting in a

better MS score. We attribute the leveling off in perfor-

mance beyond level 1 to the reduced FOV of higher level

subdivisions, which impedes the detector’s ability to find

keypoints at larger scales.

5. Conclusion

We have presented tangent images, a spherical image

representation that renders the image onto a oriented pixel

grids tangent to a subdivided icosahedron. We have shown

that these tangent images do not require specialized con-

volutional kernels for training CNNs and efficiently scale

to represent high resolution data. We have also shown that

they facilitate the transfer of networks trained on perspec-

tive images to spherical data with limited performance loss.

These results further suggest that network transfer using

tangent images can open the door to processing even higher

resolution spherical images. Lastly, we have demonstrated

the utility of tangent images for traditional computer vision

tasks in addition to deep learning. Our results indicate that

tangent images can be a very useful spherical representation

for a wide variety of computer vision applications.
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