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Abstract

We propose a novel 3D shape correspondence method

based on the iterative alignment of so-called smooth shells.

Smooth shells define a series of coarse-to-fine shape ap-

proximations designed to work well with multiscale algo-

rithms. The main idea is to first align rough approxima-

tions of the geometry and then add more and more de-

tails to refine the correspondence. We fuse classical shape

registration with Functional Maps by embedding the in-

put shapes into an intrinsic-extrinsic product space. More-

over, we disambiguate intrinsic symmetries by applying a

surrogate based Markov chain Monte Carlo initialization.

Our method naturally handles various types of noise that

commonly occur in real scans, like non-isometry or in-

compatible meshing. Finally, we demonstrate state-of-the-

art quantitative results on several datasets and show that

our pipeline produces smoother, more realistic results than

other automatic matching methods in real world applica-

tions.

1. Introduction

The wide selection of affordable 3D scanning devices in

recent years has led to an enormous growth in the amount

of 3D shapes and scans available. In contrast to synthetic

shapes, real-world scans are often noisy and many proper-

ties cannot be guaranteed. For example, topological noise

might appear in self-touching areas or the meshing density

varies depending on scanning conditions. These distortions

were proven to be difficult for state-of-the-art shape cor-

respondence methods [24, 34]. Many traditional methods

focus only on the (nearly) isometric case, clearly defined

extensions of this like partiality [28], or learn matching for

different classes of shapes under certain perturbations [18].

Unfortunately, this requires training data and knowledge

about what deformations and noise are to be expected.

In general one can distinguish between intrinsic and ex-

trinsic correspondence methods. Intrinsic methods only use

surface properties that are independent of the embedding,

for example the Laplace-Beltrami operator. On the other

hand, extrinsic methods directly use the 3D embedding of

Figure 1: Given a source (left) and target (right) shape we

propose a hierarchical smoothing procedure to iteratively

align the inputs. First, we align very coarse approximations

and then refine until we get correspondences for the original

inputs. Among other things, we can handle challenging in-

terclass pairs like matching a dog to a horse and our method

is fully automatic, i.e. we do not use any additional infor-

mation like hand-selected landmarks.

the shapes. While intrinsic methods are invariant to large

scale, near-isometric deformations, extrinsic alignment is

often more suitable for pairs with topological changes or

other non-isometric deformations. A natural step would be

to combine both to get the best of both worlds but only few

previous approaches venture in this direction [11, 13].

Contribution In this paper we combine intrinsic and ex-

trinsic information by embedding the input shapes into the

product space of intrinsic (spectral) and extrinsic (xyz) co-

ordinates. Then, we iteratively align smooth approxima-

tions of the two input shapes in this product space which we

call smooth shells. Moreover, we propose a Markov chain

Monte Carlo initialization strategy to find a meaningful lo-

cal minimum and disambiguate self-similarities. Overall,

we obtain a robust matching pipeline that works out of the

box for a broad range of inputs beyond the isometry as-

sumption and in the presence of various types of noise.

2. Related Work

2.1. Shape Correspondence and Registration

Shape correspondence is an extensively studied topic

with various applications in Computer Vision and Graphics.

Surveys of state-of-the-art methods [55, 47, 52, 46] give a

broader overview of existing approaches but here we focus

on work that is immediately related to ours.

The Functional Maps [38] paper proposes an elegant
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formalism to model shape correspondences. The main

idea is to model mappings of functions on the input shape

to functions on the output shape instead of point-to-point

maps. This allows for a compact matrix representation in

a low rank basis. Over the last years, the original frame-

work has been extended and applied to various applications

[45, 29, 42, 1]. A major challenge in this context is extract-

ing a point-wise correspondence from a Functional Map

[44]. Several methods extend the original formalism but

most of them are computationally heavy or make restrictive

assumptions about the inputs [44, 42, 37]. Another common

approach is to take noisy correspondences obtained from a

Functional Map and denoise them [16, 57]. However, this

only works if the input map is sufficiently accurate. Finally,

all the methods listed above are by design prone to produce

faulty matches in the presence of intrinsic self-similarities.

Extrinsic methods explicitly deform and align the input

shapes in the 3D embedding space. [36, 31] model the de-

formation with a linear mapping in a low rank basis on the

surface of one shape. Like our approach, [15] alternates be-

tween calculating a deformation field and correspondences

but the volume-preservation constraint restricts the applica-

bility. Many deformation-based methods require expensive

preprocessing to apply the deformation model, for exam-

ple with a deformation graph [49], structural rods [3] or

deep learning [18]. Non-rigid ICP methods iteratively align

shapes but they rely on a good initialization [27, 4]. How-

ever, for many applications we do not have such a previous

alignment and in general there is no trivial way to obtain it.

There exist accurate methods to register certain classes

of shapes, e.g. humans [7, 2]. Unfortunately, these are

highly specialized and depend on class specific features

[33], or learn statistical models from data [41]. While these

methods perform extremely well for shapes within their

classes, they usually do not generalize to arbitrary exam-

ples.

2.2. Shape Approximation and Simplification

The idea of mesh simplification by smoothing is investi-

gated thoroughly in previous work. [54] use manifold har-

monics for the smoothing. In surface deformation modeling

this is usually a two stage algorithm. First, a smoothed ver-

sion of a shape is deformed and then the details are added

back to the surface, see [8] for an overview. Some classi-

cal works on shape modeling with smoothing are [19] and

[23]. [9] combines this approach with differential coordi-

nates. Although our smooth shells are related to smoothing

technique like [54], none of the mentioned approaches use

a series of approximations. We propose a novel hierarchi-

cal shape smoothing method that is particularly suitable for

coarse-to-fine matching.

Shape skeletons offer a lower-dimensional description of

the rough geometry of a shape. A recent survey of 3D skele-

ton methods can be found in [51]. Although the skeletons

are usually designed to be easily aligned between different

shapes from similar classes, most methods typically only

define a single, unique skeleton for each shape. This is use-

ful for a rough matching but does not allow for an iterative

refinement of the surface alignment. Similar to our method,

[12] extracts a skeleton based on Laplacian-based contrac-

tion but aims at getting a unique curve skeleton. Some

methods create an entire class of skeletons for each shape

[43]. Our method differs from the previously mentioned in

that we do not introduce a fixed skeleton for each shape. In-

stead we construct a whole class of approximations with an

increasing level of detail.

3. Background

A correspondence between two input shapes X and Y is

defined as a point-to-point mapping P : X → Y . Here, a

shape is a 2D Riemannian manifold with an embedding in

R
3. We use triangular meshes to discretize the surfaces X

and Y and denote the coordinate matrices as X ∈ R
N×3

and Y ∈ R
M×3 with N and M vertices respectively.

3.1. Laplace-Beltrami Operator

The Laplace-Beltrami operator ∆ = div(∇·) is an ex-

tension of the standard Euclidean Laplacian to manifold do-

mains X . Computing solutions of ∆φk = λkφk yields the

Laplace-Beltrami eigenfunctions {φk}k∈N which form an

orthonormal basis of L2(X ). This allows for a spectral rep-

resentation of functions f ∈ L2(X ):

f ≈ f̃ =

K
�

k=1

�

f,φk

�

φk. (1)

According to the min-max principle, f̃ is an optimal com-

pact approximation of smooth functions f ∈ L2(X ) [39]

with a fixed basis size K. To compute the Laplace-Beltrami

operator on triangular meshes, we use a cotangent dis-

cretization ∆ ∈ R
N×N with lumped mass matrix [40] and

we denote its first K eigenvectors as ΦK = (φ1, . . . ,φN ) ∈
R

N×K (analogously ΨK ∈ R
M×K for Y).

3.2. Functional Maps

The Functional Map framework [38] is a popular ap-

proach to solve for correspondences P : X → Y . In Func-

tional Maps, P is replaced with a mapping of functions to

functions C : L2(X ) → L2(Y). C is linear and can there-

fore be compactly written as a matrix C ∈ R
K×K :

C = ΨKCΦ
†
K . (2)

To compute C for a pair of input shapes we need addi-

tional information to constrain the solution. Given pairs of
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Figure 2: Overview of our pipeline. (Column 1) We initialize our method with the alignment X∗
6 from our Markov chain

Monte Carlo initialization algorithm, see Section 5 for details. (Columns 2-4) On each level K we embed both shapes in

the K + 6 dimensional product space of the smoothed extrinsic coordinates XK ∈ R
3, the intrinsic spectral coordinates

ΦK ∈ R
K and the outer normals nX

K ∈ R
3. In this space we can align XK and YK by computing an extrinsic morphing

τ ∈ R
K×3 for XK and a Functional Map C ∈ R

K×K for ΦK . To visualize the spectral embedding ΦK only the first

three dimensions are shown. Finally, using the aligned X
∗
K and YK we obtain a point-to-point matching P : X → Y with

a nearest neighbor search in R
K+6. We repeat this process for 50 iterations with smoothing levels on a logarithmic scale

between K = 6 : 500. Each iteration is initialized with the previous alignment.

corresponding functions fi ∈ R
N and gi ∈ R

M on the two

surfaces, an energy to optimize for C is:

Efeat(C) := �CΦ
†
KF −Ψ

†
KG�2F . (3)

Here, F,G are matrices whose columns are the feature

functions fi, gi. Possible choices for those features range

from pointwise descriptors or surface texture to input land-

marks. Another common assumption is that the mapping

P is area preserving which leads to orthogonal Functional

Maps C�
C = I, see [38, Theorem 5.1].

3.3. Shape deformation

A different approach is to align the surfaces in the em-

bedding space instead of calculating the correspondence di-

rectly. We denote the deformed version of X with X ∗ and

impose that X ∗ should align with Y . A common choice

model is a linear displacement in a low rank basis [36, 31],

e.g. the Laplace-Beltrami eigenbasis:

X∗ = X + ΦKτ. (4)

τ ∈ R
K×3 are some displacement coefficients that pa-

rameterize the deformation. In the discrete case, the point-

wise correspondence is represented by the matrix P ∈
{0, 1}M×N with P

�
1 = 1. Using the aligned shape X∗,

we can recover P by minimizing the following energy:

Ealign,3D(P) := �PX∗ − Y �2F . (5)

This is equivalent to a nearest neighbor search in R
3.

In order to get a meaningful correspondence with this ap-

proach we need to additionally regularize the deformations

X ∗. One possibility is to assume that the deformations are

as-rigid-as-possible on a local scale:

Earap(τ) :=

�

X

�

N (x)

�

�R(x)
�

X(x)−X(y)
�

−

�

X∗
τ
(x)−X∗

τ
(y)

��

�

2

2
dydx. (6)

N (x) denotes the neighborhood of x ∈ X and R : X →
SO(3) describes the local rotation, for details see [48].

4. Method

We propose to compute shape correspondences by itera-

tively aligning a series of coarse-to-fine approximations of
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the input surfaces X and Y . This is based on the idea that

the alignment of two shapes can end up in unwanted local

optima in the presence of non-consistent small scale fea-

tures. In many cases the rough structure of X and Y , like

the number of extremities, is similar while the fine scale

details can differ, see Figure 1. After matching the global

features, the local features can be used to refine the align-

ment. The smooth shells we use as coarse shape approxima-

tions are defined in Section 4.1. Section 4.2 explains how

we combine extrinsic and intrinsic shape embeddings and

Section 4.3 defines our complete matching algorithm.

4.1. Smooth Shells

In this section, we propose a novel shape smoothing op-

erator SK that yields smoothed shapes similar to those from

spectral surface reconstruction [25]. In comparison, our op-

erator leads to smoother transitions between SK and SK+1

which makes it more suitable for a hierarchical alignment.

Spectral Reconstruction Spectral reconstruction [25]

smoothes X by projecting its coordinate function X onto

the first K Laplace-Beltrami eigenfunctions:

TK := TK(X) =

K
�

k=1

�

φk ⊗ φk

�

X. (7)

Here, φk ⊗ φk denotes the outer product of φk with it-

self which results in the projection of X onto φk. Since

the eigenfunctions are ordered by frequency, this creates

a coarse-to-fine approximation of the original shape. The

level of detail is controlled by the number of eigenfunctions

K. For small K only the rough geometry is reconstructed,

whereas for K → ∞, TK converges to the original X .

Shell Operator The gradual smoothing from Eq. (7) is

useful for hierarchical shape matching. In each iteration we

increase K and use the alignment from the previous itera-

tion as an initialization. However, in many cases the refine-

ment with spectral reconstruction leads to undesirable ar-

tifacts. Especially the first few K projections from Eq. (7)

cause large disparities between reconstructions. This makes

the alignment from the previous iteration less useful for the

next step. We introduce the shell operator SK to circum-

vent this issue:

XK := SK(X) :=

∞
�

k=1

1

1 + exp
�

σ(k −K)
�

�

φk ⊗ φk

�

X.

(8)

Just like spectral reconstruction, SK smooths X using

a projection on φk. However, instead of truncating the

spectral coordinates at a certain K, we introduce a grad-

ual truncation with sigmoid weights. Those are close to 1 if

k � K and decay to 0 when k � K. This guarantees that

T6 T7

T8 T9

T100 T500

X6 X7

X8 X9

X100 X500

Figure 3: At first glance there is no significant differ-

ence between spectral reconstruction TK and smooth shells

XK := SK(X). They both converge to X for K → ∞, and

for high indices K � 50 they are indistinguishable. The

crucial difference lies in their upsampling behaviour. While

smooth shells transition smoothly from XK to XK+1, con-

secutive shapes TK tend to have large displacements and

are therefore less suitable for iterative alignment methods.

the displacement from SK to SK+1 is reasonably bounded.

For small σ the transition becomes smoother, whereas for

σ → ∞ the sigmoid function converges to the indicator

function 1{k≤K} which corresponds to spectral reconstruc-

tion. In particular, we can show the following smoothness

result for S:

Theorem 1. (Transition smoothness of S)

Let X be a shape with coordinate function X ∈ L2, then

the geometric difference of state XK and XK+1 is bounded

by the upsampling variance σ in following way:

�

�SK+1(X)− SK(X)
�

�

L2

�

�SK+1(X)
�

�

L2

≤ |1− e−σ| = O(σ),σ → 0.

(9)

We provide a proof in Appendix B. See Figure 3 for an

illustration of the practical implications and Table 1 for a

quantitative comparison to spectral reconstruction.

4.2. Intrinsic-extrinsic Embedding

Intrinsic and extrinsic methods are often depicted as op-

posing viewpoints and, although there are some notable ex-

ceptions [11, 13], only few methods try to combine them.

Our deformation model combines shape alignment in both

intrinsic and extrinsic space. Functional Maps is based

on rigid ICP alignment of the spectral coordinates ΦK ∈
R

N×K of X and ΨK ∈ R
M×K of Y in the K-dimensional

spectral domain [38].

ΦKC
† ≈ ΨK .

On the other hand, extrinsic methods typically align the 3-

dimensional geometry as described in Eq. (4):

X∗
K = XK + ΦKτ ≈ YK .
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Figure 4: (left) Overview of of our MCMC initialization method. We sample potential initial alignments τprop ∈ R
6×3 and

rate them using surrogate runs (see Section 5). Each proposal τprop is assigned a mark E(Surr(τprop)) > 0 based on the

alignment quality of the current surrogate. In the shown example, the best objective is E = 1.0614 and indeed this sample

visually shows the tightest alignment of X∗
20 and Y20. (right) 2D embedding with multi-dimensional scaling of all τprop used

for one initialization. Samples with small objective values have big, yellow circles and big objectives correspond to small,

blue circles. Evidently there is a big cluster around the optimal (yellow) circle which shows that our algorithm is able to

determine the optimal initialization with high confidence.

We combine intrinsic and extrinsic alignment in order to

gain both their advantages. To this end, we embed the in-

puts X and Y in the product space of the intrinsic (spectral

coordinates ΦK) and the extrinsic (smoothed Cartesian co-

ordinates XK and outer normals nX
K of X ) coordinates:

XK :=
�

ΦK , XK ,nX
K

�

∈ R
N×(K+6). (10a)

YK :=
�

ΨK , YK ,nY
K

�

∈ R
M×(K+6). (10b)

Using the normals makes the embedding more descrip-

tive because they convey information about the inside-

outside orientation of each point. Using both the Functional

Map C and the extrinsic deformation τ (see Eq. (4)) now

yields the morphed embedding X
∗
K :

X
∗
K :=

�

ΦKC
†, XK + ΦKτ ,

∗
n
X

K

�

∈ R
N×(K+6). (11)

∗
n
X

K are the normals of XK+ΦKτ . The next section will

go into detail on how to compute C and τ .

4.3. Hierarchical Matching

Putting everything together, we can define a hierarchical

correspondence algorithm with the following energy:

E(P,C, τ) := �PX
∗
K −YK�2F+

λfeatEfeat(C) + λarapEarap(τ). (12)

The regularization terms Efeat and Earap are defined in

Eq. (3) and Eq. (6) respectively. For the former we use the

SHOT [53] and HKS [50] descriptors. To minimize the en-

ergy E we choose an alternating optimization strategy. In

particular, we first fix the correspondences P and optimize

for the alignment (C, τ) and then do the same vice versa.

This is a common approach for both intrinsic [38] and ex-

trinsic [31, 32, 36] matching methods. Our overall matching

algorithm is the following:

Algorithm 2. (Hierarchical Matching)

1. Input: X ,Y
2. For k ∈ {0, . . . , |K|− 1}:

2.1 Pk+1 := argmin
Pmn∈{0,1},P�

1=1

E(P,Ck, τk).

2.2 (τk+1,Ck+1) := argmin
τ,C�C=I

E(Pk+1,C, τ).

3. Output: P|K|,X
∗
|K|.

The decomposition of the optimization problem E re-

sults in more tractable subproblems. For P this is a near-

est neighbor search, for C a Procrustes problem and for τ a

nonlinear least squares problem. The first two can be solved

in closed form, for the last one we use Gauss-Newton op-

timization. Our method now repeatedly solves those opti-

mization problems with shells of an increasing level of de-

tail K ∈ K on a logarithmic scale between Kinit = 6 and

Kmax = 500. See Figure 2 for a visualization of Algo-

rithm 2.

5. Initialization: Surrogate based Markov

chain Monte Carlo Sampling

Self-similarities are still a challenging problem for state-

of-the-art shape correspondence methods and many strug-

gle to distinguish them without proper initialization [56, 17,
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35]. Even for humans it is difficult to distinguish between

the legs/arms of an animal without any context. In other

words, our energy from Eq. (12) is highly non-convex with

a multitude of local minima. Unfortunately, there is no ob-

vious way to compute a meaningful initial alignment for all

classes of shapes. We propose an indirect approach to this

using Markov chain Monte Carlo (MCMC) sampling.

Surrogate runs This approach is based on efficiently ex-

ploring the space of initial poses instead of heuristically

picking one. We assign a probability distribution to the dis-

placement parameter τ ∈ R
Kinit×3 and sample from this

distribution. In particular, we set the prior for τ to the stan-

dard normal distribution N (0, I) and the negative log like-

lihood proportional to the objective value E. By design,

this yields samples τ that have a high objective value E.

Each τ is ranked according to the objective function E from

Eq. (12) and the lowest energy result is used to initialize the

full pipeline.

To evaluate E, we run a low cost version of the full

pipeline, a surrogate run, with Kmax = 20, no regularizers

λfeat,λarap := 0 and downsampled versions of the input

shapes to 1000 vertices. We evaluate Nprop = 100 different

proposals τprop. Those can be run in parallel with an av-

erage runtime of 0.46 seconds per surrogate. See Figure 4

for a visualization of this strategy and see Appendix A for

pseudo code of our MCMC algorithm as well as the imple-

mentation in the supplementary material.

6. Experiments

We apply our pipeline to various, challenging matching

tasks using two metrics to measure the quality of a match-

ing. The first one is the accuracy, defined as the geodesic

distance to ground truth matches, see Section 6.1. The

second is the smoothness of the correspondence P which

we quantify using the conformal distortion of triangles, see

(a) (b) (c)

Figure 6: Example matchings for real scans from the

FAUST [6] dataset. The shapes have very high resolution

(200k vertices) and contain scanning noise. The FAUST in-

terclass challenge consists of (a) different humans that are

(b) subject to topological changes and (c) extreme degrees

of noise and partiality. Like [18] we match a template (left)

to each target. Here, correspondences are color coded such

that matching points have the same color.

Section 6.2. To show that our method can be used out of the

box, we use the same set of parameters for all experiments

and do not require additional information except for the in-

puts X and Y . See our implementation in the supplemen-

tary material for more details. Additionally, we perform an

ablation study in Section 6.3 and a runtime analysis in the

Appendix C to further investigate our method. Finally, there

are more qualitative examples of matchings and style trans-

fer in the Appendix.

6.1. Shape correspondence

We evaluate the matching accuracy of our method ac-

cording to the Princeton benchmark protocol [22] on multi-

ple datasets. Given the ground-truth match (x, y∗), the error

of the calculated match (x, y) is given by the geodesic dis-
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Figure 5: Our matching accuracies for four datasets in comparison to other popular fully automatic shape correspondence

methods. For more details on the datasets, see Section 6.1.
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Figure 7: Example texture transfers with our method for

challenging interclass examples. The texture defined on the

source shape (horse) is transferred to two individual target

shapes (dog and human).

tance between y and y∗ normalized by the diameter of Y:

�(x) =
dgeo(y, y

∗)
�

area(Y)
(13)

TOSCA, SCAPE, TOPKIDS, SHRECCONN Two

datasets contain synthetic shapes with isometric pairs,

TOSCA [10] contains 76 shapes of humans and animals,

SCAPE [5] contains 72 poses of the same person. TOP-

KIDS [24] contains 25 poses of a human child with self in-

tersections. These shapes are also synthetic but topological

changes from real scans are simulated with merged meshing

at self-touching areas. The SHREC’19 Connectivity [34]

dataset contains 430 pairs of human shapes from different

classes with severe differences in the meshing ranging from

template sized shapes (N ≈ 5000 vertices) to real scans

(N > 200K), and varying vertex densities in different ar-

eas. We compare our matching accuracy on these datasets

to other fully-automatic matching methods, see Figure 5.

FAUST The FAUST [6] dataset contains 300 real scans

of different humans in various poses, see Figure 6. Besides

being high resolution N ≈ 200K with non-compatible

meshing, the shapes are noisy and highly non-isometric.

Additionally, there are various poses with topological

changes due to self touching parts. To address this issue,

we do not compute the correspondence directly for a given

pair of shapes but, like 3D-CODED [18], FARM [33] and

LBS-AE [26], use an intermediate template from [30] to

compute correspondences for two scans. This allows our

method to separate topological changes and deal with noisy

geometry, otherwise the as-rigid-as-possible assumption

leads to faulty deformations. The accuracy (in cm) of

the best methods for the FAUST [6] interclass challenge

reported on the website faust.is.tue.mpg.de are:

Method 3D-CODED SP Ours LBS FARM FMNet

Error 2.878 (4.883∗) 3.126 3.929 4.079 4.123 4.826

For 3D-CODED (*) refers to the unsupervised version.

The striking observation is that our method is on par with

the state-of-the-art without specializing on the class of hu-

man shapes. Ours is the only method listed here that

does not train on human shapes (3D-CODED, FMNet) or

makes strong modelling assumptions holding only for hu-

mans (Stitched Puppet (SP), LBS-AE, FARM). We did not

specifically tune parameters for this challenge.

6.2. Map Smoothness

A map with good accuracy can still produce artifacts

when transferring information form surface X to Y because

small scale noise typically does not have a severe effect on

the geodesic matching error (13). This behavior is, however,

prohibitive for applications like meshing, texture or normal

map transfer, see Figure 7. The conformal distortion of each

triangle after deformation measures the local consistency of

a matching [21, Eq. (3)]. This allows for a quantification of

the smoothness of the map P.

Figure 8 shows the conformal triangle distortion of our

method on the SCAPE dataset. Remarkably, the deforma-

tions obtained with our method are even smoother than the

ground-truth provided in [5]. The reason for that lies in

the way the authors construct this ground-truth. In order

to transfer the meshes they use a classical nonrigid registra-

tion algorithm [20] to register a template in a canonical pose

to 71 noisy scans of a person. This method requires ∼ 150

markers to get a faithful alignment, some of which are hand-

selected. The main concern was to obtain a possibly tight

alignment of the markers. However, in practice the markers

are not perfectly placed and these small deviations lead to

distorted triangles. In comparison to that, we align the tem-

plates without any markers while explicitly using an ARAP

penalization term. This evidently leads to smoother defor-

mations and the few triangles that get distorted are typically

not artifacts of random noise but rather in meaningful places

like the armpits or the abdomen of the person in Figure 8.

6.3. Ablation study

We assess the effect of the different components of our

method in the ablation study in Table 1. The main insight is

that there is an intricate interplay of the different subparts of

our method and the accuracy drops significantly if any part

is removed. In particular, the MCMC initialization strategy

is vital. Without it our deformation based approach is ex-

tremely prone to run into suboptimal local minima which

leads to a failure rate of over 83%. Remarkably, even when

our rigid initialization strategy (see end of Appendix A) is

replaced with random rigid poses the failure rate is only

around 38 − 50%. In many cases, our MCMC algorithm

is able to find the correct pose, even in the presence of large

scale rotational displacements of the inputs.

12271



Kernel matching Ours Ground truth Ours∗

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Conformal distortion factor

SCAPE

Ours∗

GT [5]

Ours

KM [56]

BCICP [42]

Zoomout [35]

Figure 8: Correspondence smoothness measured on the SCAPE dataset using conformal distortion of triangles. (Left) Qual-

itative comparison – red triangles are distorted whereas white triangles preserve the angles. Our deformed mesh shows the

most meaningful, artifact-free result. Additionally, we provide an example texture transfer to prove that our deformed mesh

(Ours∗) is the most useful one. (Right) Accumulated distortions for all 71 pairs in the dataset. There are two possibilities to

transfer the mesh of X to the reference pose Y . Either we use the deformed geometry X ∗ directly (Ours∗) or we snap it to

the surface Y post alignment using the map P : X → Y (Ours). The former is only possible for our method because it is the

only one here to calculate a deformation instead of only a correspondence. See Section 6.2 for more details.

SCAPE Ours λfeat = 0 λarap = 0 Extr. only Intr. only w/o normals w/o MCMC random rigid spectral rec.

Avg. error 0.0088 0.0211 0.0147 0.0344 0.0121 0.0115 0.0568 0.1163 0.0139

Failure rate 0 0.2676 0.0282 0.7606 0.2254 0.0141 0.8310 0.4930 0.0282

Avg. Distortion 0.1287 0.1171 0.1604 0.1322 0.1539 0.1310 0.2594 0.2055 0.1305

TOSCA Ours λfeat = 0 λarap = 0 Extr. only Intr. only w/o normals w/o MCMC random rigid spectral rec.

Avg. error 0.0056 0.0075 0.0066 0.0441 0.0205 0.0076 0.1039 0.0694 0.0098

Failure rate 0 0.2083 0.0833 0.7500 0.4028 0.0694 0.8611 0.3889 0.1111

Avg. Distortion 0.1654 0.1641 0.1926 0.1710 0.2239 0.1716 0.3485 0.2829 0.1666

Table 1: Ablation study on TOSCA and SCAPE. We turn off certain parts of the method or replace it with an alternative to

assess its necessity and compare the average geodesic error in % of the diameter, the failure rate and the average conformal

distortion for each setting. The failure rate is the number of pairs in % where the geodesic error is twice as high than (Ours).

λfeat,λarap = 0 turns off the regularizers, Extr./Intr. only, w/o normals removes one part of the embedding (see Eq. (10)),

w/o MCMC removes the initialization, random rigid replaces our rigid alignment strategy with random rigid poses, and

spectral rec. replaces smooth shells with spectral reconstruction (see Eq. (7)). The main insight is that the accuracy decreases

whenever one of the components is removed. The conformal distortion is rather stable, except when a big percentage of the

results are totally broken (e.g. w/o MCMC) or the as-rigid-as-possible regularizer is removed.

7. Conclusion

We have presented a novel approach to shape corre-

spondence that combines geometric and spectral alignment

by embedding the input shapes into an extrinsic-intrinsic

product space. Our method introduces smooth shells as a

coarse-to-fine shape approximation with minimal geome-

try changes between iterations. This is valuable for hier-

archical approaches. Furthermore, we solve the problem of

self-similarities by starting with an efficient surrogate based

Markov chain Monte Carlo approach in which the deforma-

tion energy is used to find the optimal initialization. Fi-

nally, our method produces state-of-the-art results on estab-

lished isometry datasets as well as two datasets which focus

on specific noise, namely different meshing and topology

changes. In the FAUST real-scan interclass challenge we

are on par with the state-of-the-art although we do not train

specifically for this set-up. All results were achieved with

the same set of parameters which shows great generality.
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[54] Bruno Vallet and Bruno Lévy. Spectral geometry process-

ing with manifold harmonics. In Computer Graphics Forum,

volume 27, pages 251–260. Wiley Online Library, 2008.

[55] Oliver van Kaick, Hao Zhang, Ghassan Hamarneh, and

Daniel Cohen-Or. A survey on shape correspondence. Com-

puter Graphics Forum, 30(6):1681–1707, 2011.

[56] Matthias Vestner, Zorah Lähner, Amit Boyarski, Or Litany,

Ron Slossberg, Tal Remez, Emanuele Rodolà, Alex M.

Bronstein, Michael M. Bronstein, Ron Kimmel, and Daniel

Cremers. Efficient deformable shape correspondence via

kernel matching. In International Conference on 3D Vision

(3DV), October 2017.

[57] Matthias Vestner, Roee Litman, Emanuele Rodolà, Alex M
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