
Differentiable Adaptive Computation Time for Visual Reasoning

Cristóbal Eyzaguirre and Álvaro Soto

Pontificia Universidad Católica de Chile

ceyzaguirre4@uc.cl, asoto@ing.puc.cl

Abstract

This paper presents a novel attention-based algorithm

for achieving adaptive computation called DACT, which,

unlike existing ones, is end-to-end differentiable. Our

method can be used in conjunction with many networks;

in particular, we study its application to the widely know

MAC architecture, obtaining a significant reduction in the

number of recurrent steps needed to achieve similar accu-

racies, therefore improving its performance to computation

ratio. Furthermore, we show that by increasing the maxi-

mum number of steps used, we surpass the accuracy of even

our best non-adaptive MAC in the CLEVR dataset, demon-

strating that our approach is able to control the number of

steps without significant loss of performance. Additional

advantages provided by our approach include considerably

improving interpretability by discarding useless steps and

providing more insights into the underlying reasoning pro-

cess. Finally, we present adaptive computation as an equiv-

alent to an ensemble of models, similar to a mixture of ex-

pert formulation. Both the code and the configuration files

for our experiments are made available to support further

research in this area.

1. Introduction

In the past few years, deep learning (DL) techniques

have achieved state-of-the-art performance in most, if not

all, computer vision tasks [17, 21, 8, 10]. While these

methods are powerful in terms of representational capacity,

they lack a suitable mechanism to allocate computational

resources according to the complexity of each particular in-

ference. In effect, most popular DL based models used in

computer vision applications, such as CNN [18], RNN [18],

Transformer [24], and MAC [10] have a fixed processing

pipeline whose depth is independent of the complexity of

the current input/output relation.

The drawbacks associated with the use of a fixed pro-

cessing pipeline can be illustrated by considering tasks that

require a complex sequential inference. This is the case of

new Visual Question Answering (VQA) scenarios that have

Figure 1. Examples of questions in the CLEVR [15] dataset that

show a significant variation in the number of reasoning steps that

are needed to answer them correctly.

been recently proposed to support research in the area of

visual reasoning, such as the CLEVR and GQA datasets

[15, 11]. These datasets pose challenging natural language

questions about images whose solution requires the use

of perceptual abilities, such as recognizing objects or at-

tributes, identifying spatial relations, or implementing high-

level capabilities like counting. As an example, Figure 1

shows two instances from the CLEVR dataset [15]. In this

case, each visual question entails a different level of com-

plexity to discover the correct answer. Specifically, while

the first question involves just the identification of a spe-

cific attribute from a specific object, the second question

requires the identification and comparative analysis of sev-

eral attributes from several objects. Despite this significant

difference, current visual reasoning models use the same

processing pipeline to answer both questions.

From the previous example, it is possible to foresee that

computational efficiency, at training and inference time, is a

relevant disadvantage of using a fixed processing pipeline.

In effect, the usual goal of a DL model is to maximize ac-

curacy, and as a consequence, the model is forced to cal-

ibrate its processing structure according to the most com-

112817



plex cases, overestimating the computational load needed

to solve easier ones. This lack of computational efficiency

not only causes longer processing times, but it also has ma-

jor implications in terms of the environmental impact of AI

technologies, a problem that is gaining considerable atten-

tion [23, 22]. As an example, [23] provides an estimation

of the carbon footprint of several NLP models, concluding

that current AI models are becoming environmentally un-

friendly. This stresses the need to provide current DL mod-

els with a suitable adaptive mechanism to control the com-

putational effort needed to generate each inference. Further-

more, besides computational efficiency, as we show in this

work, the use of an adaptive processing pipeline might also

play an important role in improving the overall accuracy of

a model and to improve its interpretability.

The previous argumentation highlights the need for suit-

able mechanisms to control computational complexity in

DL models; however, so far, research in this area has been

limited. Soft attention [2] and skip connection mechanisms

[9] appear as possible options to improve the efficiency of

current DL architectures. These strategies, however, do

not allow to save computation, as they still require exe-

cuting the full processing pipelines to select attention ar-

eas or skip connections. Modular approaches are also an

option [1, 16]. In this case, from a collection of special-

ized processing modules, a controller or program genera-

tor adaptively selects on the fly a suitable configuration to

handle each query. Unfortunately, this strategy does not

scale appropriately with the number and diversity of mod-

ules needed to solve a task, which are usually limited to a

fixed predefined collection. As an alternative, instead of us-

ing specialized modules, recent approaches use a general-

purpose neural module that is applied sequentially to the

input [10, 12]. In this case, each step in the sequence is

expected to execute an operation necessary to arrive at the

correct answer. The specification of the number of steps

needed to answer each question, however, is non-trivial, so

these models usually fix this value using a hyper-parameter

for the whole model.

In a seminal paper [7], Graves introduces Adaptive Com-

putation Time, ACT, an algorithm to adaptively control

computational complexity for Recurrent Neural Networks

(RNN). The key idea behind ACT is to add a sigmoidal halt-

ing unit to an RNN that, at each inference step, determines

if the RNN should stop or continue its processing. As an

extra role, the activation values of the halting unit are also

used to ensemble the final output of the model as a weighted

sum of intermediate states. [7] demonstrates the advantages

of ACT by showing its impact on improving the computa-

tional efficiency of RNN models on several synthetic tasks.

Posterior works have also shown the advantages of ACT

when it is applied in real-world scenarios, in the context of

language modeling [5, 19] and image understanding [19].

Despite this success, as we show in this work, ACT suffers

from instability problems to find a suitable number of steps

to stop processing. We believe that this is due to its non-

differentiable nature as ACT achieves halting by forcing the

sum of the weights used to ensemble the final output be

equal one by using a non-differentiable piecewise function.

Motivated by the evident advantages that a mechanism

such as ACT might provide to modern module networks,

we propose a new approach to adaptive computation based

on a novel attention-based formulation. As key insights,

this mechanism addresses two main problems of ACT: i) Its

non-differentiability and ii) The assumption that the hidden

states of recurrent architectures can be linearly combined.

Our approach overcomes the non-differentiable operation in

ACT by using a halting unit to calculate, at each step, a run-

ning approximation of the final output of the model. This

approximation leads to a monotonically decreasing prob-

ability distribution over all the outputs that implicitly in-

cludes a residual estimation of the benefits of continuing

the processing steps. This allows us to calculate an upper

bound for the future gain provided by subsequent outputs

of the model. The result is a fully differentiable model that

can be trained using gradient descent whose computation

can be reduced by mathematically determining when an in-

terruption of the processing pipeline does not harm its final

performance. Finally, in our formulation, we also formalize

adaptive computation as a gate-controlled bucket of models

that resembles the operation of a mixture of experts model

[13].

As a testbed for our formulation, we choose the MAC

network [10], an architecture that is gaining considerable

attention for solving tasks that require visual reasoning.

We highlight, however, that our mathematical formulation

is highly general, and that it can also be applied to other

learning architectures. Our main results indicate that us-

ing the proposed method for adaptive computing achieves

better performance than the same architecture with a com-

parable fixed computational cost. Remarkably, the resulting

models learn subjacent patterns in the data, as shown by the

strong correlation between the number of steps executed on

inferences and the template used to generate it, correlations

which we then exploit to improve the interpretability of the

model. All this stands in stark contrast to the results ob-

tained from the use of ACT, which fails to improve results

or even meaningfully adapt the number of steps.

In summary, the main contributions of this work are: (i)

A novel formulation of an adaptive computational mech-

anism that is fully differentiable and it can be incorpo-

rated to current DL based models, such as MAC network;

(ii) A comparative analysis of the performance of our pro-

posed method and ACT, demonstrating the superior perfor-

mance of the first; (iii) An extensive experimental evalu-

ation demonstrating that the use of our adaptive computa-

12818



tional mechanism on top of the MAC network can increase

not only computational efficiency but also performance and

interpretability of the resulting model.

2. Related work

Recent works have pointed out the need to improve the

computational efficiency of DL models [23, 22]. As an ex-

ample, [23] shows a surprising estimation related to the high

carbon footprint of current DL techniques. Similarly, [22]

argues about the relevance of including computational ef-

ficiency as an evaluation criterion for research and appli-

cations related to artificial intelligence. In spite of this in-

creasing need, research to improve computational efficiency

of DL models is still limited.

In terms of deep convolutional models, there have been

works that attempt to control the depth of these models,

however, the main focus has been on improving accu-

racy but not computational efficiency. As an example, ap-

proaches such as skip connections [9] still require to com-

pute a full model. Compact CNN models have also been ex-

plored in the context of visual recognition [26, 25, 4]. As an

example, sparsity constraints have been used to control the

total number of active parameters in a network [4]. This is

an effective strategy to reduce the computational complex-

ity of a model, however, it consists of a global constraint

that does not adapt dynamically to each input. Attention

mechanisms appear as an attractive option to focus compu-

tation in relevant information areas of the input, however,

current attention techniques, such as soft-attention [2] or

self-attention [24], focus also on performance, requiring to

execute the full processing pipeline.

In the context of recurrent networks, Graves proposes

ACT [7], an algorithm designed to provide a RNN with a

mechanism to dynamically adapt computational complex-

ity. Specifically, ACT attempts to dynamical allocate the

proper amount of computation for each particular input

sample. The main challenge is that the complexity of each

input is unknown before attempting to build a suitable out-

put. ACT handles this issue by adding a halting unit whose

activation determines if the RNN should stop or continue

with another processing step. These activation values are

then used to construct the models final output, as a weighted

sum of intermediate states of all previous recurrent steps.

This is performed through a series of non-differentiable op-

erations mainly used to enforce a hard limit so that no sub-

sequent iteration changes the model output. As we show in

this work, this results in noisy gradients that do not handle

properly the information about the number of processing

steps being used.

In spite of its limitations, ACT has been applied to mul-

tiple tasks beyond the synthetic cases reported in the orig-

inal work [7]. It has been used to improve results on the

LAMBADA language modeling dataset using a Universal

Transformer architecture [5], achieving a new state-of-the-

art performance. Also, on the challenging task of character

level language modeling, it has been used to dynamically

increase the attention span of a Transformer model, achiev-

ing state-of-the-art performance on the text8 and enwiki8

datasets. Furthermore, on the natural language reasoning

corpus SNLI dataset, it has been reported to boost perfor-

mance and interpretability [19]. In terms of visual recogni-

tion, [6] proposes a DL architecture based on residual net-

works that uses ACT to dynamically choose the number of

executed layers for different pre-defined regions in the in-

put image. [6] applies this strategy to the case of visual

classification, reporting improving performance in terms of

computational efficiency and model interpretability.

Our approach to adaptive computation has substantial

differences with respect to ACT. ACT achieves halting by

forcing that the weights used to combine each step’s output

into the final answer sum exactly one. To attain this behav-

ior a non-differentiable piecewise function is used, namely:

if the sum of the weights is more than one, then change the

last weight so that the sum is exactly one. In contrast, our

approach maintains the full gradient by only halting dur-

ing evaluation (and not during training). The weights used

to combine all the step output’s are described by a mono-

tonically decreasing probability distribution that implicitly

includes future steps yet to be computed. The result is

a fully differentiable model for training with gradient de-

scent whose computation can be reduced during inference

by mathematically determining when the interruption can-

not change the output.

In terms of modular networks, existing approaches can

be divided into those that combine multiple specialized

modules [1, 16], and those that use a single general pur-

pose module [10, 12]. In the case of specialized modules,

the generation of the sequences required costly supervision

or elaborate reinforcement learning training schemes. In the

case of a general purpose module, the selection of the mod-

ule to execute is trivial (only one), however, the number of

steps to apply this module cannot be determined for each

sample, instead its value is fixed as a hyper-parameter. In

this work, we build upon these networks by replacing this

fixed hyper-parameter by an adaptive approach to select the

horizon of the computational pipeline.

3. Differentiable Adaptive Computation Time

In this section, we present our method to imple-

ment a Differentiable Adaptive Computation Time strategy

(DACT). Our formulation can be applied to any model or

ensemble that can be decomposed as a series of modules

or submodels mn, n ∈ [1, . . . , N ] that can be ordered by

complexity. For example, recurrent networks are composed

by iterative steps, CNNs by residual blocks, and ensembles

by smaller models. We refer to the composition as our final

12819



Figure 2. The accumulated output an is built by linearly combining an−1 with the output of the nth model (following Equation 2). Each

step can limit the contribution of future steps by maintaining or reducing the value of the scalar pn−1 used for the linear combination

(illustrated with a dotted line). Any hn valued roughly zero will force pn to this value, effectively disallowing the outputs of future models

from altering the current accumulated output, and effectively imposing that this an become the final output Y .

model or ensemble M , and to its output as Y .

In the context of VQA, mn receives as an input question

Q and image I , as well as any relevant representation from a

previous submodel mr , r < n. Each submodel mi should

produce its own prediction yn about the correct answer to

Q. Additionally, each submodel mn should also produce

a sigmoidal output hn ∈ [0, 1] that represents how uncer-

tain is mn about the correctness of its output yn, where we

define the initial value h0 = 1.

The use of scalars hn is the main mechanism to provide

M with an adaptive computation mechanism. The key idea

is to restrict models with higher index s > n from altering

the final answer of M once the current uncertainty about

the correct answer is below a target level. With this goal in

mind, let define:

pn =

n
∏

i=1

hi = hnpn−1 (1)

The value of pn can be interpreted as the probability that

a subsequent submodel ms, s > n might change the value

of the final answer Y of the ensemble M . Consequently, we

define the initial value p0 = 1.

According to the previous formulation, hn represents the

uncertainty of submodel mn, while pn represents the uncer-

tainty of the full ensemble considering the first n models.

From Eq. (1), it is easy to see that the values of pn are

monotonically decreasing with respect to index n. Also,

notice that a small value of hn forces the future values of

pn to be close to 0.

We still need to describe how to combine all intermediate

outputs yn (n ∈ [1, . . . , N ]) to form Y . We achieve this by

defining auxiliary accumulator variables an which contain

the ensemble’s answer up to step n. By using Eq. 1, we can

construct an in such a manner that for some step n with a

low associated pn then an ≈ Y :

an =

{−→
0 if n = 0

ynpn−1 + an−1 (1− pn−1) otherwise
(2)

It follows from this definition that Y can always be

rewritten as a weighted sum of intermediate outputs yn. Ad-

ditionally, the sum of the weights is always equal to 1, thus

describing a valid probability distribution over the interme-

diate outputs yn. Both proofs are included in supplementary

material.

Therefore, by describing what is effectively a pair-wise

linear interpolation, we obtain a method for implicitly at-

tending the outputs of each model in the ensemble, includ-

ing succeeding ones. In this manner, what we propose is

essentially a mixture of experts type ensemble [14] where

we remove the controller and replace the gating model for

the implicit distribution described above. As a main result,

by adding probabilities instead of hidden values as in ACT,

we remove the assumption of ACT that the hidden states of

the underlying RNN are approximately linear.

No restriction is placed on whether two models in the

ensemble can communicate so long as the origin of the ex-

change is always before in the ordered model sequence as

is always the case with recurrent architectures.

3.1. Penalizing complexity

Following the principle of Ockham’s razor, we wish to

reduce complexity when it is not needed by choosing sim-

pler models in lieu of more complex ones when both pro-

vide similar results. To achieve this, we define the ponder

cost ρ as:

ρ =

N
∑

n=1

pn (3)

By adding the ponder cost to the loss function L we en-

courage the network to minimize the contribution of more

complex models. This is used in the next section 3.2 to re-

duce computation.

L̂(x,y) = L(x,y) + τρ(x) (4)

where τ is the time penalty, a hyper-parameter used to mod-

erate the trade-off between complexity and error.

12820



3.2. Reducing computation time

The previous formulation allows us to train a model in-

corporating the DACT methodology. In other words, we

modify the training process of the model to allow simpler

models to cap the maximum impact of all subsequent ones

(equations 1 and 2). As a consequence, we can avoid run-

ning more complex models when they cannot significantly

change the final output Y . In this Section, we show that at

test time we can use a halting criterion to ensure that the

subsequent steps of the sequence do not change the current

prediction.

The choice of the criteria for halting (and therefore re-

ducing computation) depends greatly on the task and how

close of an approximation is required. In this work, our

goal is to achieve the same top-1 accuracy with and without

using DACT. This is equivalent to establish a halting crite-

rion such that the class with highest probability in an, i.e.

using n sub-models, will be the same as that in Y .

We know that yn (the intermediate output of the nth clas-

sification model) is restricted to 0 ≤ yn ≤ 1 as a result of

using either Softmax or Sigmoid functions. Since the maxi-

mum change of the accumulated answer an in the remaining

d = N − n iterations is limited by pn, we can calculate the

maximum difference between the predicted probabilities for

the top most class and the runner-up. Consequently, we can

achieve reduced computation by halting once this difference

is insurmountable.

Without loss of generality consider the case where, for

some step n, the class with the highest probability in the

accumulated answer an corresponds to class c∗ with prob-

ability P (c∗, n), and the runner-up (second best) class is

cru with probability P (cru, n). The minimum value for the

probability of the class c∗ after the d remaining steps is ob-

tained when all the future steps assign a minimum probabil-

ity (0) to this class. We can use this result to obtain a lower

bound to the probability:

min(c∗, N) ≥ P (c∗, n)
n+d−1
∏

i=n

(1− pi) (5)

Leveraging that pn ≥ pn′ (for any n′ greater than n) in

conjunction with Eq. 2, we can establish that the minimum

value for the class at c∗ after another d steps is always:

min(c∗, N) ≥ P (c∗, n)(1− pn)
d (6)

Likewise, the maximum value that the probability for

the runner-up class cru can take after all unused d steps

(max(cru , N)) is achieved when the maximum probability

(1) has been assigned to this class at every remaining step.

Replacing this value into Eq. 2 yields an upper bound to the

value that the probability for the class cru can take:

max(cru , N) ≤ P (cru, n)
n+d−1
∏

i=n

(1− pi)

+

n+d−1
∑

i=n

pi

n+d−1
∏

j=i+1

(1− pj) (7)

Then, since 0 ≤ pn ≤ 1 and pn ≥ pn′ (∀n′ ≥ n), we

obtain that the maximum value for the class cru is:

max(cru , N) ≤ P (cru, n) + pnd (8)

We say that the difference between the top class and

the runner up is insurmountable once we prove that

min(c∗, N) ≥ max(cru , N), and thus we can cut com-

putation since the remaining steps cannot change the final

answer of the model. Mathematically, this means the halt-

ing condition is achieved when:

P (c∗, n)(1− pn)
d ≥ P (cru, n) + pnd (9)

which is the criterion used in this work to stop processing.

4. Experiments

The MAC network is a state-of-the-art recurrent ar-

chitecture that decomposes problems into reasoning steps.

This network iterates for a fixed number of times (usually

12) where each step first attends the question, then the im-

age, and finally, it updates an internal memory representa-

tion. When applied to the CLEVR [15] dataset, the MAC

sets state-of-the-art performance with 98.9% accuracy.

We start from a PyTorch [20] port of MAC available on-

line 3, which we trained without self-attention to achieve a

maximum accuracy score of 98.6% on CLEVR overall. To

help convergence and speed up training, we first pre-train

a variant of the model on CLEVR without gating or self-

attention for ten epochs (with all hyper-parameters set to

their defaults). We then reset all optimizers and train three

main variants starting from the saved weights. First, we add

the gate to the MAC, slightly improving the results. Sec-

ond, we train several ACT versions using different ponder

costs. Finally, we do the same with DACT. All variants are

trained for another additional 30 epochs, saving the weights

with the highest associated accuracy on the validation set.

As one of the main goals of adaptive computation is

to maximize performance at lower computational cost, we

evaluate each model’s accuracy with respect to the average

number of steps taken to reach the best score. As illustrated

in Figure 4, models resulting from the application of DACT

2This ACT variant was cherry-picked as it achieved the highest accu-

racy while also doing the maximum amount of steps observed for ACT.
3https://github.com/ceyzaguirre4/mac-network-pytorch

12821



Figure 3. Questions in CLEVR are synthetically generated following templates, for example, by replacing <C> and <M> with a color

and material in the template “How many <C> <M> things are there?”. Accordingly, adding adaptability to the model does not increase

performance but rather, similar complexity to solve. The figure shows the average amount of computation used by three models for each

question family, sorted by the average number of steps used by the respective model. The first image (a) illustrates how ACT fails to

learn how to answer the most straightforward questions in less than three steps, or the hardest in more than five 2. Below it, b) shows the

results for a variant of DACT that averages approximately the same number of steps but uses more of the available spectrum, significantly

improving model performance. The last image shows a variant of DACT, which uses 50% more reasoning steps on average and thus

achieves even better performance.

Figure 4. Scatterplot showing the relationships between computa-

tion (measured in average steps, horizontal), and precision (mea-

sured in accuracy, vertical)for each model, where every experi-

ment was repeated three times. The results obtained with DACT

are shown in color, with individual runs represented as small cir-

cles while the averages for each penalty are shown as larger ones.

The averaged results for ACT are shown as gray Xes. No color is

used as the value for the ponder cost did not impact the number

of steps. The diamonds show the average accuracy obtained by

MAC at different network lengths, while the dotted line represents

the accuracy of the best performing 12 step MAC.

to MAC substantially outperform non-adaptive versions of

MAC with similar computation cost in the CLEVR dataset

(achieved by training a MAC with the number of steps fixed

Figure 5. Learning curves of DACT enabled MACs with different

ponder costs. For reference, we include the maximum accuracy

achieved by any non-adaptive MAC as a dotted line. The black

marks show the average accuracy obtained by this model when

restricted to 12, 9, 5, 3, and 2 steps from top to bottom, respec-

tively. Recall that these models are first pre-trained for ten epochs

without any gating or adaptive algorithms.

to the closest integer). Additionally, in our experiments,

DACT trained with a ponder cost of λ = 1× 10−3 repeat-

edly obtains an accuracy comparable to the best achieved

by any MAC and, on average, surpasses all tested alter-

natives. This apparent contradiction (obtaining better re-

sults with less computation) can be explained by consider-

12822



ing that DACT-augmented-MACs have the same represen-

tational capacity as regular MACs, but can choose to reduce

computation when needed.

The same results also show that, when provided with suf-

ficient resources, MAC increases its performance reducing

its gap with respect to DACT versions. This tendency, how-

ever, does not hold beyond 12 iterations, as shown also in

[10]. We train a 15 step MAC with gating using the same

training scheme, and the results are worse than those from

its 12 step counterpart, revealing the inadequacy of the gat-

ing mechanism. In contrast, DACT-enabled-MACs with the

maximum amount of steps set to 15 can be fine-tuned from

existing 12 step models to obtain the best results of any

model tested at 98.72% accuracy. In addition to improving

performance, these results prove that using our algorithm

on MACs makes them more robust to increase the value of

the maximum number of steps.

On the other hand, models trained with the existing al-

gorithm (ACT) are unsuccessful in surpassing the accuracy

of computationally equivalent MACs. In particular, DACT

responds as expected to variations in the ponder cost, adapt-

ing its computation accordingly, however, ACT proves to be

insensitive to the ponder cost. As an example, a variant of

ACT without ponder cost (λ = 0.0) performs 3.2 steps on

average and obtains an accuracy of 95.8%.

We also evaluate how well the model adapts to variations

in question complexity, since the rationale behind adapt-

ing the number of steps is to enable the models to allocate

more computation to more complex questions. As expected,

DACT iterates fewer times for easy questions and more

when the input question is more complex, improving model

performance at no additional computational cost. In Fig-

ure 3, questions are clustered by family type which trans-

lates to groups that require similar step sequences to solve

and therefore are of similar complexity (the figure is further

explained in supplementary material, where we include ex-

amples for each family). This figure shows a remarkable

correlation between computation and question complexity,

despite not including any type of supervision about these

factors.

Finally, in order to evaluate the generality of the sug-

gested approach to real data, we evaluate the combined

DACT-MAC architecture on the more diverse images and

questions in the GQA dataset [11]. We start by again pre-

training a non-gated MAC (4 steps, 5 epochs) and then fine-

tuning ACT, DACT and gated MAC variants for another 15

epochs. The results shown in Table 1 of the supplemen-

tary material show that DACT is effective in reducing the

number of steps needed while maintaining most of the per-

formance of the architecture that always iterates the max-

imum number of times (four steps). However, we found

in our experiments that for GQA the chosen architecture

(MAC) doesn’t benefit from iterating more than two steps,

Figure 6. Attention maps, intermediate answers, and halting prob-

abilities captured from DACT for the image and question shown.

Three steps were needed to arrive at the answer. The first two

steps output wrong answers with high uncertainty (pn ≈ 1). The

last step, however, has identified the relevant object and can thus

answer correctly and with confidence.

and even then the advantage gained over its non recurrent

single-step version is marginal. Accordingly, adding adapt-

ability to the model does not increase accuracy but rather

results in a small but measurable reduction in performance.

Regardless of the above, the experimental results high-

light the advantages of our algorithm with respect to ACT,

showing that DACT once again obtains better results for

the same number of steps. Additionally, while our method

continues to adapt computation in a coherent manner to the

time penalties, ACT remains mostly irresponsive to the val-

ues these take. Furthermore, the high correlations between

computation and question type are also present for the GQA

dataset as Figure 2 of the supplementary material shows, re-

vealing once more that DACT learnt to meaningfully adapt

complexity without supervision.

5. Discussion

As in previous works [16, 10], we also analyze the atten-

tion maps provided by the model. In particular, we examine

both the linguistic and visual attentions generated at each

step. Also, we raise the question of whether the proposed

architecture can indeed improve interpretability. Figure 7

shows examples of the attention maps generated by the 12

12823



Figure 7. Linguistic and visual attention maps for both the standard MAC architecture (left) and our DACT enabled variant trained with

τ = 5× 10
−3 (right). Besides the obvious and substantial reduction in the number of steps used to answer, our model also contributes to

the overall interpretability of the inference. This is achieved by adding a proxy of the number of steps taken to the loss function, effectively

coerce the model into only using fewer (and therefore more likely to be semantically strong) steps. The question attentions above show

that the last two steps are similar for both models, but that only one of the other ten steps used by MAC was necessary.

step MAC. Since the MAC architecture only considers the

last state in memory for the final classification, the final con-

trols tend to be significant. Indeed, our test indicates that the

last few execution steps generate similar attention maps to

those produced by our adaptive variant. However, as Figure

3 shows, very few queries need all 12 steps of computation,

so most of the steps execute either, repetitions of other op-

erations, or are just padding (e.g. attending punctuation).

The above stands in contrast to our DACT enabled vari-

ant, which in practice provides a free lunch by maintain-

ing the performance while increasing interpretability with-

out (in the case of MAC) adding additional parameters. We

achieve this by adding the differentiable approximation to

the number of steps taken, the ponder cost (Eq. 3), to the

loss function. Consequently, since the model is coerced

into only using significant steps, we find that those taken

are more likely to be semantically meaningful.

In addition, the formation of the final output of the model

from the sub-outputs enables us to check what the model

would answer at each timestep. When analyzed in con-

junction with the halting probabilities both yield valuable

insights on the internal representation of the model. For

instance, in Figure 6, the first step has minimal informa-

tion from the question and image and consequently is very

uncertain of the given answer. However, this limited infor-

mation is enough for the model to identify that the question

involves the color of some object, and therefore the answer

is the color of the only object it has seen. We expect the in-

creased transparency of the model will assist future studies

on explainability and the detection of biases in datasets.

The difference in steps for distinct queries allows us to

obtain an estimation of the complexity of each encoded

question as shown in 3. These can then be combined to

obtain an estimator for subsets of the dataset. Estimators

such as the average complexities of questions can be use-

ful for curriculum learning [3], providing a novel way of

separating data that does not require supervision.

Finally, due to its non-differentiable inclusion of the

number of steps used, ACT effectively provides the same

penalty to each step. On the other hand, DACT is not lim-

ited in this respect, since probabilities pn are entirely differ-

entiable. This allows for the inclusion of functions of the

amount of steps in the loss, opening another line for future

work. We expect that the inclusion of non-linear functions

of the ponder cost (such as the square of its value) can also

be a interesting avenue for future research.

6. Conclusion

This paper introduces a new algorithm for adaptive com-

putation called DACT, which, unlike to existing ones, is

end-to-end differentiable. By combining our method with

the MAC architecture, we manage to significantly improve

its performance to computation ratio by reducing the num-

ber of recurrent steps needed to achieve a certain accu-

racy threshold. Furthermore, we show that the inclusion of

DACT improves the robustness of the resulting model to an

increase in the number of processing steps, improving per-

formance with respect to previous state-of-the-art results in

CLEVR. Additionally, our results also show that DACT im-

proves interpretability by providing additional insights into

the internal operation of the MAC architecture, showing

how its prediction and uncertainty change at the different

steps of the estimation. As future work, we believe that

our formulation of adaptive computation as an ensemble of

models can motivate further research in this area.

Acknowledgments: This work was partially funded by

FONDECYT grant 1181739 and the Millennium Institute

for Foundational Research on Data (IMFD).

12824



References

[1] Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan

Klein. Neural module networks. 2016 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Jun 2016.

2, 3

[2] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine trans-

lation by jointly learning to align and translate. 2015. 2,

3

[3] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Ja-

son Weston. Curriculum learning. In Proceedings of the

26th Annual International Conference on Machine Learning,

ICML ’09, pages 41–48, New York, NY, USA, 2009. ACM.

8

[4] S. Changpinyo, M. Sandler, and A. Zhmoginov. The

power of sparsity in convolutional neural networks.

arXiv:1702.06257, 2017. 3

[5] Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob

Uszkoreit, and Lukasz Kaiser. Universal transformers.

CoRR, abs/1807.03819, 2018. 2, 3

[6] Michael Figurnov, Maxwell D. Collins, Yukun Zhu, Li

Zhang, Jonathan Huang, Dmitry P. Vetrov, and Ruslan

Salakhutdinov. Spatially adaptive computation time for

residual networks. CoRR, abs/1612.02297, 2016. 3

[7] Alex Graves. Adaptive computation time for recurrent neural

networks. CoRR, abs/1603.08983, 2016. 2, 3

[8] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-

shick. Mask r-cnn. In Proceedings of the IEEE international

conference on computer vision, pages 2961–2969, 2017. 1

[9] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. 2015. 2, 3

[10] D. Hudson and C.D. Manning. Compositional attention net-

works for machine reasoning. In ICLR, 2018. 1, 2, 3, 7

[11] Drew A Hudson and Christopher D Manning. Gqa: A new

dataset for real-world visual reasoning and compositional

question answering. Conference on Computer Vision and

Pattern Recognition (CVPR), 2019. 1, 7

[12] Drew A. Hudson and Christopher D. Manning. Learning by

abstraction: The neural state machine, 2019. 2, 3

[13] Robert Jacobs, Michael Jordan, Steven J. Nowlan, and Ge-

offrey E. Hinton. Adaptive mixture of local expert. Neural

Computation, 3:78–88, 02 1991. 2

[14] R.A. Jacobs, M.I. Jordan, S.J. Nowlan, and G.E. Hinton.

Adaptive mixtures of local experts. Neural Computation,

3(1):79–87, 1991. 4

[15] Justin Johnson, Bharath Hariharan, Laurens van der Maaten,

Li Fei-Fei, C. Lawrence Zitnick, and Ross B. Girshick.

CLEVR: A diagnostic dataset for compositional language

and elementary visual reasoning. CoRR, abs/1612.06890,

2016. 1, 5

[16] J. Johnson, B. Hariharan, L. van der Maaten, J. Hoffman, L.

Fei-Fei, C.L. Zitnick, and R. Girshick. Inferring and execut-

ing programs for visual reasoning. 2017. 2, 3, 7

[17] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

Imagenet classification with deep convolutional neural net-

works. In Advances in neural information processing sys-

tems, pages 1097–1105, 2012. 1

[18] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature,

521:436–444, 2015. 1

[19] Mark Neumann, Pontus Stenetorp, and Sebastian Riedel.

Learning to reason with adaptive computation, 2016. 2, 3

[20] Adam Paszke, Sam Gross, Soumith Chintala, Gregory

Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-

ban Desmaison, Luca Antiga, and Adam Lerer. Automatic

differentiation in pytorch. 2017. 5

[21] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali

Farhadi. You only look once: Unified, real-time object de-

tection. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 779–788, 2016. 1

[22] R. Schwartz, J. Dodge, N. A. Smith, and O. Etzioni. Green

AI. CoRR, abs/1907.10597, 2019. 2, 3

[23] Emma Strubell, Ananya Ganesh, and Andrew McCallum.

Energy and policy considerations for deep learning in nlp.

arXiv preprint arXiv:1906.02243, 2019. 2, 3

[24] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,

A.N. Gomez, L. Kaiser, and I. Polosukhin. Attention is all

you need. In NIPS, 2017. 1, 3

[25] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li. Learning

Structured Sparsity in Deep Neural Networks. In Conference

on Neural Information Processing Systems (NIPS), 2016. 3

[26] H. Zhou, J. M. Alvarez, and F. Porikli. Less Is More: To-

wards Compact CNNs. In European Conference on Com-

puter Vision (ECCV), 2016. 3

12825


