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Abstract

We present a method for solving two minimal problems for

relative camera pose estimation from three views, which are

based on three view correspondences of (i) three points and

one line and (ii) three points and two lines through two

of the points. These problems are too difficult to be effi-

ciently solved by the state of the art Gröbner basis methods.

Our method is based on a new efficient homotopy continu-

ation (HC) solver, which dramatically speeds up previous

HC solving by specializing HC methods to generic cases of

our problems. We characterize their number of solutions

and show with simulated experiments that our solvers are

numerically robust and stable under image noise. We show

in real experiments that (i) SIFT feature location and orien-

tation provide good enough point-and-line correspondences

for three-view reconstruction and (ii) that we can solve diffi-

cult cases with too few or too noisy tentative matches where

the state of the art structure from motion initialization fails.

1. Introduction

3D reconstruction has made an impact [4] by mostly re-

lying on points in Structure from Motion (SfM) [1, 67, 23,

49]. Still, even production-quality SfM technology fails [4]
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Figure 1. A deficiency of the traditional two-view approach to

bootstraping SfM: not enough features detected (small red dots)

and thus a SOTA SfM pipeline COLMAP [67] fails to recon-

struct the relative camera pose. In contrast, the proposed trinoc-

ular method requires only three matching features: two triplets of

point-tangents (points with SIFT orientation shown in green and

cyan) and one triplet of points without orientation (purple) to re-

construct the pose. Red cameras are computed by our approach,

and green shows ground truth.

when the images contain (i) large homogeneous areas with

few or no features; (ii) repeated textures, like brick walls,

giving rise to a large number of ambiguously correlated fea-

tures; (iii) blurred areas, arising from moving cameras or

objects; (iv) large scale changes where the overlap is not

sufficiently significant; or (v) multiple and independently

moving objects each lacking a sufficient number of features.

The failure of bifocal pose estimation using RANSAC on

hypothesized correspondences, e.g., using 5 points [48], is

highlighted in a dataset of images of mugs, Figure 1 (sim-

ilar to the dataset in [51] but without a calibration board),

for which the failure rate using the standard SfM pipeline

COLMAP [63] is 75%. The failure of just directly apply-
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ing the 5-point algorithm in this example is even higher.

A similar situation exists for images containing repeated

patterns where there are plenty of features, but determin-

ing correspondences is challenging. Most traditional mul-

tiview pipelines estimate the relative pose of the two best

views and then register the remaining views using a P3P al-

gorithm [68] to reduce the failure rate. The focus of this

paper is to address the issue of failure of traditional bifocal

algorithms in such cases.

The failure of bifocal algorithms motivates the use of

(i) more complex features, i.e., having additional attributes

and (ii) more diverse features. We propose that orienta-

tion (in the sense of inclination) is a key attribute to dis-

ambiguate correspondences and we show that SIFT orien-

tation in particular is a stable feature across views for tri-

focal pose estimation. Orientation can also from curve tan-

gents [18, 17, 6], and the orientation of a straight line in

multiple views also constrains pose. Observe, however, that

orientation cannot be constrained in two views alone: SIFT

orientation or line orientations in two views are uncorre-

lated, but together can identify their 3D counterparts and

thus can constrain orientation in a third view. This motivates

trinocular pose estimation based on point features endowed

with orientation or including straight line features.

Camera estimation from trifocal tensors is long believed

to augment two-view pose estimation [21], although a re-

cent study suggests no significant improvements over bifo-

cal pairwise estimation [31]. The calibrated trinocular rela-

tive pose estimation from four points, 3v4p, is notably diffi-

cult to solve [50, 59, 60, 17], and is not a minimal problem –

it is over-constrained. The first working trifocal solver [50]

effectively parametrizes the relative pose between two cam-

eras as a curve of degree ten representing possible epipoles.

A third view is then used to select the epipole that mini-

mizes reprojection errors. In this sense, trinocular pose es-

timation has not truly been tackled as a minimal problem.

Trifocal pose estimation requires the determination of

11 degrees of freedom: six unknowns for each pair of

rotation R and translation t, less one for metric ambigu-

ity. Three types of constraints arise in matching triplets of

point features endowed with orientation. First, the epipo-

lar constraint provides an equation for each pair of corre-

spondences in two views. Second, in a triplet of corre-

spondences, each pair of correspondences are required to

match scale, providing another constraint; a total of three

equations per triplet. It is easy to see, informally, that three

points are insufficient to determine trifocal pose, while four

points are too many. Third, each triplet of oriented feature

points provides one orientation constraint. Thus, with three

points, only two points need to be endowed with orienta-

tion, giving a total of 11 constraints for the 11 unknowns.

We refer to this problem of three triplets of corresponding

points, with two of the points having oriented features as

“Chicago.” In the second scenario, i.e., using straight lines

as features, with three points, only one free (unattached to a

point) straight line feature is required. We refer to the prob-

lem of three triplets of corresponding points and one triplet

of corresponding free lines as “Cleveland.” This paper ad-

dresses trifocal pose estimation for the above two scenar-

ios, shows that both are minimal problems, and develops

efficient solvers for the resulting polynomial systems.

Specifically, each problem comprises eleven trifocal

constraints that in principle give systems of eleven polyno-

mials in eleven unknowns. These systems are not trivial to

solve and require techniques from numerical algebraic ge-

ometry [9, 14, 41] (i) to probe whether the system is over

or under constrained or otherwise minimal; (ii) to under-

stand the range of the number of real solutions and estimate

a tight upper bound; and (iii) to develop efficient and prac-

tically relevant methods for finding solutions which are real

and represent camera configurations. This paper shows that

the Chicago problem is minimal and has up to 312 solutions

(the area code of Chicago is 312) of which typically 3-4 end

up becoming relevant to camera configurations. Similarly,

we show that the Cleveland problem is minimal and has up

to 216 solutions. The minimality of combinations of points

and lines for the general case [15] is a parallel development

to the more concrete treatment presented here.

The numerical solution of polynomial systems with sev-

eral hundred solutions is challenging. We devised a custom-

optimized Homotopy Continuation (HC) procedure which

iteratively tracks solutions with a guarantee of global con-

vergence [14]. Our framework specializes the general HC

approach to minimal problems typical of multiple view ge-

ometry, thereby dramatically speeding up the implementa-

tion. Specifically, our Chicago and Cleveland solvers are

not only the first solvers for such high degree problems, but

are orders of magnitude faster than solvers for such scale of

problems: 660ms on average on an Intel core i7-7920HQ

processor with four threads. They share the same generic

core procedure with plenty of room to be further optimized

for specific applications. Most significantly, since finding

each solution is a completely independent integration path

from the others, the solvers are suitable for implementation

on a GPU, as a batch for RANSAC, which would then re-

duce the run time by the number of tracks, i.e., by two or-

ders of magnitude. We hope that our developments can be

a template for solving other computer vision problems in-

volving systems of polynomials with a large number of so-

lutions, and in fact the provided C++ framework is fully

templated to include new minimal problems seamlessly.

It should be emphasized that trifocal pose estimation as a

more expensive operation is not intended as a competitor of

bifocal estimation algorithms. Rather, the trifocal approach

can be considered as a fallback option in situations where

bifocal pose estimation fails.
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Experiments are initially reported on complex synthetic

data to demonstrate that the system is robust and stable

under spatial and orientation noise and under a significant

level of outliers. Experiments on real data first demonstrates

that SIFT orientation is a remarkably stable cue over a wide

variation in view. We then show that our approach is suc-

cessful in all cases where the traditional SfM pipeline suc-

ceeds, but of course at higher computational cost. What is

critically important is that the proposed approach succeeds

in many other cases where the SfM pipeline fails, e.g., on

the EPFL [70] and Amsterdam Teahouse datasets [71], as

shown in Figures 9 and 10. Those cases where the bifocal

scheme fails – flagged by the number of inliers, for example

– can consider the application of a currently more expensive

but more capable trifocal scheme to allow for reconstruc-

tions that would otherwise be unsolved.

1.1. Literature Review

Trifocal Geometry Calibrated trifocal geometry estima-

tion is a hard problem [50, 59, 60, 62]. There are no pub-

licly available solvers we are aware of. The state of the art

solver [50], based on four corresponding points (3v4p), has

not yet found many practical applications [37].

For the uncalibrated case, 6 points are needed [26], and

Larsson et al. recently solved the longstanding trifocal min-

imal problem using 9 lines [38]. The case of mixed points

and lines is less common [53], but has seen a growing in-

terest in related problems [63, 58, 72]. The calibrated cases

beyond 3v4p are largely unsolved, spurring more sophisti-

cated theoretical work [2, 3, 33, 40, 43, 44, 52]. Kileel [33]

studied many minimal problems in this setting, such as the

Cleveland problem solved in the present paper, and reported

studies using homotopy continuation. Kileel also stated that

the full set of ideal generators, i.e.,, a given set of polyno-

mial equations provably necessary and sufficient to describe

calibrated trifocal geometry, is currently unknown.

Seminal works used curves and edges in three views

to transfer differential geometry for matching [5, 61], and

for pose and trifocal tensor estimation [13, 66], beyond

straight lines for uncalibrated [24, 7] and calibrated [64,

63] SfM. Point-tangents – not to be confused with point-

rays [11] – can be framed as quivers (1-quivers), or fea-

ture points with attributed directions (e.g., corners), initially

proposed in the context of uncalibrated trifocal geometry

but de-emphasizing the connection to tangents to general

curves [30, 74]. We note that point-tangent fields may also

be framed as vector fields, so related technology may apply

to surface-induced correspondence data [17]. In the cali-

brated setting, point-tangents were first used for absolute

pose estimation by Fabbri et al. [18, 19], using only two

points, later relaxed for unknown focal length [36]. The tri-

focal problem with three point-tangents as a local version of

trifocal pose for global curves was first formulated by Fab-

bri [17], presented here as a minimal version codenamed

Chicago.

Homotopy Continuation The basic theory of polynomial

homotopy continuation (HC) [9, 46, 69] was developed in

1976, and guarantees algorithms that are globally conver-

gent with probability one from given start solutions. A

number of general-purpose HC softwares have consider-

ably evolved over the past decade [8, 12, 41, 73]. The

computer vision community has used HC most notably in

the nineties for 3D vision of curves and surfaces for tasks

such as computing 3D line drawings from surface intersec-

tions, finding the stable singularities of a 3D line draw-

ing under projections, computing occluding contours, sta-

ble poses, hidden line removal by continuation from singu-

laritities, aspect graphs, self-calibration, and pose estima-

tion [10, 22, 27, 28, 29, 34, 35, 42, 45, 54, 55, 57], as well as

for MRFs [10, 47], and in more recent work [16, 25, 65]. An

implementation of the early continuation solver of Krieg-

man and Ponce [34] by Pollefeys is still widely available

for low degree systems [56].

As an early example [27], HC was used to find an early

bound of 600 solutions to trifocal pose with 6 lines. In the

vision community HC is mostly used as an offline tool to

carry out studies of a problem before crafting a symbolic

solver. Kasten et al. [32] recently compared a general pur-

pose HC solver [73] against their symbolic solver. However,

their problem is one order of magnitude lower degree than

the ones presented here, and the HC technique chosen for

our solver [14] is more specific than their use of polyhedral

homotopy, in the sense that fewer paths are tracked (c.f . the

start system hierarchy in [69]).

2. Two Trifocal Minimal Problems

2.1. Basic Equations

Our notation follows [24] with explicit projective scales. A

more elaborate notation [13, 18] can be used to express the

equations in terms of tangents to curves.

η

X

D

Y

x2

d2 y2

γ

α2∥x2∥

η
X

D

Y = X + ηD

x1

x2 x3

d1

d2
d3

y1 y3
y2

𝚁2, t2

𝚁3, t3

β2∥y2∥

Figure 2. Notation for the trifocal pose problems.
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Let X and Y denote inhomogeneous coordinates of 3D

points and xpv,ypv ∈ P2 denote homogeneous coordinates

of image points. Subscript p numbers the points and v num-

bers the views. If only a single subscript is used, it indexes

views. Symbols Rv, tv denote the rotation and translation

transforming coordinates from camera 1 to camera v; d is

an image line direction or curve tangent in homogeneous

coordinates; and D is the 3D line direction or space curve

tangent in inhomogeneous world coordinates. Symbols α, β

denote the depth of X,Y, respectively, and η is the dis-

placement along D corresponding to the displacement γ

along d.

We next formulate two minimal problems for points and

lines in three views and derive their general equations be-

fore turning to specific formulations. We first state the new

minimal problem, Chicago, followed by an important simi-

lar problem, Cleveland.

Definition 1 (Chicago trifocal problem). Given three points

x1v,x2v,x3v and two lines ℓ1v , ℓ2v in views v = 1, 2, 3,

such that ℓpv meet xpv for p = 1, 2, v = 1, 2, 3, compute

R2, R3, t2, t3.

Definition 2 (Cleveland trifocal problem). Given three

points x1v,x2v,x3v in views v = 1, 2, 3, and given one

line ℓ1v in each image, compute R2, R3, t2, t3.

To setup equations, we start with image projections of

points α1x1 = X, α2x2 = R2X + t2, α3x3 = R3X + t3
and eliminate X to get

αvxv = Rvα1x1 + tv, v = 2, 3. (1)

Lines in space through X are modeled by their points Y =
X + ηD in direction D from X. Points Y are projected to

images as β1y1 = X + ηD, β2y2 = R2(X + ηD) + t2,

β3y3 = R3(X+ ηD) + t3. Eliminating X gives

β1y1 = α1x1 + ηD

β2y2 = α2x2 + ηR2D

β3y3 = α3x3 + ηR3D.

(2)

The directions dv of lines in images, which are obtained as

the projection of Y minus that of X, i.e.,

βvγvdv = yv − xv = αvxv + ηD− xv, (3)

are substituted to (2). After eliminating D we get

(βv − αv)xv + βvγvdv = Rv ((β1 − α1)x1 + β1γ1d1) ,

(4)

for v = 2, 3. To simplify notation further, we change vari-

ables as ǫv = βv − αv , µv = βvγv and get

ǫvxv + µvdv = Rv (ǫ1x1 + µ1d1) , v = 2, 3. (5)

For Chicago, we have three times the point equations (1)

and two times the tangent equations (5). There are 12 un-

knowns R2, t2, R3, t3, and 24 unknowns αpv, ǫpv, µpv .

For Cleveland we need to represent a free 3D line L in

space. We write a general point of L as P+λV, with a point

P on L, the direction V of L and real λ. Considering a triplet

of corresponding lines represented by their homogeneous

coordinates ℓv , the homogeneous coordinates of the back-

projected planes are obtained as πv = [Rv | tv]
T ℓv . Now,

all πv have to contain P and V and thus

rank
[

[I | 0]T ℓ1 | [R2 | t2]
T ℓ2 | [R3 | t3]

T ℓ3
]

< 3. (6)

Equations 1 and 6 are the basic equations for Cleveland.

There are many ways to use elimination from these basic

equations to obtain alternate formulations for these prob-

lems. A particular formulation based on vanishing minors

for both Chicago and Cleveland, which produced our first

working solver for Chicago, is described in 3.1.

2.2. Problem Analysis

A general camera pose problem is defined by a list of la-

beled features in each image, which are in correspondence.

The image coordinates of each feature are given, and we

aim to determine the relative poses of the cameras. The

concatenated list of all the feature coordinates from all cam-

eras is a point in the image space Y , while the concate-

nated list of the features’ locations in the world frame or

camera 1 is a point in the world feature space W . Unless

the scale of some feature is given, the scale of the rela-

tive translations is indeterminate, so relative translations are

treated as in projective space. For N cameras, the combined

poses of cameras 2, . . . , N relative to camera 1 are points in

SE(3)N−1. Let the pose space be X , the projectivized ver-

sion of SE(3)N−1, and so dimX = 6N − 7. Given the 3D

features and the camera poses, we can compute the image

coordinates of the features by considering a viewing map

V : W ×X → Y . A camera pose problem is: given y ∈ Y ,

find (w, x) ∈ W ×X such that V (w, x) = y. The projec-

tion π : (w, x) 7→ x is the set of relative poses we seek.

Definition 3. A camera pose problem is minimal if V :W×
X→Y is invertible and nonsingular at a generic y ∈ Y .

A necessary condition for a map to be invertible and non-

singular is that the dimensions of its domain and range must

be equal. Let us consider three kinds of features: a point, a

point on a line (equivalently a point with tangent direction),

and a free line (a line with no distinguished point on it).

For each feature, say F , let CF be the number of cameras

that see it. The contributions to dimW and dimY of each

kind of feature are in the table below, where a point with a

tangent counts as one point and one tangent. Thus, a point

feature has several tangents if several lines intersect at it.
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Feature dimW dimY

Point, P 3 2 · CP

Tangent, T 2 1 · CT

Free Line, L 4 2 · CL

Accordingly, summing the contributions to dimY −dimW

for all the features, we have the following result.

Theorem 2.1. Let 〈x〉
.
= max(0, x). A necessary condition

for a N -camera pose problem to be minimal is 6N − 7 =
∑

P 〈2CP − 3〉+
∑

T 〈CT − 2〉+
∑

L〈2CL − 4〉.

For trifocal problems where all cameras see all features,

i.e., CP = CT = CL = 3, a pose problem with 3 feature

points and 2 tangents meets the condition. A pose problem

with 3 feature points and 1 free line also meets the condi-

tion. Adding any new features to these problems will make

them overconstrained, having dimY > dimW ×X .

To demonstrate sufficiency, it’s enough to find (w, x) ∈
W ×X where the Jacobian of V (w, x) is full rank. Such a

rank test for a random point (w, x) serves to establish non-

singularity with probability one. Using floating point arith-

metic this is highly indicative but not rigorous unless one

bounds floating-point error, which can be done using inter-

val or exact arithmetic. A singular value decomposition of

the Jacobian using floating point showing that the Jacobian

has a smallest singular value far from zero can be taken as a

numerical demonstration that the problem is minimal. Sim-

ilarly, a careful calculation using techniques from numerical

algebraic geometry can compute a full solution list in C for

a randomly selected example and thereby produce a numer-

ical demonstration of the algebraic degree of the problem.

Using such techniques, we make the following claims with

the caveat that they have been demonstrated numerically.

Theorem 2.2 (Numerical). The Chicago trifocal problem

is minimal with algebraic degree 312, and the Cleveland

problem is minimal with algebraic degree 216.

Proof. The previous paragraphs explain the numerical ar-

guments, but the definite proof by computer involves sym-

bolically computing the Gröbner basis over Q, with special

provisions, as discussed in the supplementary material.

While this result is in agreement with degree counts for

Cleveland in [33], the analysis of Chicago is novel as this

problem is presented in this paper for the first time.

3. Homotopy Continuation Solver

In this section we describe our homotopy continuation

solvers. In subsection 3.1 we reformulate the trifocal pose

estimation problems as parametric polynomial systems in

unknowns R2, R3, t2, t3 using the equations based on mi-

nors described in 3.1, while other formulations are dis-

cussed in supplementary material. We attribute relatively

`3

`1

`2

`4`5

`3

`1

`2

`4

Figure 3. Visible line diagrams for Chicago and Cleveland.

good run times to two factors. First, we use coefficient-

parameter homotopy, outlined in 3.2, which naturally ex-

ploits the algebraic degree of the problem. Already with

general-purpose software [8, 41], parameter homotopies are

observed to solve the problems in a relatively efficient man-

ner. Secondly, we optimize various aspects of the homotopy

continuation routine, such as polynomial evaluation and nu-

merical linear algebra. In subsection 3.3, we describe our

optimized implementation in C++ which was used for the

experiments described in section 4.

3.1. Equations based on minors

One way of building a parametric homotopy continuation

solver is to formulate the problems as follows. An instance

of Chicago may be described by 5 visible lines in each view.

We represent each line by its defining equation in homoge-

neous coordinates, i.e., as ℓ1v, . . . , ℓ5v ∈ C3×1 for each

v ∈ {1, 2, 3}. With the convention that the first three lines

pass through the three pairs of points in each view and that

the last two pass through associated point-tangent pairs, let

Lj =
[

[I |0]T ℓj1 [R2 |t2]
T ℓj2 [R3 |t3]

T ℓj3
]

, (7)

for each j ∈ {1, . . . , 5}. We enforce line correspondences

by setting all 3×3 minors of each Lj equal to zero. Certain

common point constraints must also be satisfied,i.e.,, that

the 4× 4 minors of matrices [L1 | L2 | L4], [L2 | L3 | L5],
and [L1 | L3] all vanish.

We may describe the Cleveland problem with similar

equations. For this problem, we are given lines ℓ1v, . . . , ℓ4v
for v ∈ {1, 2, 3}. We enforce line correspondences for ma-

trices L1, . . . , L4 defined as in (7) and common point con-

straints by requiring that the 4 × 4 minors of [L1 | L2],
[L1 | L3], and [L2 | L3] all vanish. The “visible lines”

representation of both problems is depicted in Figure 3.

3.2. Algorithm

From the previous section, we may define a specific sys-

tem of polynomials F (R;A) in the unknowns R =
(R2, R3, t2, t3) parametrized by A = (ℓ11, . . .). Many rep-

resentations for rotations were explored, but our main im-

plementation employs quaternions. A fundamental tech-

nique for solving such systems, fully described in [69], is

coefficient-parameter homotopy. Algorithm 1 summarizes

homotopy continuation from a known set of solutions for
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given parameter values to compute a set of solutions for

the desired parameter values. It assumes that solutions for

some starting parameters A0 have already been computed

via some offline, ab initio phase. For our problems of inter-

est, the number of start solutions is precisely the algebraic

degree of the problem.

Several techniques exist for the ab initio solve. For ex-

ample, one can use standard homotopy continuation to solve

the system F (R;A0) = 0, where A0 are randomly gener-

ated start parameters [9, 69]. This method may be enhanced

by exploiting additional structure in the equations or using

regeneration. Another technique based on monodromy, de-

scribed in [14], was used to obtain a set of starting solutions

and parameters for the solver described in Section 3.3.

Algorithm 1: Homotopy continuation solution tracker

input: Polynomial system F (R;A), where

R = (R2, R3, t2, t3), and A parametrizes the data;

Start parameters A0; start solutionsR0 where

F (R0;A0) = 0; Target parameters A∗

output: Set of target solutionsR∗ where F (R∗;A∗) = 0

Setup homotopy H(R; s) = F (R; (1− s)A0 + sA∗).
for each start solution do

s←− ∅
while s < 1 do

Select step size ∆s ∈ (0, 1− s].
Predict: Runge-Kutta Step from s to s+∆s such

that dH/ds = 0.

Correct: Newton step st. H(R; s+∆s) = 0.

s←− s+∆s

return Computed solutionsR∗ where H(R∗, 1) = 0.

3.3. Implementation

We provide an optimized open source C++ package called

MINUS – MInimal problem NUmerical Solver1. This is a

homotopy continuation code specialized for minimal prob-

lems, templated in C++, so that efficient specialization for

different problems and different formulations are possible.

The most reliable and high-quality solver according to our

experiments uses a 14 × 14 minors-based formulation. Al-

though other formulations have demonstrated further poten-

tial for speedup by orders of magnitude, there may be relia-

bility tradeoffs (c.f . supplementary material).

4. Experiments

Experiments are conducted first for synthetic data for a de-

tailed and controlled study, followed by experiment on chal-

lenging real data. Due to space constraints, we present re-

sults for the more challenging Chicago problem, leaving

Cleveland for supplementary materials.

1Code available at http://github.com/rfabbri/minus

Synthetic data experiments: The synthetic data from [20,

18] consists of 3D curves in a 4 × 4 × 4cm3 volume pro-

jected to 100 cameras (Figure 4), and sampled to get 5117

points enclosed with orientations (tangents of curves) that

are projections of the same 3D analytic points and 3D curve

tangents [20], and then degraded with noise and outliers.

Camera centers are randomly sampled around an average

sphere around the scene along normally distributed radii of

mean 1m and σ = 10mm. Rotations are constructed via

normally distributed look-at directions with mean along the

sphere radius looking to the object, and σ = 0.01 rad such

that the scene does not leave the viewport, followed by uni-

formly distributed roll. This sampling is filtered such that

no two cameras are within 15◦ of each other.

Our first experiment studies the numerical stability of the

solvers. The dataset provides true point correspondences,

which inherit an orientation from the tangent to the analytic

curve. For each sample set, three triplets of point corre-

spondences are randomly selected with two endowed with

the orientation of the tangent to the curve. The real solu-

tions are selected from among the output, and only those

that generate positive depth are retained. The unused tan-

gent of the third triplet is used to verify the solution as it

is an overconstrained problem. For each of the remaining

solutions a pose is determined.

The error in pose estimation is compared with ground-

truth as the angular error between normalized translation

vectors and the angular error between the quaternions. The

process of generating the input to pose computation is re-

peated 1000 times and averaged. This experiment demon-

strates that: (i) pose estimation errors are negligible, Fig-

ure 5(a); (ii) the number of real solutions is small: 35 real

solutions on average, pruned down to 7 on average by en-

forcing positive depth, and even further to about 3-4 physi-

cally realizable solutions on average employing the unused

tangent of the third point as verification, Figure 5(b); (iii)

the solver fails in about 1% of cases, which are detectable

and, while not a problem for RANSAC, can be eliminated by

running the solver for that solution path with higher accu-

racy or more parameters at a higher computational cost.

The second experiment shows that we can reliably and

accurately determine camera pose with correct but noisy

correspondences. Using the same dataset and a subset

of the selection of three triplets of points and tangents –

200 in total – zero-mean Gaussian noise was added both

to the feature locations with σ ∈ {0.25, 0.5, 0.75, 1.0}
pixels and to the orientation of the tangents with σ ∈
{0.05, 0.1, 0.15, 0.2} radians, reflecting expected feature

localization and orientation localization error. A RANSAC

scheme determines the feature set that generates the highest

number of inliers. Experiments indicate that the translation

and rotation errors are reasonable. Figure 6 (top) shows

how the extent of localization error affects pose (in terms
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Figure 4. Sample views of our synthetic dataset. Real datasets have

also been used in our experiments. (3D curves are from [18, 20]).

Figure 5. (a) Errors of computed pose are small showing that the

solver is numerically stable. (b) The histogram of the numbers of

real solutions in different stages.

Figure 6. Translational and rotational error distributions between

cameras 1 and 2 (blue) and 1 and 3 (green) for different levels of

feature localization (top) and orientation noise (bottom).

of translation and rotation errors) under a fixed orientation

perturbation of 0.1 radians; Figure 6 (bottom) shows how

the extent of orientation error affects pose under a fixed lo-

calization error of 0.5 pixels. The more meaningful repro-

jection error, i.e., the distance of a point from the location

Figure 7. Distributions of reprojection error of feature location

plotted against localization and orientation errors.

Figure 8. Average reprojection error on ground truth inlier points

with different ratio of outliers.

determined by the other two points in a triplet, is shown in

Figure 7, averaged over 100 triplets.

The third experiment probes whether the system can re-

liably and accurately determine trifocal pose when correct

noisy correspondences are mixed with outliers. With a fixed

feature localization error of 0.25 pixels and feature orienta-

tion error of 0.1 radians, 200 triplets of features were gen-

erated, with a percentage of these replaced with samples

having random location and orientation. The ratio of out-

liers is varied over 10%, 25% and 40%, and the experiment

is repeated 100 times for each. The resulting reprojection

error is small and stable across outlier ratios, Figure 8.

Computational efficiency: Each solve using our software

MINUS takes 660ms on average (1.9s in the worst case)

as compared to over 1 minute on average for the best pro-

totypes using general purpose software [8, 41], both on an

Intel core i7-7920HQ processor and four threads. More ag-

gressive but potentially unsafe optimizations towards mi-

croseconds are feasible, but require assessing failure rate,

as reported in the supplementary materials.

Real data experiments: Much like the standard pipeline,

SIFT features are first extracted from all images. Pair-

wise features are found by rank-ordering measured simi-

larities and making sure each feature’s match in another

image is not ambiguous and is above accepted similarity.

Pairs of features from the first and second views are then

grouped with the pairs of features from the second and

third views into triplets. A cycle consistency check enforces

that the triplets must also support a pair from the first and

third views. Three feature triplets are then selected using

RANSAC and the relative pose of the three cameras is deter-

mined from two tangents with their assigned SIFT orienta-

tion and a third point without orientation.
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Figure 9 shows that camera pose is reliabily and accu-

rately found using triplets of images taken from the EPFL

dense multi-view stereo test image dataset [70]. Our quan-

titative estimates on 150 random triplets from this dataset

give pose errors of 1.5 × 10−3 radians in translation and

3.24 × 10−4 radians in rotation. The average reprojec-

tion error is 0.31 pixels. These are comparable to or better

than the trifocal relative pose estimation methods reported

in [31]. Our conclusion for this dataset, whose purpose is

simply to validate the solver, is that our method is at least

as good and often better than the traditional ones. See sup-

plementary data for more examples and a substantiation of

this claim. Note that we do not advocate replacing the tra-

ditional method for this dataset. We simply state that our

method works just as well, of course at a higher cost.

The EPFL dataset is feature-rich, typically yielding on

the order of 1000 triplet features per image triplet. As such

it does not portray some of the typical problems faced in

challenging situations when there are few features available.

The Amsterdam Teahouse Dataset [71], which also has

ground-truth relative pose data, depicts scenes with fewer

features. Figure 10 (top) shows a triplet of images from this

dataset where there is a sufficient set of features (the soup

can) to support a bifocal relative pose estimation followed

by a P3P registration to a third view (using COLMAP [67]).

However, when the number of features is reduced, as in Fig-

ure 10 (bottom) where the soup can is occluded, COLMAP

fails to find the relative pose between pairs of these images.

In contrast, our approach, which relies on three and not five

features, is able to recover the camera pose for this scene.

Further results are in supplementary material.

We also created another featureless dataset similar to

the one in [51] but with the calibration board manually re-

moved. This scene lacks point features, which is extremely

challenging for traditional structure from motion. We built

20 triplets of images within this dataset. Within these 20

triplets, camera poses of only 5 triplets can be generated

with COLMAP, but with our method, 10 out of 20 camera

poses can be estimated. We reached a 100% improvement

over the standard pipeline on image triplets. The sample

successful cases are shown in Figure 1 and 11.

5. Conclusion

We presented a new calibrated trifocal minimal problem, an

analysis demonstrating its number of solutions, and a prac-

tical solver by specializing general computation techniques

from numerical algebraic geometry. Our approach is able to

characterize and solve a similar difficult minimal problem

with mixed points and lines. The increased ability to solve

trifocal problems is key to future work on broader problems

connecting the multi-view geometry of points and lines to

that of points and tangents appearing when observing 3D

curves, e.g., in scenes without point features, using tools of

Figure 9. Trifocal relative pose estimation of EPFL dataset. At

each row, image samples are shown with results on the right:

ground truth in green and estimated poses in red outlines.

Figure 10. Samples of trifocal relative pose estimation of the Am-

sterdam Teahouse dataset. Top row is a sample triplet of images

that COLMAP is able to tackle; second row is a triplet from the

images where COLMAP fails. COLMAP results are in blue out-

lines, our results are in red, and ground truth is green.

Figure 11. Trifocal relative pose results for a dataset comprising

three mugs, which is challenging for traditional SfM. For each row,

image triplet samples are shown, with results on the right. Ground

truth poses are in solid green and estimated poses are in red.

differential geometry [17, 20]. Our “100 lines of custom-

made solution tracking code” will also be used to try to im-

prove solvers of many other minimal problems which have

not been solved efficiently with Gröbner bases [39].
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