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Abstract

Conventional methods for object detection typically re-

quire a substantial amount of training data and preparing

such high-quality training data is very labor-intensive. In

this paper, we propose a novel few-shot object detection

network that aims at detecting objects of unseen categories

with only a few annotated examples. Central to our method

are our Attention-RPN, Multi-Relation Detector and Con-

trastive Training strategy, which exploit the similarity be-

tween the few shot support set and query set to detect novel

objects while suppressing false detection in the background.

To train our network, we contribute a new dataset that con-

tains 1000 categories of various objects with high-quality

annotations. To the best of our knowledge, this is one of the

first datasets specifically designed for few-shot object de-

tection. Once our few-shot network is trained, it can detect

objects of unseen categories without further training or fine-

tuning. Our method is general and has a wide range of po-

tential applications. We produce a new state-of-the-art per-

formance on different datasets in the few-shot setting. The

dataset link is https://github.com/fanq15/Few-Shot-Object-

Detection-Dataset.

1. Introduction

Existing object detection methods typically rely heav-

ily on a huge amount of annotated data and require long

training time. This has motivated the recent development of

few-shot object detection. Few-shot learning is challenging

given large variance of illumination, shape, texture, etc, in

real-world objects. While significant research and progress

have been made [1, 2, 3, 4, 5, 6, 7, 8], all of these methods

focus on image classification rarely tapping into the prob-

lem of few-shot object detection, most probably because

transferring from few-shot classification to few-shot object

detection is a non-trivial task.

Central to object detection given only a few shots is

how to localize an unseen object in a cluttered background,

which in hindsight is a general problem of object localiza-
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Figure 1. Given different objects as supports (top corners above),

our approach can detect all objects in the same categories in the

given query image.

tion from a few annotated examples in novel categories. Po-

tential bounding boxes can easily miss unseen objects, or

else many false detections in the background can be pro-

duced. We believe this is caused by the inappropriate low

scores of good bounding boxes output from a region pro-

posal network (RPN) making a novel object hard to be de-

tected. This makes the few-shot object detection intrinsi-

cally different from few-shot classification. Recent works

for few-shot object detection [9, 10, 11, 12] on the other

hand all require fine-tuning and thus cannot be directly ap-

plied on novel categories.

In this paper, we address the problem of few-shot object

detection: given a few support images of novel target object,

our goal is to detect all foreground objects in the test set that

belong to the target object category, as shown in Fig. 1. To

this end, we propose two main contributions:

First, we propose a general few-shot object detection

model that can be applied to detect novel objects without re-

training and fine-tuning. With our carefully designed con-

trastive training strategy, attention module on RPN and de-

tector, our method exploits matching relationship between

object pairs in a weight-shared network at multiple net-

work stages. This enables our model to perform online

detection on objects of novel categories requiring no fine-

training or further network adaptation. Experiments show

that our model can benefit from the attention module at the

early stage where the proposal quality is significantly en-

hanced, and from the multi-relation detector module at the
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later stage which suppresses and filters out false detection in

the confusing background. Our model achieves new state-

of-the-art performance on the ImageNet Detection dataset

and MS COCO dataset in the few-shot setting.

The second contribution consists of a large well-

annotated dataset with 1000 categories with only a few ex-

amples for each category. Overall, our method achieves sig-

nificantly better performance by utilizing this dataset than

existing large-scale datasets, e.g. COCO [13]. To the best

of our knowledge, this is one of the first few-shot object

detection datasets with an unprecedented number of object

categories (1000). Using this dataset, our model achieves

better performance on different datasets even without any

fine-tuning.

2. Related Works

General Object Detection. Object detection is a classical

problem in computer vision. In early years, object detec-

tion was usually formulated as a sliding window classifica-

tion problem using handcrafted features [14, 15, 16]. With

the rise of deep learning [17], CNN-based methods have

become the dominant object detection solution. Most of the

methods can be further divided into two general approaches:

proposal-free detectors and proposal-based detectors. The

first line of work follows a one-stage training strategy and

does not explicitly generate proposal boxes [18, 19, 20, 21,

22]. On the other hand, the second line, pioneered by R-

CNN [23], first extracts class-agnostic region proposals of

the potential objects from a given image. These boxes are

then further refined and classified into different categories

by a specific module [24, 25, 26, 27]. An advantage of this

strategy is that it can filter out many negative locations by

the RPN module which facilitates the detector task next. For

this sake, RPN-based methods usually perform better than

proposal-free methods with state-of-the-art results [27] for

the detection task. The methods mentioned above, however,

work in an intensive supervision manner and are hard to ex-

tend to novel categories with only several examples.

Few-shot learning. Few-shot learning in a classical set-

ting [28] is challenging for traditional machine learning al-

gorithms to learn from just a few training examples. Earlier

works attempted to learn a general prior [29, 30, 31, 32, 33],

such as hand-designed strokes or parts which can be shared

across categories. Some works [1, 34, 35, 36] focus on

metric learning in manually designing a distance formula-

tion among different categories. A more recent trend is to

design a general agent/strategy that can guide supervised

learning within each task; by accumulating knowledge the

network can capture the structure variety across different

tasks. This research direction is named meta-learning in

general [2, 5, 37, 38, 39]. In this area, a siamese network

was proposed in [37] that consists of twin networks sharing

weights, where each network is respectively fed with a sup-

port image and a query. The distance between the query and

its support is naturally learned by a logistic regression. This

matching strategy captures inherent variety between support

and query regardless of their categories. In the realm of

matching framework, subsequent works [3, 4, 6, 8, 10, 40]

had focused on enhancing feature embedding, where one

direction is to build memory modules to capture global con-

texts among the supports. A number of works [41, 42] ex-

ploit local descriptors to reap additional knowledge from

limited data. In [43, 44] the authors introduced Graph Neu-

ral Network (GNN) to model relationship between different

categories. In [45] the given entire support set was traversed

to identify task-relevant features and to make metric learn-

ing in high-dimensional space more effective. Other works,

such as [2, 46], dedicate to learning a general agent to guide

parameter optimization.

Until now, few-shot learning has not achieved ground-

breaking progress, which has mostly focused on the classi-

fication task but rarely on other important computer vision

tasks such as semantic segmentation [47, 48, 49], human

motion prediction [50] and object detection [9]. In [51] un-

labeled data was used and multiple modules were optimized

alternately on images without box. However, the method

may be misled by incorrect detection in weak supervision

and requires re-training for a new category. In LSTD [9] the

authors proposed a novel few-shot object detection frame-

work that can transfer knowledge from one large dataset to

another smaller dataset, by minimizing the gap of classi-

fying posterior probability between the source domain and

the target domain. This method, however, strongly depends

on the source domain and is hard to extend to very differ-

ent scenarios. Recently, several other works for few-shot

detection [9, 10, 11, 12] have been proposed but they learn

category-specific embeddings and require to be fine-tuned

for novel categories.

Our work is motivated by the research line pioneered by

the matching network [37]. We propose a general few-shot

object detection network that learns the matching metric be-

tween image pairs based on the Faster R-CNN framework

equipped with our novel attention RPN and multi-relation

detector trained using our contrastive training strategy.

3. FSOD: A Highly-Diverse Few-Shot Object

Detection Dataset

The key to few-shot learning lies in the generalization

ability of the pertinent model when presented with novel

categories. Thus, a high-diversity dataset with a large num-

ber of object categories is necessary for training a gen-

eral model that can detect unseen objects and for per-

forming convincing evaluation as well. However, existing

datasets [13, 52, 53, 54, 55] contain very limited categories

and they are not designed in the few-shot evaluation setting.

Thus we build a new few-shot object detection dataset.

Dataset Construction. We build our dataset from existing

large-scale object detection datasets for supervised learning

i.e. [54, 56]. These datasets, however, cannot be used di-

rectly, due to 1) the label system of different datasets are
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Figure 2. Dataset label tree. The ImageNet categories (red circles) are merged with Open Image categories (green circles) where the

superclasses are adopted.

Figure 3. The dataset statistics of FSOD. The category image num-

ber are distributed almost averagely. Most classes (above 90%) has

small or moderate amount of images (in [22, 108]), and the most

frequent class still has no more than 208 images.

inconsistent where some objects with the same semantics

are annotated with different words in the datasets; 2) large

portion of the existing annotations are noisy due to inaccu-

rate and missing labels, duplicate boxes, objects being too

large; 3) their train/test split contains the same categories,

while for the few-shot setting we want the train/test sets to

contain different categories in order to evaluate its general-

ity on unseen categories.

To start building the dataset, we first summarize a la-

bel system from [54, 56]. We merge the leaf labels in their

original label trees, by grouping those in the same seman-

tics (e.g., ice bear and polar bear) into one category, and

removing semantics that do not belong to any leaf cate-

gories. Then, we remove the images with bad label qual-

ity and those with boxes of improper size. Specifically, re-

moved images have boxes smaller than 0.05% of the image

size which are usually in bad visual quality and unsuitable

to serve as support examples. Next, we follow the few-shot

learning setting to split our data into training set and test

set without overlapping categories. We construct the train-

ing set with categories in MS COCO dataset [13] in case

researchers prefer a pretraining stage. We then split the test

set which contains 200 categories by choosing those with

the largest distance with existing training categories, where

the distance is the shortest path that connects the mean-

ing of two phrases in the is-a taxonomy [57]. The remain-

ing categories are merged into the training set that in total

contains 800 categories. In all, we construct a dataset of

1000 categories with unambiguous category split for train-

ing and testing, where 531 categories are from ImageNet

dataset [56] and 469 from Open Image dataset [54].

Dataset Analysis. Our dataset is specifically designed for

few-shot learning and for evaluating the generality of a

model on novel categories, which contains 1000 categories

with 800/200 split for training and test set respectively,

around 66,000 images and 182,000 bounding boxes in to-

Train Test

No. Class 800 200

No. Image 52350 14152

No. Box 147489 35102

Avg No. Box / Img 2.82 2.48

Min No. Img / Cls 22 30

Max No. Img / Cls 208 199

Avg No. Img / Cls 75.65 74.31

Box Size [6, 6828] [13, 4605]

Box Area Ratio [0.0009, 1] [0.0009, 1]

Box W/H Ratio [0.0216, 89] [0.0199, 51.5]

Table 1. Dataset Summary. Our dataset is diverse with large vari-

ance in box size and aspect ratio.

tal. Detailed statistics are shown in Table 1 and Fig. 3. Our

dataset has the following properties:

High diversity in categories: Our dataset contains 83

parent semantics, such as mammal, clothing, weapon, etc,

which are further split to 1000 leaf categories. Our label

tree is shown in Fig. 2. Due to our strict dataset split, our

train/test sets contain images of very different semantic cat-

egories thus presenting challenges to models to be evalu-

ated.

Challenging setting: Our dataset contains objects with

large variance on box size and aspect ratios, consisting of

26.5% images with no less than three objects in the test set.

Our test set contains a large number of boxes of categories

not included in our label system, thus presenting great chal-

lenges for a few-shot model.

Although our dataset has a large number of categories,

the number of training images and boxes are much less than

other large-scale benchmark datasets such as MS COCO

dataset, which contains 123,287 images and around 886,000

bounding boxes. Our dataset is designed to be compact

while effective for few-shot learning.

4. Our Methodology

In this section, we first define our task of few-shot de-

tection, followed by a detailed description of our novel few-

shot object detection network.

4.1. Problem Definition

Given a support image sc with a close-up of the target

object and a query image qc which potentially contains ob-

jects of the support category c, the task is to find all the tar-

get objects belonging to the support category in the query

and label them with tight bounding boxes. If the support set

contains N categories and K examples for each category,
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Figure 4. Network architecture. The query image and support image are processed by the weight-shared network. The attention RPN

module filters out object proposals in other categories by focusing on the given support category. The multi-relation detector then matches

the query proposals and the support object. For the N -way training, we extend the network by adding N − 1 support branches where each

branch has its own attention RPN and multi-relation detector with the query image. For K-shot training, we obtain all the support feature

through the weight-shared network and use the average feature across all the supports belonging to the same category as its support feature.

the problem is dubbed N -way K-shot detection.

4.2. Deep Attentioned Few-Shot Detection

We propose a novel attention network that learns a gen-

eral matching relationship between the support set and

queries on both the RPN module and the detector. Fig. 4

shows the overall architecture of our network. Specifically,

we build a weight-shared framework that consists of mul-

tiple branches, where one branch is for the query set and

the others are for the support set (for simplicity, we only

show one support branch in the figure). The query branch

of the weight-shared framework is a Faster R-CNN net-

work, which contains RPN and detector. We utilize this

framework to train the matching relationship between sup-

port and query features, in order to make the network learn

general knowledge among the same categories. Based on

the framework, we introduce a novel attention RPN and de-

tector with multi-relation modules to produce an accurate

parsing between support and potential boxes in the query.

4.2.1 Attention-Based Region Proposal Network

In few-shot object detection, RPN is useful in producing po-

tentially relevant boxes for facilitating the following task of

detection. Specifically, the RPN should not only distinguish

between objects and non-objects but also filter out negative

objects not belonging to the support category. However,

without any support image information, the RPN will be

aimlessly active in every potential object with high object-

ness score even though they do not belong to the support

category, thus burdening the subsequent classification task

of the detector with a large number of irrelevant objects. To

address this problem, we propose the attention RPN (Fig. 5)

which uses support information to enable filtering out most

background boxes and those in non-matching categories.

Thus a smaller and more precise set of candidate proposals

is generated with high potential containing target objects.

We introduce support information to RPN through the

attention mechanism to guide the RPN to produce relevant

Figure 5. Attention RPN. The support feature is average pooled to

a 1 × 1 × C vector. Then the depth-wise cross correlation with

the query feature is computed whose output is used as attention

feature to be fed into RPN for generating proposals.

proposals while suppressing proposals in other categories.

Specifically, we compute the similarity between the fea-

ture map of support and that of the query in a depth-wise

manner. The similarity map then is utilized to build the

proposal generation. In particular, we denote the support

features as X ∈ tS×S×C and feature map of the query as

Y ∈ tH×W×C , the similarity is defined as

Gh,w,c =
󰁛

i,j

Xi,j,c · Yh+i−1,w+j−1,c, i, j ∈ {1, ..., S}

where G is the resultant attention feature map. Here the

support features X is used as the kernel to slide on the query

feature map [58, 59] in a depth-wise cross correlation man-

ner [60]. In our work, we adopt the features of top layers

to the RPN model, i.e. the res4 6 in ResNet50. We find

that a kernel size of S = 1 performs well in our case. This

fact is consistent with [25] that global feature can provide a

good object prior for objectness classification. In our case,

the kernel is calculated by averaging on the support feature

map. The attention map is processed by a 3 × 3 convolu-

tion followed by the objectiveness classification layer and

box regression layer. The attention RPN with loss Lrpn is

trained jointly with the network as in [25].

4.2.2 Multi-Relation Detector

In an R-CNN framework, an RPN module will be followed

by a detector whose important role is re-scoring proposals
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Figure 6. Multi-Relation Detector. Different relation heads model

different relationships between the query and support image. The

global relation head uses global representation to match images;

local relation head captures pixel-to-pixel matching relationship;

patch relation head models one-to-many pixel relationship.

and class recognition. Therefore, we want a detector to have

a strong discriminative ability to distinguish different cate-

gories. To this end, we propose a novel multi-relation detec-

tor to effectively measure the similarity between proposal

boxes from the query and the support objects, see Fig. 6.

The detector includes three attention modules, which are

respectively the global-relation head to learn a deep em-

bedding for global matching, the local-correlation head

to learn the pixel-wise and depth-wise cross correlation be-

tween support and query proposals and the patch-relation

head to learn a deep non-linear metric for patch matching.

We experimentally show that the three matching modules

can complement each other to produce higher performance.

Refer to the supplemental material for implementation de-

tails of the three heads.

Which relation heads do we need? We follow the N -

way K-shot evaluation protocol proposed in RepMet [61] to

evaluate our relation heads and other components. Table 2

shows the ablation study of our proposed multi-relation de-

tector under the naive 1-way 1-shot training strategy and

5-way 5-shot evaluation on the FSOD dataset. We use the

same evaluation setting hereafter for all ablation studies on

the FSOD dataset. For individual heads, the local-relation

head performs best on both AP50 and AP75 evaluations.

Surprisingly, the patch-relation head performs worse than

other relation heads, although it models more complicated

relationship between images. We believe that the compli-

cated relation head makes the model difficult to learn. When

combining any two types of relation head, we obtain bet-

ter performance than that of individual head. By combin-

ing all relation heads, we obtain the full multi-relation de-

tector and achieve the best performance, showing that the

three proposed relation heads are complementary to each

other for better differentiation of targets from non-matching

objects. All the following experiments thus adopt the full

multi-relation detector.

Global R Local R Patch R AP50 AP75

✓ 47.7 34.0

✓ 50.5 35.9

✓ 45.1 32.8

✓ ✓ 49.6 35.9

✓ ✓ 53.8 38.0

✓ ✓ 54.6 38.9

✓ ✓ ✓ 55.0 39.1

Table 2. Experimental results for different relation head combina-

tions in the 1-way 1-shot training strategy.

4.3. Two-way Contrastive Training Strategy

A naive training strategy is matching the same category

objects by constructing a training pair (qc, sc) where the

query image qc and support image sc are both in the same

c-th category object. However a good model should not

only match the same category objects but also distinguish

different categories. For this reason, we propose a novel

2-way contrastive training strategy.

According to the different matching results in Fig. 7, we

propose the 2-way contrastive training to match the same

category while distinguishing different categories. We ran-

domly choose one query image qc, one support image sc
containing the same c-th category object and one other sup-

port image sn containing a different n-th category object,

to construct the training triplet (qc, sc, sn), where c ∕= n.

In the training triplet, only the c-th category objects in the

query image are labeled as foreground while all other ob-

jects are treated as background.

During training, the model learns to match every pro-

posal generated by the attention RPN in the query image

with the object in the support image. Thus the model learns

to not only match the same category objects between (qc,

sc) but also distinguish objects in different categories be-

tween (qc, sn). However, there are a massive amount of

background proposals which usually dominate the training,

especially with negative support images. For this reason, we

balance the ratio of these matching pairs between query pro-

posals and supports. We keep the ratio as 1:2:1 for the fore-

ground proposal and positive support pairs (pf , sp), back-

ground proposal and positive support pairs (pb, sp), and

proposal (foreground or background) and negative support

pairs (p, sn). We pick all N (pf , sp) pairs and select top 2N
(pb, sp) pairs and top N (p, sn) pairs respectively according

to their matching scores and calculate the matching loss on

the selected pairs. During training, we use the multi-task

loss on each sampled proposal as L = Lmatching + Lbox

with the bounding-box loss Lbox as defined in [24] and the

matching loss being the binary cross-entropy.

Which training strategy is better? Refer to Table 3. We

train our model with the 2-way 1-shot contrastive train-

ing strategy and obtain 7.9% AP50 improvement compared

with the naive 1-way 1-shot training strategy, which indi-

cates the importance in learning how to distinguish different

categories during training. With 5-shot training, we achieve

further improvement which was also verified in [1] that few-
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Figure 7. The 2-way contrastive training triplet and different

matching results. Only the positive support has the same category

with the target ground truth in the query image. The matching pair

consists of the positive support and foreground proposal, and the

non-matching pair has three categories: (1) positive support and

background proposal, (2) negative support and foreground pro-

posal and (3) negative support and background proposal.

shot training is beneficial to few-shot testing. It is straight-

forward to extend our 2-way training strategy to multi-way

training strategy. However, from Table 3, the 5-way train-

ing strategy does not produce better performance than the

2-way training strategy. We believe that only one negative

support category suffices in training the model for distin-

guishing different categories. Our full model thus adopts

the 2-way 5-shot contrastive training strategy.

Which RPN is better? We evaluate our attention RPN on

different evaluation metrics. To evaluate the proposal qual-

ity, we first evaluate the recall on top 100 proposals over 0.5

IoU threshold of the regular RPN and our proposed atten-

tion RPN. Our attention RPN exhibits better recall perfor-

mance than the regular RPN (0.9130 vs. 0.8804). We then

evaluate the average best overlap ratio (ABO [62]) across

ground truth boxes for these two RPNs. The ABO of atten-

tion RPN is 0.7282 while the same metric of regular RPN

is 0.7127. These results indicate that the attention RPN can

generate more high-quality proposals.

Table 3 further compares models with attention RPN and

those with the regular RPN in different training strategies.

The model with attention RPN consistently performs better

than the regular RPN on both AP50 and AP75 evaluation.

The attention RPN produces 0.9%/2.0% gain in the 1-way

1-shot training strategy and 2.0%/2.1% gain in the 2-way 5-

shot training strategy on the AP50/AP75 evaluation. These

results confirm that our attention RPN generates better pro-

posals and benefits the final detection prediction. The atten-

tion RPN is thus adopted in our full model.

5. Experiments

In the experiments, we compare our approach with state-

of-the-art (SOTA) methods on different datasets. We typi-

cally train our full model on FSOD training set and directly

evaluate on these datasets. For fair comparison with other

Training Strategy Attention RPN AP50 AP75

1-way 1-shot 55.0 39.1

1-way 1-shot ✓ 55.9 41.1

2-way 1-shot 63.8 42.9

2-way 5-shot 65.4 43.7

2-way 5-shot ✓ 67.5 46.2

5-way 5-shot ✓ 66.9 45.6

Table 3. Experimental results for training strategy and attention

RPN with the multi-relation detector.

methods, we may discard training on FSOD and adopt the

same train/test setting as these methods. In these cases, we

use a multi-way1 few-shot training in the fine-tuning stage

with more details to be described.

5.1. Training Details

Our model is trained end-to-end on 4 Tesla P40 GPUs

using SGD with a batch size of 4 (for query images).

The learning rate is 0.002 for the first 56000 iterations

and 0.0002 for later 4000 iterations. We observe that pre-

training on ImageNet [56] and MS COCO [13] can provide

stable low-level features and lead to a better converge point.

Given this, we by default train our model from the pre-

trained ResNet50 on [13, 56] unless otherwise stated. Dur-

ing training, we find that more training iterations may dam-

age performance, where too many training iterations make

the model over-fit to the training set. We fix the weights of

Res1-3 blocks and only train high-level layers to utilize low-

level basic features and avoid over-fitting. The shorter side

of the query image is resized to 600 pixels; the longer side

is capped at 1000. The support image is cropped around the

target object with 16-pixel image context, zero-padded and

then resized to a square image of 320 × 320. For few-shot

training and testing, we fuse feature by averaging the object

features with the same category and then feed them to the

attention RPN and the multi-relation detector. We adopt the

typical metrics [21], i.e. AP, AP50 and AP75 for evaluation.

5.2. Comparison with State-of-the-Art Methods

5.2.1 ImageNet Detection dataset

In Table 4, we compare our results with those of LSTD [9]

and RepMet [61] on the challenging ImageNet based 50-

way 5-shot detection scenario. For fair comparison, we use

their evaluation protocol and testing dataset and we use the

same MS COCO training set to train our model. We also use

soft-NMS [63] as RepMet during evaluation. Our approach

produces 1.7% performance gain compared to the state-of-

the-art (SOTA) on the AP50 evaluation.

To show the generalization ability of our approach, we

directly apply our model trained on FSOD dataset on the

test set and we obtain 41.7% on the AP50 evaluation which

is surprisingly better than our fine-tuned model (Table 4).

It should be noted that our model trained on FSOD dataset

1The fine-tuning stage benefits from more ways during the multi-way

training, so we use as many ways as possible to fill up the GPU memory.
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Method dataset fine-tune AP50 AP75

LSTD [9] COCO ✓
ImageNet 37.4 -

RepMet [11] COCO ✓
ImageNet 39.6 -

Ours COCO ✓
ImageNet 41.3 21.9

Ours FSOD†
✗ 41.7 28.3

Ours FSOD†
✓

ImageNet
44.1 31.0

Table 4. Experimental results on ImageNet Detection dataset for

50 novel categories with 5 supports. † means that the testing

categories are removed from FSOD training dataset. ✓
ImageNet

means the model is fine-tuned on ImageNet Detection dataset.

Method dataset fine-tune AP AP50 AP75

FR [10] COCO ✓
coco 5.6 12.3 4.6

Meta [12] COCO ✓
coco 8.7 19.1 6.6

Ours COCO ✓
coco 11.1 20.4 10.6

Ours FSOD†
✗ 16.6 31.3 16.1

Table 5. Experimental results on MS COCO minival set for 20

novel categories with 10 supports. † means that the testing cate-

gories are removed from FSOD training dataset. ✓
coco means the

model is fine-tuned on MS COCO dataset.

can be directly applied on the test set without fine-tuning

to achieve SOTA performance. Furthermore, although our

model trained on FSOD dataset has a slightly better AP50

performance than our fine-tuned model on the MS COCO

dataset, our model surpasses the fine-tuned model by 6.4%

on the AP75 evaluation, which shows that our proposed

FSOD dataset significantly benefits few-shot object detec-

tion. With further fine-tuning our FSOD trained model on

the test set, our model achieves the best performance, while

noting that our method without fine-tuning already works

best compared with SOTA.

5.2.2 MS COCO dataset

In Table 5, we compare our approach1 with Feature

Reweighting [10] and Meta R-CNN [12] on MS COCO

minival set. We follow their data split and use the same

evaluation protocol: we set the 20 categories included in

PASCAL VOC as novel categories for evaluation, and use

the rest 60 categories in MS COCO as training categories.

Our fine-tuned model with the same MS COCO training

dataset outperforms Meta R-CNN by 2.4%/1.3%/4.0% on

AP /AP50/AP75 metrics. This demonstrates the strong

learning and generalization ability of our model, as well

as that, in the few-shot scenario, learning general match-

ing relationship is more promising than the attempt to

learn category-specific embeddings [10, 12]. Our model

trained on FSOD achieves more significant improvement of

7.9%/12.2%/9.5% on AP /AP50/AP75 metrics. Note that

our model trained on FSOD dataset are directly applied on

the novel categories without any further fine-tuning while

all other methods use 10 supports for fine-tuning to adapt to

the novel categories. Again, without fine-tuning our FSOD-

trained model already works the best among SOTAs.

1Since Feature Reweighting and Meta R-CNN are evaluated on MS

COCO, in this subsection we discard pre-training on [13] for fair compar-

ison to follow the same experimental setting as described.

Method FSOD pretrain fine-tune AP50 AP75

FRCNN [25] ✗ ✓
fsod 11.8 6.7

FRCNN [25] ✓ ✓
fsod 23.0 12.9

LSTD [9] ✓ ✓
fsod 24.2 13.5

Ours trained directly ✗ 27.5 19.4

Table 6. Experimental results on FSOD test set for 200 novel

categories with 5 supports evaluated in novel category detection.

✓
fsod means the model is fine-tuned on FSOD dataset.

5.3. Realistic Applications

We apply our approach in different real-world applica-

tion scenarios to demonstrate its generalization capability.

Fig. 8 shows qualitative 1-shot object detection results on

novel categories in our test set. We further apply our ap-

proach on the wild penguin detection [64] and show sample

qualitative 5-shot object detection results in Fig. 9.

Novel Category Detection. Consider this common real-

world application scenario: given a massive number of im-

ages in a photo album or TV drama series without any la-

bels, the task is to annotate a novel target object (e.g., a

rocket) in the given massive collection without knowing

which images contain the target object, which can be in dif-

ferent sizes and locations if present. In order to reduce man-

ual labor, one solution is to manually find a small number

of images containing the target object, annotate them, and

then apply our method to automatically annotate the rest in

the image collection. Following this setting, we perform

the evaluation as follows: We mix all test images of FSOD

dataset, and for each object category, we pick 5 images that

contain the target object to perform this novel category ob-

ject detection in the entire test set. Note that different from

the standard object detection evaluation, in this evaluation,

the model evaluates every category separately and has no

knowledge of the complete categories.

We compare with LSTD [9] which needs to be trained on

novel categories by transferring knowledge from the source

to target domain. Our method, however, can be applied to

detect object in novel categories without any further re-

training or fine-tuning, which is fundamentally different

from LSTD. To compare empirically, we adjust LSTD to

base on Faster R-CNN and re-train it on 5 fixed supports for

each test category separately in a fair configuration. Results

are shown in Table 6. Our method outperforms LSTD by

3.3%/5.9% and its backbone Faster R-CNN by 4.5%/6.5%

on all 200 testing categories on AP50/AP75 metrics. More

specifically, without pre-training on our dataset, the perfor-

mance of Faster R-CNN significantly drops. Note that be-

cause the model only knows the support category, the fine-

tuning based models need to train every category separately

which is time-consuming.

Wild Car Detection. We apply our method2 to wild car de-

tection on KITTI [52] and Cityscapes [65] datasets which

are urban scene datasets for driving applications, where the

images are captured by car-mounted video cameras. We

2We also discard the MS COCO pretraining in this experiment.
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Figure 8. Qualitative 1-shot detection results of our approach on FSOD test set. Zoom in the figures for more visual details.

Figure 9. Our application results on the penguin dataset [64]. Given 5 penguin images as support, our approach can detect all penguins in

the wild in the given query image.

evaluate the performance of Car category on KITTI train-

ing set with 7481 images and Cityscapes validation set with

500 images. DA Faster R-CNN [66] uses massively an-

notated data from source domains (KITTI/Cityscapes) and

unlabeled data from target domains (Cityscapes/KITTI) to

train the domain adaptive Faster R-CNN, and evaluated the

performance on target domains. Without any further re-

training or fine-tuning, our model with 10-shot supports ob-

tains comparable or even better AP50 performance (37.0%

vs. 38.5% on Cityscapes and 67.4% vs. 64.1% on KITTI)

on the wild car detection task. Note that DA Faster R-CNN

are specifically designed for the wild car detection task and

they use much more training data in similar domains.

5.4. More Categories vs. More Samples?

Our proposed dataset has a large number of object cate-

gories but with few image samples in each category, which

we claim is beneficial to few-shot object detection. To con-

firm this benefit, we train our model on MS COCO dataset,

which has more than 115,000 images with only 80 cate-

gories. Then we train our model on FSOD dataset with

different category numbers while keeping similar number

of training image. Table 7 summarizes the experimental

results, where we find that although MS COCO has the

most training images but its model performance turns out

to be the worst, while models trained on FSOD dataset have

better performance as the number of categories incremen-

Dataset No. Class No. Image AP50 AP75

COCO [13] 80 115k 49.1 28.9

FSOD 300 26k 60.3 39.1

FSOD 500 26k 62.7 41.9

FSOD 800 27k 64.7 42.6

Table 7. Experimental results of our model on FSOD test set with

different numbers of training categories and images in the 5-way

5-shot evaluation.

tally increases while keeping similar number of training im-

ages, indicating that a limited number of categories with

too many images can actually impede few-shot object de-

tection, while large number of categories can consistently

benefit the task. Thus, we conclude that category diversity

is essential to few-shot object detection.

6. Conclusion

We introduce a novel few-shot object detection network

with Attention-RPN, Multi-Relation Detectors and Con-

trastive Training strategy. We contribute a new FSOD

which contains 1000 categories of various objects with

high-quality annotations. Our model trained on FSOD can

detect objects of novel categories requiring no pre-training

or further network adaptation. Our model has been vali-

dated by extensive quantitative and qualitative results on

different datasets. This paper contributes to few-shot ob-

ject detection and we believe worthwhile and related future

work can be spawn from our large-scale FSOD dataset and

detection network with the above technical contributions.
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