
Connect-and-Slice: an hybrid approach for reconstructing 3D objects

Hao Fang Florent Lafarge

Université Côte d’Azur, Inria

Firstname.Lastname@inria.fr

Abstract

Converting point clouds generated by Laser scanning,

multiview stereo imagery or depth cameras into compact

polygon meshes is a challenging problem in vision. Exist-

ing methods are either robust to imperfect data or scalable,

but rarely both. In this paper, we address this issue with an

hybrid method that successively connects and slices planes

detected from 3D data. The core idea consists in construct-

ing an efficient and compact partitioning data structure.

The later is i) spatially-adaptive in the sense that a plane

slices a restricted number of relevant planes only, and ii)

composed of components with different structural meaning

resulting from a preliminary analysis of the plane connec-

tivity. Our experiments on a variety of objects and sensors

show the versatility of our approach as well as its competi-

tiveness with respect to existing methods.

1. Introduction

Reconstructing surfaces from 3D data is still one of

the biggest challenges in computer vision. Most of exist-

ing methods, as the popular Poisson algorithm [15], are

designed to approximate free-form shapes by dense trian-

gular meshes. When the observed scenes contained geo-

metric regularities, typically man-made objects and urban

environments, these methods do not provide optimal re-

sults in terms of storage, rendering or editing capacity [2].

One prefers representing such scenes by more compact and

structure-aware Computer-Aided Design style models, i.e.

with concise polygon meshes in which each facet corre-

sponds to a large polygon [4].

Reconstructing concise polygon meshes is usually oper-

ated in two steps. First, planar primitives are detected from

input 3D data. A planar primitive is defined as the asso-

ciation of a plane and a subset of input data called inliers

from which the plane has been fitted to. Primitives are dis-

connected from each others and constitute an intermediate

representation between input 3D data and the output mesh.

The second step then consists in assembling primitives into

a surface mesh. This step constitutes the difficult part of

the problem. One strategy is to connect the primitives us-

ing proximity and structural considerations [1, 8, 17, 29].

Despite being fast and scalable, this solution is not robust

to defect-laden data, in particular when primitives are over-

or under-detected or when erroneous connections between

primitives exist. A more robust strategy consists in slicing

a 3D domain by extending the primitives. This leads to the

creation of a partition of polyhedral cells or polygonal facets

[5, 7, 24, 34]. The surface is then extracted by labeling the

cells as inside or outside the surface, or equivalently, by se-

lecting facets to be part of the surface. Because each prim-

itive exhaustively slices all the others, this solution is more

robust to defect-laden data than the first strategy. However,

its main shortcoming is the computational burden for slicing

the primitives into a partition of atomic surface and volume

elements, with typically unreasonable timing and memory

issues when more than one hundred primitives are handled.

None of these two strategies are both robust and scalable.

We address this problem with an hybrid method that suc-

cessively connects and slices primitives in a robust and scal-

able manner. The method is built on three important techni-

cal ingredients.

First, our algorithm has a preliminary step that ana-

lyzes the connectivity of primitives in order to search for

structurally-valid surface components. This allows us to

quickly process a part of the input primitives and solve ob-

vious primitive assembling situations.

Second, we construct a more flexible and lighter partition

data structure than the slicing methods. Our data structure

is spatially-adaptive in the sense that a primitive slices a re-

stricted number of relevant primitives based on spatial prox-

imity considerations. Moreover, its atomic elements have

different structural meanings that will guide the extraction

of the output surface.

Third, we propose a surface extraction mechanism that

operates from such an irregular data-structure in which cells

are not necessarily convex and free of intersection with

other cells. In particular, we do not measure data fidelity

to input 3D data directly, but instead to primitives: it allows

output models not to suffer from artifacts frequently found

with existing methods.

113490

We demonstrate the potential of our algorithm in terms

of flexibility, robustness and scalability on different types of

objects, going from buildings to mechanical pieces through

even free-form shapes. In particular, we show our algorithm

is faster and more scalable than state-of-the-art methods by

a significant margin.

2. Related works

Primitive detection. Detecting geometric primitives

from 3D data is an instance of the general problem of fitting

mathematical models to data. Region growing [21, 28]

and Ransac [31] mechanisms constitute the most popular

methods for detecting planes from 3D data. Some recent

works detect and regularize primitives according to geo-

metric relationships such as parallelism or orthogonality,

either sequentially [20, 25] or simultaneously [22, 26].

Such regularities typically allow the complexity of the

subsequent assembling step to be reduced. Other recent

methods also allow the extraction of geometric primitives

at key abstraction levels of the observed objects [12].

Although these methods work well in practice, primitive

detection remains an ill-posed problem with no guarantee

that the output configurations adequately describe the

observed object [9].

Connectivity-based methods. Analyzing a connec-

tivity graph to detect and link points intersecting plane

triples [8, 29, 33] usually works well when the correct

connectivity between primitives can be recovered. To be

robust to challenging data, one interactive solution is to

automatically snap primitives when the connectivity is

obvious, and let the user complete the output surface for the

conflicting situations [1]. Another solution consists in mix-

ing polyhedral surface components with flexible free-form

patches [17, 16]. Such a representation however does not

offer the level of compactness and simplicity of CAD style

models. Despite being fast, connectivity-based methods

suffer from a lack of robustness to defect-laden data, in

particular to over- and under-detection of primitives and

erroneous connections between primitives. Our approach

exploits some principles of these methods as a preliminary

step to quickly solve obvious plane assembling situations

and lighten the time-consuming slicing operations.

Slicing-based methods. The core of these methods con-

sists in partitioning a 3D domain by extending primitives.

The partitioning data-structure is typically a 3D tesselation

of polyhedral cells, which are themselves composed of

polygonal facets. The output surface is then extracted

by selecting a subset of facets from the tesselation. Be-

cause each primitive naively slices all the others, such a

data-structure, also called a plane arrangement [23], is

particularly dense and time-consuming to compute. Some

methods decompose the slicing operations into spatial

blocks [7, 5]. Such piecewise partitions increase scalability

by a good margin. However it creates geometric artifacts

as blocks often do not align well with data. These methods

also add artificial primitives along vertical and horizontal

axes in the partition to be more robust to missing primitives,

assuming the observed object aligns with these arbitrary

directions. A discrete partitioning [30, 34] that avoids

computing the exact geometry of the whole partition is a

less costly option, but also engenders geometric artifacts

when the discretization is not fine enough. Another

possible solution consists in filtering and simplifying the

input set of primitives to remove redundant planes and

reduce the computational burden of the slicing operations

[24]. Although these methods offer a good robustness to

imperfect configurations of primitives, they do not scale

well. Our approach proposes two key ingredients to solve

this issue: a new light and spatially-adaptive partitioning

data-structure and a preliminary connectivity analysis that

reduces the number of primitives to be processed during

slicing operations.

Methods with geometric assumptions. Some works

also exploit strong geometric assumptions. The Manhattan-

World assumption [10] enforces planes to follow only three

orthogonal directions. This assumption reduces both the ge-

ometry of output 3D models and the solution space to ex-

plore. Such an assumption is interesting for modeling build-

ings [19] and approximating shapes very coarsely [14]. An-

other frequent geometric assumption is to restrict the output

surface to a disk-topology with a 2.5D view-dependent rep-

resentation. This is well adapted to reconstruct buildings

from airborne data [35, 36, 27, 18], facades from street-side

data [3], and indoor scenes from images [6]. Although these

assumptions efficiently reduce the solution space in general,

their use is restricted to specific applications. To the con-

trary, our approach remains generic.

3. Overview

Our algorithm takes as input a point cloud. It can also

start from a dense triangle mesh. The algorithm returns as

output a polygonal mesh which is 2d-manifold, watertight

and intersection-free. Optionally, the user can relax these

geometric guarantees. We first extract from the input 3D

data a set of primitives by standard methods [28, 31]. For

each detected primitive, we compute (i) a rough approx-

imation of its boundaries using α-shape [11], and (ii) an

oriented 2D bounding box, i.e. the smallest rectangle lying

on the detected plane that contains all its projected inliers.

We call a ǫ−bounding box, the oriented 2D bounding box

scaled up by an offset ǫ.

The algorithm operates in three steps illustrated in Fig-

ure 1. First, the connectivity relations between primitives

13491

(a) input (b) connectivity analysis (c) space partitioning (d) surface extraction (e) output

Figure 1. Overview. Our algorithm starts from a point cloud and a set of primitives whose α-shapes are represented by colored polygons

(a). By analyzing the connectivity graph of primitives (see red edges), we extract some structurally-valid facets represented by colored

polygons with black edges (b). This quick connectivity analysis allows us to treat 35 of the 60 primitives of this model. We then build the

partitioning data-structure (see the pink wireframe) by slicing the spatially-close unprocessed primitives while embedding the structurally-

valid facets found in the previous step (c). The last step selects a subset of polygonal facets from the partition data-structure (d). The output

is a 2d-manifold polygon mesh in which each facet is a polygon supported by one of the primitives (e).

are analyzed in order to search for structurally-valid sur-

face components. This step, presented in Section 4, al-

lows us to quickly process a part of the input primitives

and solve obvious assembling situations before slicing op-

erations. We then build the partitioning data-structure in

Section 5 by slicing the spatially-close unprocessed prim-

itives while embedding the structurally-valid components

found in the previous step. Finally, the output surface is

recovered by selecting a subset of polygonal facets from the

partition data-structure using an energy minimization for-

mulation presented in Section 6.

4. Connectivity analysis

The objective of the first step is to quickly solve obvi-

ous local assemblings of some primitives by analyzing the

connectivity relations between them.

We define the notion of strong connectivity for char-

acterizing primitives that are spatially very close. When

detected from point clouds, two primitives are said

strongly-connected if at least two inlier points fitted each

to one of the two primitives are mutual neighbors in the

k-nearest neighbor graph of the input points. In case of

input meshes, two primitives are strongly-connected if at

least one inlier facet from the first primitive share an edge

with an inlier facet of the second primitive. We operate

our analysis on the connectivity graph where each node is

associated with a primitive, and each edge with a pair of

strongly-connected primitives. From real-world data, such

a graph usually contains errors with missing and invalid

connections. Our strategy is to search for structurally-valid

facets in this graph.

Extracting corners, creases and border polygons. We

first detect all the 3-cycles in the connectivity graph, i.e.

triples of primitives that are mutually connected. The point

located at the intersection of the three corresponding planes

is called a corner if it is close from the α-shapes of the three

primitives. In practice, we impose a maximal distance of

5% of the 3D bounding box diagonal. This condition allows

us to ignore a corner positioned far away from its primi-

tives, which typically occurs when primitives are nearly

parallel. We then detect creases, i.e. the line-segments link-

ing pairs of corners which have exactly two primitives in

common. Finally, we extract border polygons of each prim-

itive, i.e. the simple cycles of creases lying on the primitive.

Extracting structural facets. A primitive with border

polygons hosts a facet which is potentially a good candi-

date to be part of the output surface. In presence of one

border polygon, this facet is simply defined as its inside

surface. When two border polygons are nested, ie one of

these polygons is contained in the second one, we define

the facet as the surface in between the two polygons. When

border polygons intersect, we do not create facet to avoid

non-manifold degeneracies. Such a facet is called a struc-

tural facet if two conditions are respected:

• Data consistency: the facet must strongly overlap with the

α-shape of the primitive,

• Structural validity: all the creases lying on a primitive

must belong to the border polygons of that primitive.

The first condition checks whether the facet is well re-

covered by the α-shape of the primitive. In practice, we

impose an overlapping ratio between the facet and the α-

shape of the primitive higher than a threshold τ set to 0.9
in our experiments. The second condition guarantees that

the facet is unique and connect in a 2d-manifold way with

facets induced by the other primitives.

Structural facets connect between each others to form

2d-manifold polyhedral surface components that partially

describe the observed object. The border edges of these

components necessarily lie on the remaining primitives: we

call them anchor edges. We impose the structural facets

to be part of the final output mesh and discard their corre-

sponding primitives in the following steps. We denote by

P , the set of remaining primitives.

13492

ǫ = 1 ǫ = 0.1 ǫ = 0.01

Input mesh & primitives

Figure 2. Soft-connectivity. When all the remaining primitives intersect with each others (ǫ = 1), the 2D partition of the front facade of

the building is over-fragmented (see colored polygons on the top right frame with the anchor edges in red and the intersection lines in blue;

polygons with a black dot indicate they belong to the output surface on the left). Decreasing ǫ reduces the complexity of 2D partitions. In

presence of holes in the input mesh, primitive intersections can be missed when ǫ is too low (see the missing intersection between the front

and left facade in the case where ǫ = 0.01). ǫ is expressed as a ratio of the bounding box diagonal of the scene.

5. Space partitioning

Primitive slicing is usually performed in a greedy man-

ner in the literature. Typically, one first computes the slic-

ing domain of each primitive, i.e. the polygon lying on

the primitive plane and bounded by the 3D bounding box

of the observed object. Then, the 3D bounding box is di-

vided into polyhedra by inserting one per one each slic-

ing domain in an arbitrary order: the first slicing domain

splits the 3D bounding box into two polyhedra, the sec-

ond slicing domain typically splits the two polyhedra into

four polyhedra, etc. Because such a slicing strategy con-

siders the intersection of all pairs of slicing domains, the

number of polyhedra increases exponentially with respect

to the number of primitives. In practice, only a small





portion of these intersections is rel-

evant. To reduce the computational

burden of this operation, we re-

strict the pairs of primitives to be

sliced. We define the notion of soft-

connectivity to avoid intersecting slicing domains whose

primitives are not close enough. Two primitives are said

softly-connected if their ǫ-bounding boxes intersect inside

the 3D bounding box of the observed object (see inset). This

connectivity relationship is fast to compute and less restric-

tive than strong-connectivity.

In practice, we first intersect the slicing domains of

softly-connected primitives to form a 2D partitions of

polygonal facets. If anchor edges lie on primitives, they

are inserted into the corresponding 2D partitions. The an-

chor edges whose extremities are not connected to other an-

chor edges are extended until meeting an intersection line

or the border of the slicing domain. We finally split edges

that cross anchor edges. Figure 3 illustrates these different

slicing operations. Note that such a strategy generates a set

of polygonal facets which can eventually intersect between

each others without necessarily sharing an edge.

Figure 3. Slicing operations. Left: we first compute the slicing

domain (back lines) of primitive i and insert the anchor edges as-

sociated with this primitive (red segments). Middle: we then insert

line-segments defined as the intersection with the slicing domains

of softly connected primitives (blue lines) and extend anchor edges

whose extremities are not connected to other anchor edges (dashed

red lines). Right: the intersections of these different lines and

edges give the 2D partition of facets associated with primitive i.

The value of ǫ controls the complexity of the partitioning

data-structure, as illustrated in Figure 2. Choosing a low ǫ

value gives a set of light 2D partitions, low running time and

low memory consumption, but is less likely to be robust to

missing data.

We denote by F , the set of polygonal facets contained

in all the 2D partitions, and E , the set of edges. Note that

edges are typically adjacent to four facets, except in case of

anchor edges and rare situations where at least three primi-

tives intersect along the same line.

13493

6. Surface extraction

Contrary to existing methods [7, 24, 34], our set of

polygonal facets F and edges E does not necessarily consti-

tute a regular partition of polyhedral cells in the sense that

cells can overlap and polygonal facets can intersect between

each others. Traditional polyhedron labeling methods by

Graph-Cut [7, 34] being not applicable to our partition, we

adopt a more flexible facet selection approach inspired by

the integer programming formulation of [24]. In particu-

lar, such a formulation allows us to impose some geometric

constraints on the expected solution, e.g. the intersection-

free guarantee. Contrary to [24], our energy model (i) op-

erates on an irregular partition that requires additional lin-

ear constraints and (ii) does not directly depend on time-

consuming measurements to input data.

We denote by xi = {0, 1} the activation state of facet

i ∈ F , and by x = (xi)i∈F a configuration of activation

states for all facets in F . The set of active facets, i.e. so

that xi = 1, constitutes the facets of the output surface.

Energy. We measure the quality of a configuration x

with a two-term energy of the form

U(x) = (1− λ)D(x) + λV (x) (1)

where D(x) and V (x) are terms living in [0, 1] measuring

data consistency and surface complexity. λ ∈ [0, 1] is pa-

rameters balancing these two terms.

The linear term D(x) encourages facets recovered by in-

liers to be activated

D(x) = (1−β)

(∑

i∈F

Ai − Âi

A− Â
xi

)
+β

(
1−

∑

i∈F

Ai

A
xi

)

(2)

where Ai is the area of facet i, Âi the area of α-

shape of the inliers falling in facet i, A the sum of

areas of all facets, Â the sum of areas of all primi-

tive α-shapes. The first part of the expression encour-

ages the activation of facets homogeneously recovered by

A
i

i

A
i

data. The second part of the ex-

pression is required to penalize

the non-activation of facets. β is

a parameter living in [0, 1] that al-

lows these two opposite forces to be counter-balanced. It

acts as a trade-off between local correctness of facets and

global coverage. In our experiments, we set β to 0.5, except

for inputs with missing data where the value is increased to

0.7.

The quadratic term V (x) favors low complexity output

surface in a similar way than the one proposed by [24]

V (x) =
1

|E∼|

∑

(i,j)∈E
∼

1{i⊲⊳j}xixj (3)

Input mesh λ = 0.2 λ = 0.5 λ = 0.7

Figure 4. Impact of parameter λ. Increasing λ reduces the com-

plexity of the output model. At λ = 0.7, only a small portion of

the 21 detected primitives plays a role in the output model. Note

how the inner courtyard disappears.

where E∼ is the set of pairs of facets in F that share an

edge, |E∼| its cardinality, 1. the Heaviside function, and

i ⊲⊳ j the geometric relationship which is true when facets

i and j are not coplanar. This term favors output surfaces

with large facets by penalizing the presence of creases, as

illustrated in Figure 4.

Constraints. We introduce three linear constraints in or-

der to impose some geometric guarantees on the output sur-

face.

• Structural constraint imposes the structural facets to be

active, i.e. part of the output surface (Eq. 4):

xi = 1, ∀i ∈ Fs (4)

where Fs corresponds to the set of structural facets.

• 2d-manifold and watertight constraint traditionally im-

poses each edge to be shared by zero or two facets. As

input points have often missing parts on their 3D bounding

box (see for instance Church and Face in Figure 7), we relax

the watertight constraint on edges lying on the 3D bound-

ing box. This allows us to avoid either shrinking the output

surface or increasing computational complexity by adding

facets of the six sides of the 3D bounding box in F . Note

that, for a strict watertightness, such border edges can be

easily filled in as post-processing. We formulate this con-

straint as
∑

k∈Fe

xk = 0 or 1, ∀e ∈ Eborder (5)

∑

k∈Fe

xk = 0 or 2, ∀e ∈ Eborder (6)

where Fe is the set of facets adjacent to edge e, Eborder is the

set of edges lying on one of the six sides of the 3D bounding

box, and Eborder its complementary set in E .

• Intersection-free constraint. As F can contain facets that

intersect, we impose such pairs not to be active at the same

time:

xi + xj = 0 or 1 ∀(i, j) ∈ I (7)

where I is the set of pairs of facets in F that intersect. Note

that when ǫ is set to 1, this constraint is not necessary as the

13494

Input points 20 primitives

t : 12
m : 45

50 primitives

t : 24
m : 97

100 primitives

t : 52
m : 141

300 primitives

t : 317
m : 546

600 primitives

t : 563
m : 667

1, 200 primitives

t : 633
m : 741

Figure 5. Reconstruction of a free-form object at different levels of details. Our algorithm can approximate free-form objects by piecewise

planar representations. Detecting primitives with an increasing precision gives us a set of polygon meshes at different levels of detail. t

and m refer to running time (in second) and memory peak (in MB) respectively.

partition is guaranteed to be free of intersecting facets by

construction.

Optimization. We search for the configuration x that

minimizes the energy U while imposing Eq. 4, 5, 6 and 7 to

be true. We solve this quadratic optimization problem un-

der linear constraints using a standard integer programming

library [13]. In practice, we turn it into a linear optimization

problem by inserting the extra-variables yk = xixj .

7. Experiments

The algorithm has been implemented in C++, using the

Computational Geometry Algorithms Library [32] which

provides the basic geometric tools for mesh-data structures.

Flexibility. The algorithm has been tested on a variety

of data from urban and indoor structures to mechanical

pieces through free-form objects. Although it performs

best on piecewise-planar objects and scenes, our algorithm

can handle a large number of primitives necessary to

approximate free-form shapes at different levels of detail,

as illustrated in Figure 5. Different types of acquisition

systems have been used to generate the datasets, including

Laser, e.g. Euler and Hand, multi-view stereo, e.g. Cottage

and Building block, and Kinect, e.g. Rubbish bin and

Couch. Because the data term of our energy measures

surface consistency with respect to primitives directly, our

algorithm is weakly affected by the type of acquisition

systems as long as primitives fit well to input data.

Robustness. Our algorithm is relatively robust to noise

as long as primitives can be decently detected. When data

contain holes and missing areas as in Euler in Figure 7, the

connectivity analysis typically returns few structural facets,

but the subsequent slicing mechanism achieves to fill in

the missing areas. In practice, our algorithm cannot handle

large holes for which an extension of detected primitives is

soft-connectivity OFF soft-connectivity ON

st
ru

ct
u

ra
l

fa
ce

ts
O

N
st

ru
ct

u
ra

l
fa

ce
ts

O
F

F

|F| : 0.9K
#f : 249
t : 7sec

|F| : 2.8K
#f : 412
t : 27sec

|F| : 5.4K
#f : 924
t : 29sec

|F| : 34.5K
#f : 2.3K
t : 43min

Figure 6. Ablation study. Without soft-connectivity (ǫ = 1) and

connectivity analysis step, the number of facets |F| in the parti-

tion is huge, leading to high running times t and a complex out-

put surface likely to contain artifacts (top left). Activating soft-

connectivity (ǫ = 0.1) reduces the complexity of the partition

while improving the quality of the output surface (top right). When

a fair number of structural facets are detected during the connec-

tivity analysis step (here 35 structural facets over 60 primitives),

the partition is even more compact as only a part of primitives are

sliced (bottom right). The facets in the output sufaces are rep-

resented through yellow (border) and black (internal) edges, and

their number is given by #f .

not sufficient to describe the missing part. The exploitation

of defect-laden data typically requires to increase the value

of ǫ from 0.1 (default value) to typically 0.3.

Performance. Our algorithm is designed to be scalable

and fast through two keys ingredients: a connectivity

analysis to quickly process obvious assembling situations,

and a slicing mechanism operated on softly-connected

13495

Church Indoor Euler Couch Face House Capron

in
p
u
t

p
ri

m
it

iv
es

o
u
tp

u
t

o
u
tp

u
t+

in
p
u
t

Figure 7. Results on different man-made objects. Our algorithm offers a good versatility by operating on different types of objects and

scenes without any specific geometric assumption. Note, in particular, that primitives are neither regularized nor filtered.

primitives only. Figure 6 shows the impact of these two

ingredients on output complexity and running time. Used

simultaneously, they allow us to strongly reduce running

time from 43 minutes to 7 seconds on the shown example.

Running time does not depend only on the size of input data

and the number of primitives, but also on the amount of

structural facets. The latter is high typically on data weakly

corrupted by defects and with few free-form components.

In such cases, the algorithm is faster. As illustrated in

Figure 5, running time and memory peak do not skyrocket

when the number of primitives increases. More details on

performances are presented in supplementary material.

Comparisons with reconstruction methods. We

compared our algorithm with the connectivity-based

method Structuring [17] and the slicing-based methods

Polyfit [24] and Polyhedral Cell Complex (PCC) [7]. For

the latter, no primitive has been artificially added along

vertical and horizontal axes in order to fairly compare the

assembling mechanisms. As illustrated in Figure 8 and

Table 1, we deliver similar results than Polyfit and PCC on

simple examples requiring few primitives as Cottage, while

being slightly faster. On more challenging datasets where

hundred primitives are necessary to decently approximate

the objects as Rubbish bin, our algorithm performs better

in terms of visual quality, output complexity and running

time. Structuring is fast and scalable but the mixture

of large polygonal facets with fine triangular meshes

leads to complex output models which is not a simple

assembling of planes. Polyfit and PCC which rely on

greedy slicing mechanisms are relatively slow and have

memory consumption problems. In particular, the number

of primitives for Polyfit on Rubbish bin has been reduced to

run the algorithm under reasonable time. PCC and Polyfit

produce models with visual artifacts when approximating

the free-form shapes of Standford bunny. On such an

Cottage Stanford bunny Rubbish bin

In
p

u
t

S
tr

u
ct

u
ri

n
g

[1
7

]
P

C
C

[7
]

P
o

ly
fi

t
[2

4
]

O
u

rs

Figure 8. Visual comparison with reconstruction methods. Given

similar configurations of primitives, our algorithm produces

artifact-free models with a lower complexity in shorter running

times than Structuring, PCC and Polyfit (see also Table 1).

object, many planes share almost straight angles, leading to

a mislabeling of facets or cells when the set of candidates

13496

Input

Structuring PCC Polyfit Ours

error (in meter)

0 ≥ 1
e : 0.24 e : 0.35 e : 0.49 e : 0.33

Figure 9. Geometric accuracy on Building block. The yellow-to-black colored points represents the Hausdorff distance from the input

points to output surface. Structuring obtains the best RMS error e, but the model is not compact as underlined in Table 1. Our error is the

second best, outclassing PCC and Polyfit which are penalized by dense space partitions and data consistency terms weakly robust to noise.

Cottage Stanford bunny Rubbish bin Building block

#P |F| #f t(s) #P |F| #f T(s) #P |F| #f T(s) #P |F| #f T(s)

Structuring [17] 19 272K 34K 21 100 63K 12K 6 100 115K 20K 11 150 360K 43K 7

PCC [7] 21 3.7K 288 8 100 165K 10.5K 58 100 211K 7.9K 91 150 651K 22K 387

Polyfit [24] 23 1.8K 112 19 100 147K 5.6K 2449 30 3.9K 0.5K 57 54 6.4K 0.9K 1267

Ours 21 0.9K 83 8 100 5.7K 0.6K 22 100 8.7K 1.2K 14 150 12.4K 1.2K 126

Table 1. Quantitative evaluation for models presented on Figures 8 and 9. #P, |F|#f and t refer to the number of primitives, the number

of candidate facets in F , the number of facets in the output model, and the running time respectively.

is high (the number of candidate facets for PCC and Polyfit

is approximatively 30 times higher than with our method)

and the data consistency term of the labeling energy does

not rely on primitives only. Yet, these methods do not

offer a special treatment to scalability, but rather focus on

improving the quality of primitives. Figure 9 shows the

geometric accuracy of these methods on a complex block

of buildings. Our algorithm outclasses Polyfit and PCC

while being faster and delivering a more compact output

model.

Limitations. Our work focuses on primitive assembling,

not on primitive detection or primitive completion. As a

result, if primitives are badly detected from input points,

we do not offer a special treatment to repair them, con-

trary to PCC or Polyfit. This typically happens when in-

puts contain large missing parts. When no detected prim-

itive can decently fill in the missing parts, our algorithm

typically shrinks the surface. PCC which artificially adds

primitives on these parts along vertical and horizontal di-

rections is then a more suitable choice. Similarly, Polyfit

delivers more regularized surfaces for simple objects thanks

to its filtering of primitives. Yet, the primitive treatments of

these two methods could be also employed with our work

in order to rectify our input primitives. Also, the connec-

tivity analysis step typically retreives less structural facets

from defect-laden data. The performances of our method

are then reduced in this case.

8. Conclusion

We proposed a polygonal surface reconstruction algo-

rithm from 3D data that connects and slices primitives in

a robust and scalable manner. The algorithm is built on sev-

eral key technical ingredients that allows us to operate on an

efficient and compact partitioning data-structure. We pro-

posed (i) the principle of soft-connectivity that avoids slic-

ing improbable pairs of primitives, (ii) a preliminary analy-

sis of the connectivity of primitives in order to quickly solve

obvious primitive assembling situations, and (iii) a surface

extraction energy which estimates the quality of a solution

without operating time-consuming measurements to input

3D data. Our algorithm outperforms state-of-the-art meth-

ods on challenging input data in terms of performance and

output complexity.

Parameter ǫ specifying the soft-connectivity relationship

plays an important role in controlling how far the connected

primitives can be located from each others. In future work

we would like to investigate on its automatic selection. We

also wish to understand the hierarchical relationships be-

tween primitives in order to detect and exploit high order

structural information as symmetry.

Acknowledgments

We thank CSTB for supporting this work, Sven Oesau

for technical discussions and the anonymous reviewers for

their inputs.

13497

References

[1] M. Arikan, M. Schwarzler, S. Flory, M. Wimmer, and S.

Maierhofer. O-snap: Optimization-based snapping for mod-

eling architecture. Trans. on Graphics, 32(1), 2013.

[2] M. Berger, A. Tagliasacchi, L. Seversky, P. Alliez, G. Guen-

nebaud, J. Levine, A. Sharf, and C. Silva. A survey of sur-

face reconstruction from point clouds. Computer Graphics

Forum, 36(1), 2017.

[3] H. Bodis-Szomoru, Riemenschneider and L. Van Gool. Su-

perpixel meshes for fast edge-preserving surface reconstruc-

tion. In Proc. of Computer Vision and Pattern Recognition

(CVPR), 2015.

[4] M. Botsch, L. Kobbelt, M. Pauly, P. Alliez, and B. Lévy.

Polygon Mesh Processing. AK Peters, 2010.

[5] A. Boulch, M. De La Gorce, and R. Marlet. Piecewise-planar

3d reconstruction with edge and corner regularization. Com-

puter Graphics Forum, 33(5), 2014.

[6] R. Cabral and Y. Furukawa. Piecewise planar and compact

floorplan reconstruction from images. In Proc. of Computer

Vision and Pattern Recognition (CVPR), 2014.

[7] A.-L. Chauve, P. Labatut, and J.-P. Pons. Robust piecewise-

planar 3D reconstruction and completion from large-scale

unstructured point data. In Proc. of Computer Vision and

Pattern Recognition (CVPR), 2010.

[8] J. Chen and B. Chen. Architectural modeling from sparsely

scanned range data. International Journal of Computer Vi-

sion (IJCV), 78(2-3), 2008.

[9] T.-J. Chin, Z. Cai, and F. Neumann. Robust fitting in com-

puter vision: Easy or hard? In Proc. of European Conference

on Computer Vision (ECCV), 2018.

[10] J. Coughlan and A. Yuille. The manhattan world assump-

tion: Regularities in scene statistics which enable bayesian

inference. In NIPS, 2000.

[11] H. Edelsbrunner, D. Kirkpatrick, and R. Seidel. On the shape

of a set of points in the plane. Trans. on Information Theory,

29(4), 1983.

[12] H. Fang, F. Lafarge, and M. Desbrun. Planar Shape Detec-

tion at Structural Scales. In Proc. of Computer Vision and

Pattern Recognition (CVPR), 2018.

[13] Inc. Gurobi Optimization. Gurobi optimizer reference man-

ual, 2016.

[14] J. Huang, T. Jiang, Z. Shi, Y. Tong, H. Bao, and M. Des-

brun. l1-based construction of polycube maps from complex

shapes. Trans. on Graphics, 33(3), 2014.

[15] M. Kazhdan, M. Bolitho, and H. Hoppe. Poisson surface re-

construction. In Symposium on Geometry Processing, 2006.

[16] P. Labatut, J.-P. Pons, and R. Keriven. Hierarchical shape-

based surface reconstruction for dense multi-view stereo.

In Proc. of International Conference on Computer Vision

(ICCV) workshops, 2009.

[17] F. Lafarge and P. Alliez. Surface reconstruction through

point set structuring. In Computer Graphics Forum, vol-

ume 32, 2013.

[18] F. Lafarge and C. Mallet. Building large urban environments

from unstructured point data. In Proc. of International Con-

ference on Computer Vision (ICCV), 2011.

[19] M. Li, P. Wonka, and L. Nan. Manhattan-world urban recon-

struction from point clouds. In Proc. of European Confer-

ence on Computer Vision (ECCV), 2016.

[20] Y. Li, X. Wu, Y. Chrysanthou, A. Sharf, D. Cohen-Or, and N.

Mitra. Globfit: Consistently fitting primitives by discovering

global relations. Trans. on Graphics, 30(4), 2011.

[21] D. Marshall, G. Lukacs, and R. Martin. Robust segmentation

of primitives from range data in the presence of geometric

degeneracy. Trans. on Pattern Analysis and Machine Intelli-

gence (PAMI), 23(3), 2001.

[22] A. Monszpart, N. Mellado, G. Brostow, and N. Mitra.

Rapter: Rebuilding man-made scenes with regular arrange-

ments of planes. Trans. on Graphics, 34(4), 2015.

[23] T. Murali and T. Funkhouser. Consistent solid and boundary

representations from arbitrary polygonal data. In Proc. of

Symposium on Interactive 3D Graphics (SI3D), 1997.

[24] L. Nan and P. Wonka. Polyfit: Polygonal surface reconstruc-

tion from point clouds. In Proc. of International Conference

on Computer Vision (ICCV), 2017.

[25] S. Oesau, F. Lafarge, and P. Alliez. Planar shape detection

and regularization in tandem. In Computer Graphics Forum,

volume 35, 2016.

[26] T.-T. Pham, T.-J. Chin, K. Schindler, and D. Suter. Interact-

ing geometric priors for robust multimodel fitting. Trans. on

Image Processing, 23(10), 2014.

[27] C. Poullis and S. You. Automatic reconstruction of cities

from remote sensor data. In Proc. of Computer Vision and

Pattern Recognition (CVPR), 2009.

[28] T Rabbani, F van Den Heuvel, and G Vosselman. Segmen-

tation of point clouds using smoothness constraint. ISPRS,

36(5), 2006.

[29] F. Schindler, W. Forstner, and J.-M. Frahm. Classification

and reconstruction of surfaces from point clouds of man-

made objects. In Proc. of International Conference on Com-

puter Vision (ICCV) Workshops, 2011.

[30] R. Schnabel, P. Degener, and R. Klein. Completion and re-

construction with primitive shapes. In Computer Graphics

Forum, volume 28, 2009.

[31] R. Schnabel, R. Wahl, and R. Klein. Efficient ransac for

point-cloud shape detection. In Computer graphics forum,

volume 26, 2007.

[32] The CGAL Project. CGAL User and Reference Manual.

CGAL Editorial Board, 4.11 edition, 2017.

[33] M. van Kreveld, T. van Lankveld, and R. Veltkamp. On the

shape of a set of points and lines in the plane. Computer

Graphics Forum, 30, 2011.

[34] Y. Verdie, F. Lafarge, and P. Alliez. LOD Generation for

Urban Scenes. Trans. on Graphics, 34(3), 2015.

[35] V. Verma, R. Kumar, and S. Hsu. 3D building detection and

modeling from aerial LIDAR data. In Proc. of Computer

Vision and Pattern Recognition (CVPR), 2006.

[36] L. Zebedin, J. Bauer, K.F. Karner, and H. Bischof. Fusion

of feature- and area-based information for urban buildings

modeling from aerial imagery. In Proc. of European Confer-

ence on Computer Vision (ECCV), 2008.

13498

